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We use the recently proposed four-spin bond-operator technique (BOT) to discuss the spectral properties of
a frustrated spin- 1

2 J1–J2 Heisenberg antiferromagnet on a square lattice at J2 < 0.4J1 (i.e., in the Néel ordered
phase). This formalism is convenient for the consideration of low-lying excitations which appear in conventional
approaches as multimagnon bound states (e.g., the Higgs excitation) because separate bosons describe them in
the BOT. At J2 = 0, the obtained magnon spectrum describes accurately available experimental data. However,
calculated one-magnon spectral weights and the transverse dynamical structure factor (DSF) do not reproduce
experimental findings quantitatively around the momentum k = (π, 0). Thus, we do not support the conjecture
that the continuum of excitations observed experimentally and numerically near k = (π, 0) is of the Higgs-
magnon origin. Upon J2 increasing, one-magnon spectral weights decrease, and spectra of high-energy spin-0
and spin-1 excitations move down. One of the spin-0 quasiparticles becomes long-lived, and its spectrum merges
with the magnon spectrum in the majority of the Brillouin zone at J2 ≈ 0.3J1. We predict also that the Higgs
excitation and another spin-0 quasiparticle become long-lived around k = (π/2, π/2) at J2 � 0.3J1 and produce
sharp anomalies in the longitudinal DSF.
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I. INTRODUCTION

Despite its simplicity and many experimental and theoreti-
cal efforts devoted to its investigation, the spin- 1

2 Heisenberg
antiferromagnet (HAF) on a square lattice continues to attract
much attention. This interest is stimulated greatly by the
relevance of this model to the physics of parent cuprate high-
temperature superconductors [1]. Of particular importance are
magnetic excitations in spin- 1

2 HAF and their evolution in
cuprates upon doping on the way from the antiferromagnetic
(AF) insulating state to the superconducting state. Spin ex-
citations are considered now to be promising candidates to
provide a “glue” for high-temperature superconductivity [2].

While properties of long-wavelength elementary excita-
tions (magnons) in spin- 1

2 HAF on a square lattice are well
understood [1,3,4], the nature of short-wavelength magnons
remains the subject of controversial debates. It is important
to clarify this point in view of recent findings that short-
wavelength spin excitations play an important role in the spin-
fluctuation-mediated pairing mechanism in high-temperature
superconductors [2]. It was observed both experimentally in
Cu(DCOO)2 · 4D2O (CFTD) [5,6] and numerically [6–12]
that the magnon spectrum has a local minimum at k =
(π, 0) which is not reproduced quantitatively by analytical
approaches, including the spin-wave theory in the third or-
der in 1/S [13,14]. In addition, a pronounced high-energy
continuum of excitations arises in the transverse dynamical
structure factor (DSF) at k = (π, 0) with the form of a tail
of the one-magnon peak. This high-energy tail was previously
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interpreted as an indication of an instability of the magnon
with k = (π, 0) with respect to a decay either on two spinons
[6,10,15,16] or on another magnon and a Higgs excitation
[11,12,17]. It was also proposed in the latter conjecture that
a magnon attraction is in the origin of the local minimum in
the spectrum [11,12,17].

Spin excitations in the so-called spin- 1
2 J1–J2 Heisenberg

model are also of interest now. This model is an extension of
the spin- 1

2 HAF on a square lattice, which contains, along with
the nearest-neighbor AF exchange coupling J1, a frustrating
next-nearest-neighbor exchange interaction J2. Its Hamilto-
nian has the form

H =
∑
〈i, j〉

SiS j + J2

∑
〈〈i, j〉〉

SiS j, (1)

where we put J1 = 1. It was proposed that this model can
describe doped cuprate superconductors in which a small
concentration of holes appears in CuO planes [18]. Some
variants of the J1–J2 model have been used also to de-
scribe the weakened AF long-range order in iron-based high-
temperature superconductors [19]. In addition, model (1) has
provided a convenient playground for the investigation of
such novel types of many-body phenomena as quantum spin-
liquid phases [20,21] and a novel universality class of phase
transitions [22,23].

It is generally believed that Néel ordered phases with AF
vectors (π, π ) and (π, 0) [or (0, π )] arise at J2 � 0.4 and
J2 � 0.6, respectively, and there is a magnetically disordered
state in the intermediate region of 0.4 � J2 � 0.6. In spite
of extensive investigations over the past three decades by
various numerical and analytical methods [20,21,24–45], the
nature of the nonmagnetic region remains unclear. While the
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disordered region is in the focus of attention now, the influence
of the frustration on the Néel ordered phase at J2 � 0.4 has
not been discussed yet in every detail either theoretically
or experimentally (although some suitable compounds with
J2 ≈ 0.2–0.3 are known [46,47]).

We address in the present paper the evolution of high-
energy elementary excitations in the Néel state of the J1–J2

HAF upon J2 increasing at 0 � J2 < 0.4. We use a bond-
operator technique (BOT) suggested by one of us [48] which
is suitable for describing both magnetically ordered and
disordered states as well as transitions between them. This
approach, which is discussed briefly in Sec. II, is guided by
the idea to increase the unit cell in order to take into account
all spin degrees of freedom in it. There are extra bosons in the
bosonic representation of spin operators in the unit cell which
describe elementary excitations arising in conventional ap-
proaches as bound states of ordinary quasiparticles (magnons
or triplons). In particular, in the BOT with four spins in
the unit cell which was suggested for the ordered phase in
the spin- 1

2 HAF, there are separate bosons describing the
amplitude (Higgs) excitation and a spin-0 quasiparticle named
a singlon [48]. The latter is responsible for the anomaly in
Raman intensity in the B1g symmetry observed, e.g., in layered
cuprates [48]. The proposed variant of the BOT allows regular
expansion of the physical observables in powers of 1/n, where
n is the maximum number of bosons which can occupy a
unit cell (physical results correspond to n = 1). The spin
commutation algebra is fulfilled for any n > 0. By comparison
with other available numerical and experimental results, it
was demonstrated [48] that the first 1/n corrections make
the main renormalization to the staggered magnetization, the
ground-state energy, and energies of quasiparticles. On the
other hand, quasiparticle damping appears to be too rough in
the first order in 1/n as it is the order in which the first nonzero
corrections to the damping appear.

As obtained in our previous paper [48], the spectrum of
magnons is reproduced quite accurately at J2 = 0 within the
first order in 1/n even around k = (π, 0). We demonstrate
in Sec. III that one-magnon spectral weights are in very
good agreement in the whole Brillouin zone (BZ) with the
experiment in CFTD [5,6] except for the neighborhood of k =
(π, 0). Consideration within our approach could support the
Higgs-magnon origin of the continuum of excitations above
the magnon peak at k = (π, 0) because the magnon and the
amplitude excitations appear explicitly in the BOT. However,
we observe a very weak Higgs-magnon continuum in the first
order in 1/n. In addition, we find that calculated one-magnon
spectral weights are overestimated near k = (π, 0). Thus, we
do not confirm the Higgs-magnon origin of the continuum.

We examine the effect of the frustration in Sec. IV and
demonstrate that magnon spectral weights are reduced upon
J2 rising. The deviation around k = (π, 0) becomes more
pronounced of the calculated magnon spectrum from that
found in the second order in 1/S. We observe that spectra
of all quasiparticles move down when J2 increases. However,
spectra of high-energy spin-0 and spin-1 elementary excita-
tions move faster than the magnon spectrum. As a result, the
singlon spectrum merges with the magnon one in the majority
of the BZ at J2 ≈ 0.3. Also, the Higgs excitation, another spin-
0 quasiparticle, and a spin-1 elementary excitation get very

FIG. 1. Diagrams giving corrections of the first order in 1/n to
the self-energy parts.

close to the magnon spectrum at k = (π/2, π/2) and J2 �
0.3. Then, we predict that the Higgs and the spin-0 excitations
produce distinct anomalies around k = (π/2, π/2) in the lon-
gitudinal DSF whose spectral weights are also calculated. The
spin-1 quasiparticle produces an anomaly in the transverse
DSF near k = (π/2, π/2) whose spectral weight is more than
an order of magnitude smaller than the spectral weight of the
one-magnon peak.

We provide a summary and a conclusion in Sec. V. The
Appendix gives the details of the calculations.

II. MODEL AND TECHNIQUE

We double the unit cell in two directions so that there are
four spins in the unit cell and introduce 15 Bose operators in
the BOT formulated by one of us in Ref. [48]. Two bosons
describe high-energy spin-2 excitations; eight Bose operators
stand for spin-1 quasiparticles, four of which are magnons;
there are five spin-0 excitations, two of which are two parts of
the amplitude mode; and one boson describes the singlon.

We calculate spin susceptibilities (SSs)

χαβ (ω, k) = i
∫ ∞

0
dt eiωt

〈[
Sα

k (t ), Sβ

−k(0)
]〉
, (2)

where spin operators read, in our terms, Sγ

k = Sγ

1k +
Sγ

2ke−iky/2 + Sγ

3ke−i(kx+ky )/2 + Sγ

4ke−ikx/2, the double distance
between nearest-neighbor spins is set to be equal to unity
here, and spins in the unit cell are enumerated clockwise
starting from its lower left corner. We use the representation
of spins components Sγ

1,2,3,4 via Bose operators proposed in
Ref. [48] and calculate SSs within the first order in 1/n by the
conventional diagram technique as it is explained in Ref. [48].
In particular, we calculate diagrams shown in Figs. 1 and 2 to
find the self-energy parts and SSs, respectively.

Transverse χ+−(ω, k) and longitudinal χzz(ω, k) SSs are
expressed in the leading (zeroth) order in 1/n via Green’s
functions of Bose operators describing spin-1 and spin-0 ex-
citations, respectively. In the first order in 1/n, denominators
D(ω, k) of SSs can be represented as an expansion of the
following expression up to terms of O(1/n) (see also the

FIG. 2. Diagrams for spin susceptibilities (2) to be taken into
account in the first order in 1/n.
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Appendix):

D(ω, k) =
(

1 + 1

n
δ0(ω, k)

)[
ω2 −

(
ε

(0)
1k + 1

n
δ1(ω, k)

)2
][

ω2 −
(

ε
(0)
2k + 1

n
δ2(ω, k)

)2
]

×
[
ω2 −

(
ε

(0)
3k + 1

n
δ3(ω, k)

)2
][

ω2 −
(

ε
(0)
4k + 1

n
δ4(ω, k)

)2
]
, (3)

where ε
(0)
1,2,3,4k are bare spectra of elementary excitations

(ε (0)
10 < ε

(0)
20 < ε

(0)
30 < ε

(0)
40 ) and δ0,1,2,3,4(ω, k) are functions

composed of the self-energy parts, which we do not present
here due to their cumbersomeness [49]. The diagram shown
in Fig. 2(d) contributes to a background of SSs. Evidently,
εik = ε

(0)
ik + δi(ω = ε

(0)
ik ), where i = 1, 2, 3, 4, give renormal-

ized spectra in the first order in 1/n. It is demonstrated in
Ref. [48] that the residue of bare SSs at ω = ε

(0)
1k is strongly

suppressed in the green area shown in Fig. 3, whereas the
residue at ω = ε

(0)
2k is strongly suppressed in the red area.

Thus, ε1k and ε2k are two parts of quasiparticle spectra which
meet at the border of the green and red areas in the magnetic
BZ (see Fig. 3). Then, ε1k and ε2k are two parts of spectra of
magnons and the amplitude mode in the case of χ+−(ω, k)
and χzz(ω, k), respectively. In χ+−(ω, k), ε3k and ε4k are
bare spectra of high-energy spin-1 excitations which can arise,
e.g., in the conventional spin-wave formalism as bound states
of three magnons (i.e., as poles of a three-particle vertex).
In χzz(ω, k), ε3k and ε4k are spectra of high-energy spin-0
excitations which correspond to two-magnon bound states in
common approaches.

xk

yk

2 2
0

FIG. 3. The chemical and magnetic Brillouin zones (BZs) are
presented (the largest and the middle squares, respectively) for the
simple square lattice. The distance between nearest lattice sites is set
to be equal to unity. The smallest (red) square and the green area are
the first and second BZs, respectively, in the case of four sites in the
unit cell having the form of a plaquette.

In addition to spin-0 excitations whose spectra are deter-
mined by poles of χzz(ω, k), there is a special spin-0 mode
which is purely singlet in phases with singlet ground states
[48]. For short, we called it a singlon in Ref. [48], bearing
in mind, however, that it is not a singlet in the ordered
phase. We demonstrated in Ref. [48] that the singlon spectrum
arises as a pole in bond-bond correlators. In particular, the
Raman intensity in the B1g symmetry is expressed via the
singlon Green’s function at k = 0, which describes the so-
called two-magnon asymmetric peak observed, e.g., in layered
cuprates [48]. Within the first order in 1/n, the position of
the peak is accurately reproduced, whereas the peak width is
underestimated by roughly a factor of 3.

We find below one-magnon spectral weights by calculating
the transverse DSF,

S⊥(ω, k) = 1

2π
Im[χ+−(ω, k) + χ−+(ω, k)]

= 1

π
Im[χxx(ω, k) + χyy(ω, k)]. (4)

Spectral weights of spin-0 quasiparticles are found from the
longitudinal DSF S‖(ω, k) = 1

π
Imχzz(ω, k).

III. SPECTRAL PROPERTIES AT J2 = 0

Spectra of low-energy elementary excitations found within
the first order in 1/n at J2 = 0 are shown in Fig. 4. It is
seen that the singlon and the Higgs excitations are moderately
damped in the first order in 1/n. In addition, singlons lie below
the amplitude mode in the majority of the BZ. Notice that the
spectrum of magnons is in good quantitative agreement with
previous numerical and experimental results in the whole BZ
except for the neighborhood of the borders between the red
and green areas in Fig. 3. In addition, there are small jumps
in the magnon and in the Higgs mode spectra on the borders
between the red and green areas which should vanish after
taking into account 1/n corrections of further orders [48].
Remarkably, the observed magnon spectrum is in quantitative
agreement with experimental results even near k = (π, 0)
(see Fig. 4): ε2k = 2.23 + 0.02/n at this momentum.

The spectral weight of the magnon pole at k = (π, 0)
found in the first order in 1/n by taking into account diagrams
shown in Figs. 1 and 2(a)–2(c) reads

Wm(J2 = 0, k = (π, 0)) = 0.44 − 1

n
0.02. (5)

Equation (5) gives 0.42 at n = 1, which should be compared
with 0.43, 0.31, and 0.28 found using the continuous similar-
ity transformation (CST) technique [12], in the second order
in 1/S [13], and by the series expansion [9], respectively.
The spectral weight of the magnon pole at k = (π/2, π/2)
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FIG. 4. Spectra of low-energy elementary excitations in the spin-
1
2 HAF on the square lattice found using the four-spin bond-operator
technique (BOT) in the first order in 1/n. Also shown are magnon
spectra obtained by series expansion around the Ising limit [9],
within the spin-wave theory (SWT) in the second [13,50] and third
[14] orders in 1/S, and the neutron scattering experiment in CFTD
[5,6]. Borders of the first BZ with four spins in the unit cell are
shown by red vertical lines (see Fig. 3). Small jumps in the magnon
and in the Higgs mode spectra on the red vertical lines are an
artifact of the first order in 1/n, as explained in the text. Dashed
lines correspond to the damping of quasiparticles whose energies are
drawn by solid lines of the same color. Modes denoted as “bound
states” are described in the BOT by separate bosons, while they
would appear, e.g., in the spin wave theory as two- and three-magnon
bound states.

reads

Wm

[
J2 = 0, k =

(π

2
,
π

2

)]
= 0.44 − 1

n
0.02. (6)

One gets 0.42 from Eq. (6) at n = 1, which should be com-
pared with 0.58, 0.31, and 0.35 found using CST [12], in
the second order in 1/S [13], and by the series expansion
[9], respectively. Figure 4 shows that two magnon modes
(described by different bosons) exist at k = (π/2, π/2) which
should merge upon taking into account corrections of all
orders in 1/n. Each of these modes produces a peak in the
transverse DSF at k = (π/2, π/2) in the first order in 1/n, so
that the total spectral weight of these peaks stands in Eq. (6).
One-magnon spectral weights in other representative points
of the BZ are shown in Fig. 5. Good quantitative agreement is
seen between the experiment in CFTD [5] and the BOT in the
whole BZ except for the vicinity of k = (π, 0).

To discuss properties of magnons around k = (π, 0), we
calculate χ+−(ω, k) and χ−+(ω, k) in the first order in
1/n. Contributions to these SSs from diagrams shown in
Figs. 2(a)–2(c) contain the denominator D(ω, k), which can
be represented in the first order in 1/n as a result of expansion
of Eq. (3) up to terms of the first order in 1/n, where
ε

(0)
10 = 0 and ε

(0)
20 = 2.23 are bare energies of two magnons

[at k = 0 and at k = (π, 0), respectively] and ε
(0)
30 = 3.98 and

ε
(0)
40 = 4.42 are bare energies of spin-1 excitations at k = 0

(three-magnon bound states). We observe that the self-energy
parts acquire imaginary parts at ω greater than 2.43 (the bare
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FIG. 5. One-magnon spectral weights obtained experimentally in
CFTD [5] and by the BOT in the first order in 1/n (present study).
Theoretical results are found using Eq. (4), and they are multiplied
by a common factor to fit the experimental data.

energy of the Higgs excitation with k = 0) which originate
from the diagram presented in Fig. 1(b). A detailed analysis
shows that the major contribution to the imaginary parts arises
due to the decay of a long-wavelength Higgs excitation and a
long-wavelength magnon. However, the imaginary parts are
very small at 2.43 < ω < 3 of the self-energy parts, corre-
sponding to magnons with the spectrum ε2k. In particular,
Imδ0,1,3,4(ω, 0) are pronounced at 2.43 < ω < 3, whereas
Imδ2(ω, 0) is negligible [see Eq. (3)]. Accurate expansion of
χ+−(ω, k) + χ−+(ω, k) up to terms of the first order in 1/n
shows that self-energy parts with large imaginary parts from
the denominator cancel those from the numerator. Imaginary
parts of loops in diagrams presented in Figs. 2(b) and 2(d) are
also negligible at ω < 3. Thus, our results do not support the
conjecture that the continuum in S⊥(ω, k) at k = (π, 0) is of
the magnon-Higgs type.

IV. NÉEL PHASE AT 0 < J2 < 0.4

We discuss in this section the Néel phase in the J1–J2 HAF
using the BOT within the first order in 1/n. The staggered
magnetization M shown in Fig. 6 is found as done in Ref. [48]
for J2 = 0. It is seen that our results are in good agreement
with some other numerical findings at J2 < 0.3. In particular,
one obtains M = 0.301 at J2 = 0 in the first order in 1/n,
which is very close to the value of ≈0.3 observed before by
many methods [1]. One obtains for the critical value of J2 at
which the order parameter vanishes

J2c = 0.42 − 1

n
0.06, (7)

which gives J2c = 0.36 at n = 1, in agreement with many
previous results showing J2c ≈ 0.4.

The obtained spectra of low-lying elementary excitations
are shown in Fig. 7 for J2 = 0.3 (see Fig. 4). Figure 7 illus-
trates our observation that the deviation of the magnon spec-
trum found using the BOT from that obtained in the second
order in 1/S becomes more pronounced near k = (π, 0) upon
J2 increasing. Notice that second-order 1/S corrections give
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FIG. 6. Staggered magnetization M found using the series ex-
pansion around the Ising limit [51], the exact diagonalization of
finite clusters with extrapolation to the thermodynamic limit (ED)
[35], variational Monte Carlo simulations (VMC) [24], a modified
spin-wave theory (MSWT) [52], and the BOT in the first order in
1/n (present study).

a negligibly small renormalization of the magnon spectrum at
all J2 [13,14,55].

Upon J2 increasing, spectra of high-energy elementary
excitations move down faster than energies of magnons. In
particular, Fig. 7 shows that the spectrum of singlons, which
remain the lower spin-0 excitations in the majority of the BZ,
merges with the spectrum of high-energy magnons at J2 ≈
0.3. In addition, the singlon damping (which appears mainly
due to singlon decay into two spin-1 excitations) decreases
fast as J2 rises, so that singlons turn out to be long-lived
quasiparticles at J2 ≈ 0.3, as seen from Fig. 7. Spikes in the
Higgs mode damping accompanied by abrupt changes in its
energy are the appearance of the Van Hove singularities from
the two-magnon density of states (similar anomalies were

0.0

0.5

1.0

1.5

2.0

(p/2,0)

Bound states (BOT):
 2-magnon
 3-magnon

Singlon:
 BOT
 PE

 Higgs mode (BOT)

J2=0.3

Magnons:
 SWT, 1/S2

 BOT

(0,0)(p/2,p/2)(p,0)(0,0)

e k

FIG. 7. Same as in Fig. 4, but for the J1–J2 model (1) on a
square lattice at J2 = 0.3. Also shown is the spectrum of singlons
found using the plaquette expansion (PE) by the method proposed in
Refs. [53,54].
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FIG. 8. One-magnon spectral weights obtained using Eq. (4) in
the first order in 1/n for J2 = 0 and J2 = 0.3.

observed, e.g., in magnon spectra in the first order in 1/S in
noncollinear magnets [56,57] and in the Higgs mode spectrum
in the Heisenberg bilayer model [48]).

As Fig. 8 shows, one-magnon spectral weights decrease
upon J2 increasing. In particular, their values at k = (π, 0)
and k = (π/2, π/2) have the form [see Eqs. (5) and (6)]

Wm(J2 = 0.3, k = (π, 0)) = 0.37 − 1

n
0.03, (8)

Wm

(
J2 = 0.3, k =

(
π

2
,
π

2

))
= 0.38 − 1

n
0.04. (9)

Also shown in Fig. 7 is the singlon spectrum found using
a plaquette expansion (PE) up to seventh order in the interpla-
quette interaction using the method proposed in our previous
papers [53,54]. Although PE is more suitable for discussion
of disordered phases with singlet ground states [53,54], the
singlon spectrum obtained by PE shows good quantitative
agreement with the BOT results even in the ordered phase not
far from transition points (as seen from Fig. 7 and as will be
shown in our forthcoming paper [58] devoted to the disordered
phase in the J1–J2 model).

Figure 7 also shows that other spin-0 and spin-1 excita-
tions (denoted as “bound states” in Figs. 4 and 7) become
closer to each other and to the magnon spectrum. We demon-
strate in our forthcoming paper [58] that these spin-0 and
spin-1 branches merge in the disordered phase, forming a
high-energy triplon branch (in addition to the triplon branch
stemming from the magnon and the Higgs modes) which
plays an important role in the disordered phase. Figure 7
demonstrates that spectra of these spin-0 and spin-1 excita-
tions are particularly close to spectra of the Higgs mode and
magnons at k = (π/2, π/2), where their damping is minimal.
One expects also that the damping of these excitations is
overestimated near k = (π/2, π/2) in the considered first
order in 1/n because bare spectra are used to calculate it
in this order: 1/n corrections decrease their energies and bring
them closer to the lower edge of the two-magnon continuum,
thus providing less phase space for the decay. Thus, we predict
that at sufficiently large J2 extra anomalies can appear in DSFs
stemming from these excitations. In particular, the spin-1
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excitation gives a peak in the transverse DSF. However, its
spectral weight

W spin−1
bs

(
J2 = 0.3, k =

(
π

2
,
π

2

))
= 0.0129 + 1

n
0.0003

(10)

is more than an order of magnitude smaller than the magnon
spectral weight [see Eq. (9)]. In contrast, spectral weights of
anomalies in the longitudinal DSF from the spin-0 and the
Higgs quasiparticles

W spin−0
bs

(
J2 = 0.3, k =

(
π

2
,
π

2

))
= 0.055 − 1

n
0.008,

(11)

WHiggs

(
J2 = 0.3, k =

(
π

2
,
π

2

))
= 0.059 − 1

n
0.013

(12)

are quite comparable with the magnon spectral weight (9).
Then, the Higgs and the spin-0 excitations are visible around
k = (π/2, π/2) even in an inelastic neutron scattering ex-
periment not distinguishing the transverse and longitudinal
channels.

V. SUMMARY AND CONCLUSION

To summarize, using the four-spin BOT proposed in
Ref. [48], we discussed spectral properties of the spin- 1

2 J1–J2

Heisenberg antiferromagnet (1) on a square lattice in the Néel
phase (i.e., at J2 < 0.4) and in the first order in 1/n, where n
is the maximum number of bosons which can occupy a unit
cell (physical results correspond to n = 1).

At J2 = 0, the obtained magnon spectrum (see Fig. 4) is in
good quantitative agreement with experiment in CFTD even
around k = (π, 0). Calculated one-magnon spectral weights
are in good quantitative agreement with the experiment except
for the neighborhood of k = (π, 0), where theoretical results
overestimate the spectral weights (see Fig. 5). In addition,
we did not observe the experimentally and numerically ob-
tained pronounced high-energy continuum of excitations at
k = (π, 0) starting from the magnon peak. Thus, we do not
support the idea suggested before [11,12] that magnons with

k = (π, 0) are unstable with respect to the decay into another
magnon and the Higgs excitation.

Upon J2 increasing, one-magnon spectral weights decrease
(see Fig. 8), and the deviation around k = (π, 0) becomes
more pronounced in the magnon spectrum obtained using
the BOT from the spectrum observed in the second order in
1/S (see Fig. 7). Spectra of all high-energy excitations move
down and become closer to the magnon spectrum and to the
lower edge of the two-magnon continuum. As a result, the
singlon (a spin-0 excitation responsible for the asymmetric
peak in the Raman intensity in the B1g geometry) becomes
a long-lived quasiparticle in the whole BZ, and its spectrum
merges with the magnon spectrum at J2 ≈ 0.3. Energies of
the amplitude mode, another spin-0 excitation, and a spin-1
quasiparticle (which could appear in conventional approaches
as a three-magnon bound state) become very close to the
magnon energy at k = (π/2, π/2) and J2 � 0.3, and their
damping decreases. Then, these elementary excitations should
produce distinct anomalies in the transverse and longitudinal
DSFs whose spectral weights are given by Eqs. (10)–(12).
Experimental observation of the spin-1 excitation would be
difficult, however, due to the smallness of its spectral weight
in comparison with the magnon spectral weight given by
Eq. (9).

ACKNOWLEDGMENT

This work is supported by the Foundation for the Advance-
ment of Theoretical Physics and Mathematics “BASIS.”

APPENDIX: DYSON EQUATIONS

We present in this Appendix sets of Dyson equations for
Green’s functions of spin-0 and spin-1 bosons. Determinants
of these linear sets of equations give the denominators of the
longitudinal and transverse spin susceptibilities, respectively,
discussed in the main text [Eq. (3)]. We follow the notation
introduced in Ref. [48], where a2,3,4,5, b1,2,3,4, and b̃1,2,3,4

are Bose operators describing excitations with projections on
quantized axis 0, +1, and −1, respectively. Notice that we
do not use the Bogoliubov transformation of operators. This
approach is an extension of that used, e.g., in Ref. [14].

The set of Dyson equations for Green’s functions of spin-0
elementary excitations has the form

−G{a2k,a†
2k}

(
ω − S{a†

2k,a2k}
) + G{a†

2−k,a†
2k}S{a†

2k,a†
2−k} + G{a3k,a†

2k}S{a†
2k,a3k} + G{a†

3−k,a†
2k}S{a†

2k,a†
3−k} + G{a4k,a†

2k}S{a†
2k,a4k}

+ G{a†
4−k,a†

2k}S{a†
2k,a†

4−k} + G{a5k,a†
2k}S{a†

2k,a5k} + G{a†
5−k,a†

2k}S{a†
2k,a†

5−k} = −1,

−G{a3k,a†
2k}

(
ω − S{a†

3k,a3k}
) + G{a2k,a†

2k}S{a†
3k,a2k} + G{a†

2−k,a†
2k}S{a†

3k,a†
2−k} + G{a†

3−k,a†
2k}S{a†

3k,a†
3−k} + G{a4k,a†

2k}S{a†
3k,a4k}

+ G{a†
4−k,a†

2k}S{a†
3k,a†

4−k} + G{a5k,a†
2k}S{a†

3k,a5k} + G{a†
5−k,a†

2k}S{a†
3k,a†

5−k} = 0,

−G{a4k,a†
2k}

(
ω − S{a†

4k,a4k}
) + G{a2k,a†

2k}S{a†
4k,a2k} + G{a†

2−k,a†
2k}S{a†

4k,a†
2−k} + G{a3k,a†

2k}S{a†
4k,a3k} + G{a†

3−k,a†
2k}S{a†

4k,a†
3−k}

+ G{a†
4−k,a†

2k}S{a†
4k,a†

4−k} + G{a5k,a†
2k}S{a†

4k,a5k} + G{a†
5−k,a†

2k}S{a†
4k,a†

5−k} = 0,

−G{a5k,a†
2k}

(
ω − S{a†

5k,a5k}
) + G{a2k,a†

2k}S{a†
5k,a2k} + G{a†

2−k,a†
2k}S{a†

5k,a†
2−k} + G{a3k,a†

2k}S{a†
5k,a3k} + G{a†

3−k,a†
2k}S{a†

5k,a†
3−k}

+ G{a4k,a†
2k}S{a†

5k,a4k} + G{a†
4−k,a†

2k}S{a†
5k,a†

4−k} + G{a†
5−k,a†

2k}S{a†
5k,a†

5−k} = 0,
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G{a†
2−k,a†

2k}
(
ω + S{a2−k,a†

2−k}
) + G{a2k,a†

2k}S{a2−k,a2k} + G{a3k,a†
2k}S{a2−k,a3k} + G{a†

3−k,a†
2k}S{a2−k,a†

3−k} + G{a4k,a†
2k}S{a2−k,a4k}

+ G{a†
4−k,a†

2k}S{a2−k,a†
4−k} + G{a5k,a†

2k}S{a2−k,a5k} + G{a†
5−k,a†

2k}S{a2−k,a†
5−k} = 0,

G{a†
3−k,a†

2k}
(
ω + S{a3−k,a†

3−k}
) + G{a2k,a†

2k}S{a3−k,a2k} + G{a†
2−k,a†

2k}S{a3−k,a†
2−k} + G{a3k,a†

2k}S{a3−k,a3k} + G{a4k,a†
2k}S{a3−k,a4k}

+ G{a†
4−k,a†

2k}S{a3−k,a†
4−k} + G{a5k,a†

2k}S{a3−k,a5k} + G{a†
5−k,a†

2k}S{a3−k,a†
5−k} = 0,

G{a†
4−k,a†

2k}
(
ω + S{a4−k,a†

4−k}
) + G{a2k,a†

2k}S{a4−k,a2k} + G{a†
2−k,a†

2k}S{a4−k,a†
2−k} + G{a3k,a†

2k}S{a4−k,a3k} + G{a†
3−k,a†

2k}S{a4−k,a†
3−k}

+ G{a4k,a†
2k}S{a4−k,a4k} + G{a5k,a†

2k}S{a4−k,a5k} + G{a†
5−k,a†

2k}S{a4−k,a†
5−k} = 0,

G{a†
5−k,a†

2k}
(
ω + S{a5−k,a†

5−k}
) + G{a2k,a†

2k}S{a5−k,a2k} + G{a†
2−k,a†

2k}S{a5−k,a†
2−k} + G{a3k,a†

2k}S{a5−k,a3k} + G{a†
3−k,a†

2k}S{a5−k,a†
3−k}

+ G{a4k,a†
2k}S{a5−k,a4k} + G{a†

4−k,a†
2k}S{a5−k,a†

4−k} + G{a5k,a†
2k}S{a5−k,a5k} = 0, (A1)

where G{A,B} is the Green’s function of operators A and B, S{A,B} = CAB + 
{A,B}(ω, k), 
{A,B}(ω, k) is the self-energy part,
and CAB is the coefficient of the term in the bilinear part of the Hamiltonian H2 containing the product AB. We do not present
numerous coefficients CAB here (H2 contains 103 terms at J2 �= 0). We will provide them on request.

The Dyson equations for Green’s functions of spin-1 excitations have the form

−G{b1k,b†
1k}

(
ω − S{b†

1k,b1k}
) + G{b2k,b†

1k}S{b†
1k,b2k} + G{b3k,b†

1k}S{b†
1k,b3k} + G{b4k,b†

1k}S{b†
1k,b4k} + G{b̃†

1−k,b†
1k}S{b†

1k,b̃†
1−k}

+ G{b̃†
2−k,b†

1k}S{b†
1k,b̃†

2−k} + G{b̃†
3−k,b†

1k}S{b†
1k,b̃†

3−k} + G{b̃†
4−k,b†

1k}S{b†
1k,b̃†

4−k} = −1,

−G{b2k,b†
1k}

(
ω − S{b†

2k,b2k}
) + G{b1k,b†

1k}S{b†
2k,b1k} + G{b3k,b†

1k}S{b†
2k,b3k} + G{b4k,b†

1k}S{b†
2k,b4k} + G{b̃†

1−k,b†
1k}S{b†

2k,b̃†
1−k}

+ G{b̃†
2−k,b†

1k}S{b†
2k,b̃†

2−k} + G{b̃†
3−k,b†

1k}S{b†
2k,b̃†

3−k} + G{b̃†
4−k,b†

1k}S{b†
2k,b̃†

4−k} = 0,

−G{b3k,b†
1k}

(
ω − S{b†

3k,b3k}
) + G{b1k,b†

1k}S{b†
3k,b1k} + G{b2k,b†

1k}S{b†
3k,b2k} + G{b4k,b†

1k}S{b†
3k,b4k} + G{b̃†

1−k,b†
1k}S{b†

3k,b̃†
1−k}

+ G{b̃†
2−k,b†

1k}S{b†
3k,b̃†

2−k} + G{b̃†
3−k,b†

1k}S{b†
3k,b̃†

3−k} + G{b̃†
4−k,b†

1k}S{b†
3k,b̃†

4−k} = 0,

−G{b4k,b†
1k}

(
ω − S{b†

4k,b4k}
) + G{b1k,b†

1k}S{b†
4k,b1k} + G{b2k,b†

1k}S{b†
4k,b2k} + G{b3k,b†

1k}S{b†
4k,b3k} + G{b̃†

1−k,b†
1k}S{b†

4k,b̃†
1−k}

+ G{b̃†
2−k,b†

1k}S{b†
4k,b̃†

2−k} + G{b̃†
3−k,b†

1k}S{b†
4k,b̃†

3−k} + G{b̃†
4−k,b†

1k}S{b†
4k,b̃†

4−k} = 0,

G{b̃†
1−k,b†

1k}
(
ω + S{b̃1−k,b̃†

1−k}
) + G{b1k,b†

1k}S{b̃1−k,b1k} + G{b2k,b†
1k}S{b̃1−k,b2k} + G{b3k,b†

1k}S{b̃1−k,b3k} + G{b4k,b†
1k}S{b̃1−k,b4k}

+ G{b̃†
2−k,b†

1k}S{b̃1−k,b̃†
2−k} + G{b̃†

3−k,b†
1k}S{b̃1−k,b̃†

3−k} + G{b̃†
4−k,b†

1k}S{b̃1−k,b̃†
4−k} = 0,

G{b̃†
2−k,b†

1k}
(
ω + S{b̃2−k,b̃†

2−k}
) + G{b1k,b†

1k}S{b̃2−k,b1k} + G{b2k,b†
1k}S{b̃2−k,b2k} + G{b3k,b†

1k}S{b̃2−k,b3k} + G{b4k,b†
1k}S{b̃2−k,b4k}

+ G{b̃†
1−k,b†

1k}S{b̃2−k,b̃†
1−k} + G{b̃†

3−k,b†
1k}S{b̃2−k,b̃†

3−k} + G{b̃†
4−k,b†

1k}S{b̃2−k,b̃†
4−k} = 0,

G{b̃†
3−k,b†

1k}
(
ω + S{b̃3−k,b̃†

3−k}
) + G{b1k,b†

1k}S{b̃3−k,b1k} + G{b2k,b†
1k}S{b̃3−k,b2k} + G{b3k,b†

1k}S{b̃3−k,b3k} + G{b4k,b†
1k}S{b̃3−k,b4k}

+ G{b̃†
1−k,b†

1k}S{b̃3−k,b̃†
1−k} + G{b̃†

2−k,b†
1k}S{b̃3−k,b̃†

2−k} + G{b̃†
4−k,b†

1k}S{b̃3−k,b̃†
4−k} = 0,

G{b̃†
4−k,b†

1k}
(
ω + S{b̃4−k,b̃†

4−k}
) + G{b1k,b†

1k}S{b̃4−k,b1k} + G{b2k,b†
1k}S{b̃4−k,b2k} + G{b3k,b†

1k}S{b̃4−k,b3k} + G{b4k,b†
1k}S{b̃4−k,b4k}

+ G{b̃†
1−k,b†

1k}S{b̃4−k,b̃†
1−k} + G{b̃†

2−k,b†
1k}S{b̃4−k,b̃†

2−k} + G{b̃†
3−k,b†

1k}S{b̃4−k,b̃†
3−k} = 0. (A2)
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