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Starting from a state of low quantum entanglement, local unitary time evolution increases the entanglement
of a quantum many-body system. In contrast, local projective measurements disentangle degrees of freedom
and decrease entanglement. We study the interplay of these competing tendencies by considering time evolution
combining both unitary and projective dynamics. We begin by constructing a toy model of Bell pair dynamics
which demonstrates that measurements can keep a system in a state of low, i.e., area-law, entanglement, in
contrast with the volume-law entanglement produced by generic pure unitary time evolution. While the simplest
Bell pair model has area-law entanglement for any measurement rate, as seen in certain noninteracting systems,
we show that more generic models of entanglement can feature an area-to-volume law transition at a critical value
of the measurement rate, in agreement with recent numerical investigations. As a concrete example of these ideas,
we analytically investigate Clifford evolution in qubit systems which can exhibit an entanglement transition. We
are able to identify stabilizer size distributions characterizing the area law, volume law, and critical “fixed points.”
We also discuss a Floquet random unitary circuit, where the answers depend on the order of limits—one order
of limits yields area-law entanglement for any nonzero measurement rate, whereas a different order of limits
allows for an arealaw–volumelaw transition. Finally, we provide a rigorous argument that a system subjected
to projective measurements can only exhibit a volume-law entanglement entropy if it also features a subleading
correction term, which provides a universal signature of projective dynamics in the high-entanglement phase.
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I. INTRODUCTION

The notion of quantum entanglement is a unifying theme
across numerous areas of modern physics, from the study of
solid state systems to the study of black holes. In a condensed
matter context, entanglement not only provides a window into
the study of quantum ground states, but also is an important
tool in characterizing the approach to thermal equilibrium
(or the lack thereof). For example, the entanglement entropy
of a ground state or a many-body localized state usually
obeys an area law, S ∼ �d−1, where � is the linear size of the
partition. In contrast, the entanglement entropy of a generic
thermalizing state at a nonzero temperature is given by a
volume law, S ∼ �d .

While such static entanglement signatures are useful, there
is also a great deal of information contained in the dynamics of
entanglement. Consider preparing a system in a tensor product
state, for example by performing a quantum quench. If the
system exhibits many-body localization, then the growth of
entanglement will be logarithmic in time, S ∼ ln t . In contrast,
a generic thermalizing system will feature an initially ballistic,
i.e., linear) entanglement growth, eventually approaching a
volume law, as expected for a thermal system. Recently, stud-
ies have taken place on the growth of quantum entanglement
under generic unitary time evolution, demonstrating in detail
the linear growth of mean entanglement entropy, as well as
determining the form of fluctuations around the mean [1].
Subsequent analyses have studied both entanglement growth
and spreading of local operators under random unitary time

evolution, both with and without conservation laws [2–7].
Similar work has also been done in the context of Floquet and
Hamiltonian time evolution [8–16].

However, while unitary dynamics generically leads to the
growth of entanglement, there is another more drastic type
of time evolution which can decrease the entanglement of a
quantum system. Under certain conditions, such as interaction
with a macroscopic classical object, a quantum mechanical
system can rapidly evolve into an eigenstate of a specific
operator, such that the resulting time evolution appears to be
a nonunitary projection. Such a process is referred to as a
projective measurement. When the system is projected into
an eigenstate of a local operator, the corresponding local
degree of freedom is disentangled from the rest of the system,
resulting in a decrease in overall entanglement. In this way,
projective measurements can remove some of the entangle-
ment created by more generic unitary time evolution.

Since unitary time evolution and projective measurements
have opposite effects on entanglement, it is natural to ask how
a physical system behaves when both types of evolution play
a prominent role. For example, a system could be subjected to
a continuous series of measurements, as can be accomplished
with superconducting qubits [17–19]. In such a system with
joint unitary-projective evolution, it is not obvious how the
presence of projective measurements modifies the behavior
of a purely unitary system. It seems clear that measurement
should decrease the steady-state entanglement entropy of the
system. However, by how much? A priori, one possibility is
that measurements might simply decrease the coefficient of
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FIG. 1. Unitary-projective time evolution can be modeled via
a quantum circuit consisting of alternating layers of unitary and
projective operators acting on a set of local degrees of freedom.
The grey rectangles represent local unitary operators which generate
entanglement between adjacent degrees of freedom, while the pur-
ple squares represent local projective measurements which remove
entanglement from the system.

the resulting volume-law entanglement entropy. In contrast,
recent numerical investigations have indicated that a sufficient
amount of measurements can limit entanglement entropy to
area-law scaling, behavior which is normally associated with
ground states or many-body localized eigenstates. For exam-
ple, simulations of free fermion systems subject to continu-
ous monitoring has indicated that an arbitrarily low rate of
measurement is sufficient to keep the system in a state of
low entanglement [20]. A hydrodynamic explanation for this
behavior was also advanced.

More recently, multiple groups have investigated more
generic unitary-projective time evolution, implemented in the
language of quantum circuits [21–23]. Specifically, one can
consider time evolution via a circuit consisting of alternating
layers of unitary and projective operators, as depicted in
Fig. 1. If every site were measured during each projective
step, then the system would be continually reset to a tensor
product state and no entanglement would ever be built up. The
more interesting scenario is when the local measurements are
sparse. Consider projective evolution in which each site has
probability f to be measured at each time step. Equivalently,
a randomly distributed fraction f of the sites are measured
at every step. As f → 1, with every site being constantly
measured, it is clear that the effects of projection domi-
nate those of the unitary time evolution, and no significant
entanglement should build up. However, for f � 1, there
are far more unitary than projective operators in the circuit,
indicating that the unitary evolution should proceed largely
unaffected by projection, driving the system towards volume-
law entanglement entropy. Consistent with this expectation,
two independent groups have confirmed that such a model
exhibits a transition from a high-entanglement volume-law
phase at low f to a low-entanglement area-law phase at f
close to 1 [21–23].

In this work, we analytically investigate several models in
which the effects of measurements on entanglement can be
explicitly studied. We begin in Sec. II by constructing toy
models for entanglement dynamics under unitary-projective

evolution. We first consider a simple model of Bell pair
dynamics which illustrates how measurements can limit en-
tanglement entropy to area-law scaling. The model is simple
enough to allow an exact calculation of the dynamics of
entanglement entropy. Nevertheless, it captures a crucial piece
of physics which determines the interplay between the two
types of dynamics: local unitary evolution primarily creates
short-range entanglement, while projective measurements can
destroy entanglement on any length scale. The result is that
the system is dominated by small Bell pairs, leading to an
area law for entanglement entropy. By continually removing
long-range entanglement from the system, projective mea-
surements are able to keep the entire system in a state of
unusually low entanglement. We also investigate the dy-
namics of entanglement, finding an overshoot phenomenon,
whereby, at intermediate times, entanglement entropy exceeds
its steady-state value.

For the simple Bell pair model, area-law behavior holds
for any finite measurement rate f , as seen in the context
of free fermion systems. However, we show that modifica-
tions to this model to include more realistic entanglement
patterns results in an area-to-volume phase transition at a
finite critical measurement rate, consistent with numerics on
unitary-projective quantum circuit evolution. Specifically, we
construct a model in which clusters of spins are all mutually
entangled with each other, instead of the simple two-body
entanglement of the Bell pair model. We determine a differ-
ential equation governing the size of such clusters, which we
find has exponentially decaying solutions (indicating area-law
entanglement entropy) only for a critically large measurement
rate. For lower measurement rates, the size of such clusters
will keep increasing until a volume-law entanglement entropy
is reached. This model thereby exhibits a concrete example of
an area-to-volume law phase transition.

With these toy models in hand, we move on to test our in-
tuition in more concrete situations with analytically tractable
dynamics. First, in Sec. III, we consider the Clifford evolution
in a qubit system, in which the unitary layers of the dynamics
have random operators drawn only from the set of the Clifford
gates. While this is not a universal set of gates, the Clifford
evolution allows for a convenient description of entanglement
spreading in terms of an effective hydrodynamics. We show
that random Clifford evolution exhibits an area-to-volume law
transition at a finite critical measurement rate. This transition
can be characterized in terms of the size of stabilizer gener-
ators, which are relatively small for high measurement rates,
then jump to the size of the system at low measurement rates.
We derive a differential equation governing the stabilizer size
distribution. This differential equation predicts the existence
of both area- and volume-law phases, as well as a critical
point with a logarithmic area-law violation. We also propose
a hydrodynamic description for entanglement growth within
the area-law phase.

In Sec. IV, we investigate another type of analytically
tractable model in the form of Floquet random unitary circuits
[8–10] with large on-site Hilbert space dimension. In this
circuit, the Renyi-α entropies for α � 2 can be mapped to
an emergent statistical mechanics problem, which amount
to enumerating minimal-length domain wall diagrams. The
longer the lengths of the domain walls in these diagrams are,
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the higher the averaged entanglement entropy of these circuits
will be. In the regime at infinite q and finite but arbitrarily
large L, an area-law saturation of higher Renyi entropies
results from the fact that projective measurements can provide
effectively L “free” segments of domain walls, along which no
amount of entanglement entropy is associated. This indicates
an area-law phase for any finite measurement rate, consistent
with the Bell pair model. However, the conclusions are sensi-
tive to the order of limits, and a different order of limits may
allow for an area-to-volume law transition at a finite critical
measurement rate.

In Sec. V, we present certain general arguments con-
straining the form of entanglement entropy in the presence
of measurements. We find that, while an area-law entangle-
ment entropy can exist without any special extra structure,
a volume-law entanglement entropy can only exist in the
presence of a subleading correction. While the results in this
section are all for Von Neumann entropy, Renyi entropies Sn

with n > 1 are all upper bounded by Von Neumann entropy,
so these results serve as useful upper bounds on all higher
Renyi entropies. Finally, in Sec. VI, we summarize our results
and outline certain future directions of investigation opened
by our work.

Note that a previous version of this manuscript made
the erroneous claim that area-law entanglement entropy was
generically present for any nonzero measurement rate. This is
true in some models (which constitute a particular universality
class) but is not true for all models. This mistake has been
corrected in the more detailed analysis of the present version,
the results of which supersede all previous versions.

II. TOY MODELS FOR ENTANGLEMENT DYNAMICS

A. Bell pair model

In order to build intuition for unitary-projective dynamics,
it is useful to construct a toy model which captures some of
the important physical features. To this end, we first focus
on a particularly simple form of entanglement. We consider
states which can be fully described in terms of Bell pairs, i.e.,
maximally entangled two qubit states, such as a spin singlet.
In other words, we study a system of qubits in which each
qubit is either maximally entangled with another qubit or is
completely disentangled from the system (see Fig. 2). For
such a system, we can easily obtain the entanglement entropy
by counting the number of Bell pairs which are cut by a given
partition. While such Bell pair configurations are a restricted
class of states, this model will provide important intuition as
to how measurements can restrict entanglement entropy to
area-law scaling. All Renyi entropies are equal for this model.

To build unitary-projective dynamics into the toy model,
we must consider the effects of both types of operators
on Bell pairs. We first consider applying a layer of local
unitary operators, as in Fig. 1. Such a layer of operators
will result in entanglement between neighboring qubits which
were previously disentangled from the rest of the system.
Consistent with the restrictions of our toy model, we take this
entanglement to be maximal. In other words, local unitary
operators can generate Bell pairs between previously unen-
tangled neighboring qubits. When a unitary operator acts on

FIG. 2. We study a qubit system in which each qubit either forms
a maximally entangled Bell pair with another qubit (represented by
an oval) or is completely disentangled from the rest of the system.

a qubit which was already in a Bell pair, it can move one end
of the Bell pair to an adjacent site, which may cause the Bell
pair to grow or shrink in size. Bell pairs can move through one
another. Starting from a state with mostly small Bell pairs,
i.e., a state of low entanglement), generic local unitary time
evolution will cause Bell pairs to increase in size, leading to
the growth of entanglement for generic spatial partitions.

While local unitary operations tend to increase entangle-
ment, via creating small Bell pairs which subsequently grow
in size, the projective portion of the time evolution has a rad-
ically different effect. Performing a projective measurement
on a qubit has the effect of disentangling it from the rest
of the system. If that qubit happened to be in a Bell pair
with another qubit, that Bell pair is destroyed by the mea-
surement. Notably, this mechanism for Bell pair destruction
is equally effective for Bell pairs of any size, since a local
measurement on either qubit is sufficient to destroy a Bell
pair, regardless of the distance to the other qubit. The model
thereby captures the expected interplay between unitary and
projective dynamics: creation of short-range entanglement
(and its subsequent growth) by unitary operators, coupled with
removal of entanglement at all length scales by projective
measurements.

Combining these two types of physical processes, we can
now very easily write down a set of equations governing the
time evolution of the distribution P(x) on the spatial size x
of Bell pairs. This will allow us to describe the entanglement
of the system in terms of classical differential equations for
P(x), with all the quantum mechanical aspects abstracted into
the Bell pair description of the wave function. At each time
step, the local unitaries cause a given Bell pair to either grow
(with probability pg), shrink (with probability ps), or remain
the same size [with probability (1 − pg − ps)]. We also take
a fraction 0 < f̃ < 1 of the Bell pairs to be destroyed, i.e.,
be reset to zero size, where f̃ = 2 f − f 2 is the probability of
the Bell pair being measured on at least one of its two sites.
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Away from x = 0, the time evolution equation for P(x) takes
the form

∂t P(x) = − P(x) + (1 − f̃ )(psP(x + 1)

+ pgP(x − 1) + (1 − pg − ps)P(x)), (1)

where the time step (defined by one layer of unitaries and
one layer of projectors) is taken to be 1. The probabilities pg

and ps will not depend on the rate of external measurement,
and therefore have no f̃ dependence. We also neglect any
nonlinearities of this equation, such that the probabilities can
be taken to be independent of P(x). The probabilities can,
however, generically depend on the size x. We can now take
the continuum limit of the above time evolution equation to
obtain

∂t P = −(1 − f̃ )γ ∂xP − f̃ P, (2)

where γ = pg − ps is the difference in probabilities for grow-
ing and shrinking of a Bell pair. The first term on the right,
which is the only term present at f = 0, i.e., pure unitary evo-
lution), would lead to unidirectional propagation of waves in
the distribution, with the direction of propagation depending
on the sign of γ . However, the second term on the right, aris-
ing from the projective measurements, causes the distribution
to decay, preventing entanglement from propagating very far
from x = 0. To have a steady-state solution, with ∂t P(x) = 0,
the distribution must satisfy

∂xP = − f̃

γ (1 − f̃ )
P. (3)

If we take γ to be approximately independent of x, then we
immediately obtain

P(x) ∼ e−λx, (4)

where λ = f̃ /γ (1 − f̃ ). Note that we have not needed to
make use of the details of what happens to the distribution
at x = 0, i.e., the details of Bell pair creation at small scales,
which only serves to determine the behavior near the origin.

We see that the steady-state solution of the joint unitary-
projective time evolution is dominated by small Bell pairs,
such that the system is mostly short-range entangled. This
makes intuitive sense, in that long-range entanglement is
being constantly removed from the system by projective
measurements, while the entanglement resulting from local
unitary evolution is only being created on short scales. We can
directly calculate the typical entanglement entropy of the sys-
tem. For example, consider a one-dimensional system, which
we partition into two half-lines. A qubit at a distance x from
the cut will contribute one bit, i.e., ln 2) to the entanglement
entropy if it is a member of a Bell pair of size at least x, and
if that Bell pair extends in the direction of the cut. Summing
contributions from all qubits on one side of the partition, we
obtain

S ∼
∫ ∞

0
dx

∫ ∞

x
dx′P(x′) ∼ constant. (5)

The entanglement entropy is a constant, i.e., independent of
the system size L, since the exponentially decaying distribu-
tion P(x) yields a convergent integral. Since the entanglement
entropy is constant, we conclude that the asymptotic state of

the unitary-projective evolution obeys an area law, as opposed
to the S ∼ L behavior of a volume-law state. In higher dimen-
sions, we will have the same sort of exponential convergence
of the entropy integrals, except with a factor of area arising
from integrating over the entire partition. In this way, our
Bell pair toy model gives rise to an area law for entanglement
entropy in any dimension.

In addition to the steady state, it is also easy to obtain the
full time evolution of the Bell pair distribution. The generic
solution to Eq. (2) takes the form

P(x, t ) = e−λxg(x − vt ), (6)

where λ = f̃ /γ (1 − f̃ ) and v = γ (1 − f̃ ), while the function
g is an arbitrary function of x − vt . [This form holds only
away from x = 0, near which the behavior will be modi-
fied in a complicated way in order to preserve the overall
normalization of P(x, t ). Note also that we should demand
that g grow no faster than exponentially, such that P remains
normalizable.] The resulting time evolution takes the form of
waves which propagate at velocity v, while decaying via the
exponential factor e−λx. For example, let us consider an initial
tensor product state, such that all the weight of P(x, t = 0) is
concentrated at x = 0 and the entanglement entropy is zero.
As time evolves, the peak at x = 0 propagates to the right
at speed v, just as in the case of pure unitary evolution. For
short times (t � 1/λv), the entanglement entropy will there-
fore grow linearly, S ∼ vEt , with an effective entanglement
velocity given by

vE = γ (1 − f̃ ). (7)

We see that the initial entanglement velocity of this unitary-
projective system is smaller than that of a pure unitary system
by a factor of (1 − f̃ ). As time evolves, however, the slow-
down of entanglement growth becomes more severe, as the
weight in the propagating peak decays exponentially and is
transferred back to the origin, as depicted in Fig. 3. (In a more
generic dynamical model, the peak would begin to broaden
as time evolves, though this is unimportant for present pur-
poses.) The contribution to the entanglement entropy from
the decaying ballistic peak behaves as Sballistic ∼ te−λvt , which

FIG. 3. A schematic representation of P(x) at various times for
an initial tensor product state. The evolution is characterized by a bal-
listically propagating but decaying peak, as well as the development
of an exponential distribution near x = 0.
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FIG. 4. For a nonzero projection probability f , the entanglement
entropy of an initial tensor product state asymptotes to an area
law (after an initial overshoot), in contrast with the unitary ( f = 0)
system, in which entanglement continues to grow towards a volume-
law state. For f �= 0, the initial growth is linear, but with a slope less
than that of the pure unitary system.

has a maximum value around tmax ∼ 1/λv, after which the
entanglement entropy decreases to its area-law saturation
value, set by the exponential distribution near the origin. The
schematic behavior of the entanglement entropy as a function
of time is depicted in Fig. 4.

B. Cluster model

In the previous section, we encountered a toy model for
entanglement dynamics under unitary-projective time evolu-
tion which featured area-law entanglement entropy for any
nonzero measurement rate. However, the persistence of the
area-law down to arbitrarily low measurement rates may be
an artifact of the restricted nature of the Bell pair toy model,
which captures only a limited set of entanglement patterns.
In this section, we generalize the previous model to account
for slightly more general types of entanglement. Specifically,
we allow for larger clusters of mutually entangled spins,
instead of the simple two-body entanglement of the Bell pair
model. We find that this generalized model features an area-to-
volume-law transition at a nonzero critical measurement rate.
Thus, while the Bell pair model provides a good description
of the novel area-law phase, it is not sufficiently powerful to
describe the details of the area-to-volume law phase transition.

To construct a more general model of entanglement than
the simple Bell pair model, we allow each spin to be entangled
with any number of other spins, as opposed to being entangled
with only a single other spin. However, starting from a product
state, entanglement will still be built up locally. At short times,
a given spin will only be significantly entangled with some lo-
cal cluster of spins. We work in one dimension for simplicity,
labeling the size of a cluster of entangled spins as x. Note that
a Bell pair of size x is one special example of a cluster of
size x, in which only the two end spins are entangled. More
generally, however, all spins within a given cluster will be
entangled with each other. As in the Bell pair model, we can
describe the system by a probability distribution of the size of
clusters, P(x).

As with Bell pairs, local unitary evolution will tend to
increase typical size of clusters, which grow in a local fash-
ion, spreading ballistically. Also, as before, measurements

will tend to decrease the size of clusters. However, whereas
measurement on a Bell pair automatically decreases its size
from x to 0, measurement on a terminal spin of an entangled
cluster can drop the size of the cluster to anywhere between
0 and x. (Note that measurement on the interior of the cluster
cannot decrease its size.) For a measurement on a terminal
spin to drop the size of a cluster from x to x′, all spins between
x and x′ must be disentangled from the rest of the cluster. The
probability of having all spins between x and x′ disentangled
from the rest of the cluster decays rapidly, as an exponential
function of x − x′. As such, we can very simply modify the
differential equation governing P(x) as follows:

∂t P = −(1 − f̃ )γ ∂xP − f̃ P + f̃
∫ ∞

x
dx′P(x′)e−μ(x′−x) (8)

for some parameter μ, where the final term represents the
growth of P(x) due to clusters of size x′ dropping to size x.

With this new toy differential equation in hand, we con-
sider its implications for entanglement. Let us first assume, as
before, that the steady-state distribution is exponentially de-
caying, P(x) ∼ e−λx. Plugging in this ansatz, Eq. (8) implies
that we must have

λ(1 − f̃ )γ − f̃ + f̃

λ + μ
= 0. (9)

As μ → ∞, this reduces to the results of the previously
studied Bell pair model, with λ = f̃ /γ (1 − f̃ ), which is real
and positive for any value of f̃ . However, as μ decreases,
this equation will eventually cease to have real solutions.
Through straightforward algebra, it can be checked that there
are only real solutions for λ when the measurement rate
satisfies f̃ > f̃c, where the critical measurement rate is

f̃c = γμ2

2 − 2
√

1 − μ − μ + γμ2
. (10)

For f̃ > f̃c, we will therefore have only short-range entan-
glement, resulting in an area law for entanglement entropy.
For f̃ < f̃c, however, an exponential cannot be a steady-state
solution, but rather will feature a growing entanglement. Simi-
larly, it is easy to show that no power-law decay can provide a
steady-state solution when f̃ > f̃c. In this regime, therefore,
P(x) will run off towards being close to uniform, thereby
resulting in a maximally entangled volume-law state. This toy
model thus demonstrates that area-law behavior need not per-
sist down to arbitrarily low measurement rates, as in the Bell
pair model. More generically, a system may exhibit an area-
to-volume law transition at a finite critical measurement rate.

We note that the ability of measurements to keep a many-
body system in a state of low entanglement is highly reminis-
cent of the quantum Zeno effect encountered in single-particle
physics, as noted in Ref. [21]. The quantum Zeno effect [24]
refers to the ability of repeated measurements to keep a parti-
cle effectively frozen in some initial state. In the conventional
quantum Zeno effect, for a finite rate of measurement, the
particle can eventually escape from its initial state via quan-
tum tunneling, albeit at a very long timescale. In the present
many-body analysis, there is no indication of any finite-time
escape from the “Zeno” area-law phase. This is possibly
a consequence of the escape time becoming infinite in the
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thermodynamic limit of many particles. Further analysis of a
possible finite-time breakdown of the area-law phase in finite-
size systems is beyond the scope of the present manuscript,
but remains an interesting topic of future investigation.

III. CLIFFORD EVOLUTION IN ONE DIMENSION

While the toy models in the previous section are useful
for building intuition, it is important to have more concrete
models with analytically tractable dynamics in which we can
observe the same physics. We now test our intuition in a model
of a one-dimensional system evolving via an almost-random
set of unitary gates. Specifically, we consider the unitary
operators of the time evolution to be randomly drawn from
the set of Clifford gates, a form of dynamics referred to as
Clifford evolution. While this is not a universal set of gates,
Clifford evolution in one dimension provides certain conve-
nient technical simplifications while still capturing most of the
qualitative features of truly random unitary evolution. It also
has the virtue that all Renyi entropies behave the same way.

Clifford evolution relies on a simple action of Clifford
gates on states labeled in terms of stabilizers, i.e., operators
Oi which leave the state invariant, such that Oi|ψ〉 ∼ |ψ〉. For
a one-dimensional system with L sites, L such stabilizers will
be necessary to fully label the state. For example, if |ψ〉 is a
tensor product state, then all Oi will be local operators, acting
nonidentically only on a single site. For an entangled state, the
stabilizer operators extend over multiple sites, with the size
of stabilizers increasing as the state becomes more entangled.
The value of Clifford evolution lies in its simple action on
Pauli operators, mapping each Pauli to a product of other Pauli
operators. If we begin from a tensor product state labeled
by a Pauli stabilizer on each site, then the resulting time
evolution is simply described in terms of L Pauli strings. For
a given stabilizer state, the entanglement across a cut between
A and B is determined as follows. The stabilizer group S for
a state on AB can be generated by three subgroups: SA and
SB consist of stabilizer elements with support on only A or B,
respectively, while SAB contains stabilizers acting on both A
and B and accounts for correlations between the systems. A set
of generators for S is called minimal if it contains the minimal
number of generators acting on both A and B, and the total
number of such generators is |SAB| (the size of the minimal
generating set of the nonlocal group SAB). The entanglement
between A and B is then |SAB|/2 (see Ref. [25] for details).

A. Stabilizer size distribution

We now consider entanglement growth in a system subject
to Clifford evolution, starting from a direct product state, such
that all stabilizers are of size 1. Suppose a random Clifford
circuit is run on this system for some time O(w), so that
the typical weight of a minimal stabilizer generator is ≈w.
We call its stabilizer group S. The stabilizer generators of
S will have support that is spatially localized to a region of
width ∼w, and their supports will be distributed uniformly in
space. What is the effect of a single measurement at site i?
Suppose we measure at a fixed site i. Let the probability of a
weight w stabilizer be Pw. We want to understand the effect
of measurements on the distribution of stabilizers weights.

The total number of stabilizers of weight w is nw = LPw.
Typically, these stabilizers are uniformly spread out in the
system, and the number of stabilizers of weight w intersecting
site i is the density of stabilizers of weight w, multiplied by the
weight w, i.e., nww/L = Pww. The total number of stabilizers
of weight less than w that intersect i is

∑w
w′=1 Pw′w′.

Given a stabilizer whose weight intersects site i, the prob-
ability that such stabilizer commutes with Zi is around 1/2.
Therefore the probability that w is the lowest size of stabi-
lizers that anti-commute with the measurement Pauli operator
Zi is

Problowest (w) = 1

2
∑w

w′=1 P′
ww′ . (11)

The measurement update amounts to throwing out the stabi-
lizer with the lowest possible size which anticommutes with
Zi, and multiplying all the other stabilizers commuting with Zi

by the stabilizer we throw away.
Now we want to determine the steady-state distribution of

stabilizers subject to unitary-projective evolution. Accounting
for the weight-dependent probability of a nontrivial stabilizer
being removed by a measurement, we can easily write down a
differential equation describing the time evolution of Pw, just
as in the Bell pair model. In the continuum limit, the evolution
of Pw(t ) will be described by

∂t Pw(t ) = −(1 − f̃ )γ ∂wPw(t ) − f̃ Pw(t ), (12)

where the effective measurement rate f̃ is given by

f̃ = f

exp
[ ∫ w

0 Pw′ (t )w′dw′] . (13)

The steady-state solution requires

∂wP(s)
w = − f̃ P(s)

w

(1 − f̃ )γ
. (14)

One simple ansatz for the large w behavior is an exponential
distribution P(w) = λe−λw which leads to an area law. Plug-
ging this into Eq. (13), we find that the effective measurement
rate is given by

f̃ = f

exp(1/λ)
, (15)

where we have dropped a term in the denominator which is
exponentially small at large w. Plugging this effective rate into
Eq. (14) gives the condition

λ = f e−1/λ

γ (1 − f e−1/λ)
. (16)

This equation only has solutions for large f , with the critical
value fc given by

fc = λ2e1/λ

λ2 − λ + γ −1
. (17)

At smaller f , there is no exponentially decaying solution
to the exponential. Instead, let us examine the large-w ansatz
P(s)

w = Cw−2. Plugging this form for Pw into Eq. (14), we have

−2Cw−3 = −γ ′Cw−2

exp(C ln(w/a) + a2)
= −Ce−a2

γ ′aCw−(2+C),

(18)
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FIG. 5. Clifford evolution can be represented in terms of a set
of fictitious particles (blue circles) representing the endpoints of
stabilizers. The system contains as many particles as sites, and no
more than two particles can occupy any site. A tensor product state
corresponds to a state with uniform density, while a maximally
entangled state corresponds to all particles shifted to one side. Figure
adapted from Ref. [1].

where a is a short-distance cutoff representing the scale
at which power-law decay sets in. Note that we have set
(1 − f̃ ) ≈ 1 at large w, since the effective measurement rate
now decays as a function of w. It can be easily checked
that this form for Pw is a solution to the differential equation
when C = 1 and γ ′a = 2. For this solution, the entanglement
entropy behaves as

S =
∫ ∞

0
dw

∫ ∞

w

dw′P(s)
w′ ∼ ln L (19)

which is a log violation of the area law. However, it is easy
to see that this log violation represents only a critical point
of the Clifford dynamics. If we had chosen Pw ∼ w−n for
n > 2, then it is easy to check that the Eq. (12) implies that the
distribution decays until it reaches a short-ranged exponential,
corresponding to area-law entanglement entropy. In contrast,
if we had tried Pw ∼ w−n for n < 2, then the differential
equation implies that the distribution will keep increasing
until it is almost uniform, corresponding to volume-law en-
tanglement entropy. We therefore see that Clifford dynamics
in one dimension possesses two fixed points, corresponding
to area-law and volume-law phases, as well as a transition be-
tween them at a critical measurement rate fc. These results are
consistent with both our cluster model and also recent numeri-
cal work on Clifford circuits. Finally, a distribution of the form
P(ω) ∼ 1

L [1 + B exp(−ω2/L)] provides an asymptotic ‘high
entanglement’ solution to the steady-state equation in the
regime

√
L < ω < L, and provides a partial characterization

of the ‘volume-law’ phase. Note that this form of distribution
generically produces an entropy equal to an volume law with
an additive logarithmic correction.

B. Quasiparticle picture and hydrodynamics

The effects of measurement in the context of the Clifford
evolution can also be understood using a representation in
terms of a set of fictitious “particles,” as developed in Ref. [1],
which also allows a slightly more refined analysis. We briefly
recap the central idea behind the particle representation of the
Clifford evolution, referring the reader to Ref. [1] for further
details.

For many purposes, it is sufficient to only keep track of the
endpoints of the stabilizer, which encode information about
the length of the Pauli strings. To this level of detail, we can
represent a state by a set of fictitious “particles” representing
the stabilizer endpoints, as depicted in Fig. 5, where blue
circles represent right endpoints and white circles represent
left endpoints. It can be shown that, due to a gauge freedom
in choosing the stabilizers labeling the state, the total number

of endpoints (left plus right) on a site can be chosen to be
exactly two. It is then sufficient to only keep track of the
right endpoints (blue circles), while the left endpoints can
be regarded simply as “holes.” Within this representation,
a tensor product state corresponds to a uniform density of
particles, since each site is the left and right endpoint of a
local (on-site) stabilizer. Entanglement is then represented as
a deviation from this uniform density. Indeed, as discussed in
Ref. [1], the entanglement entropy associated with a partition
at location x is given by

S(x) =
∑
i>x

(ρi − 1) (20)

In other words, the entanglement entropy is given by the
excess particle number on one side of the partition. As the
system evolves under random unitary time evolution, the
tendency is for stabilizers to grow, which amounts to particles,
i.e., right endpoints of stabilizers) to drift to the right. As
shown in Ref. [1], unitary evolution causes the particles to
undergo biased diffusion, such that the density evolves as

∂tρ = ν∂2
x ρ + �

2
∂x((ρ − 1)2) − ∂xη, (21)

where ν and λ are constants, and η is a random variable
representing noise. Eventually, pure unitary evolution would
take the system to a maximally entangled state, in which all
particles are as far to the right as possible, as seen in Fig. 5.

However, this flow of particles to the right is interrupted
in the presence of projective dynamics. The effect of local
measurements is to disentangle spins from the rest of the
system, which corresponds to the destruction of stabilizers,
i.e., resetting them to length 1). We can easily account for the
removal of nontrivial stabilizers in the diffusion equation by
adding a decay term on deviations from the mean density:

∂tρ
′ = ν∂2

x ρ ′ + �ρ ′∂xρ
′ − λ̃ρρ

′ − ∂xη, (22)

where ρ ′ = ρ − 1. Based upon the discussion from the pre-
vious section, the decay constant λ̃ρ should depend on the
quasiparticle distribution ρ, which in turn is set by the stabi-
lizer distribution. However, let us focus our attention for now
to the area-law phase, for which we assume that the stabilizer
distribution is short-ranged, such that the exponential factor
in Eq. (11) is negligible. Then we can safely take λ̃ρ ∼ f to
be a constant. The differential equation for ρ ′ now takes the
form of a nonlinear diffusion equation, where the diffusing
density can decay with constant probability. It is exponentially
unlikely that significant density will diffuse very far to the
right of the cut, as expected for the area-law phase.

We now propose a hydrodynamic description for entan-
glement under unitary-projective dynamics within the low-
entanglement area-law phase. We begin with the observation
from Ref. [1] that under random unitary time evolution, the
entropy on a given site S(x) evolves according to

∂t S = D∂2
x S + 1 − (∂xS)2 + η (23)

where η is a noise term. We now wish to also account for the
effects of projective measurements. When a site is measured,
it becomes disentangled with the rest of the system, such that
there is no difference in entanglement between the partitions
to the immediate left and right of that site. In other words,
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measurement sets the value of ∂xS to zero on that site. The
projective portion of the evolution then acts as a decay term
on the evolution of ∂xS, which does not have a natural local
form in terms of S. We therefore take a derivative of Eq. (23)
and add an appropriate decay term to yield

∂t S
′ = D∂2

x S′ − 2S′∂xS′ − f S′ + ∂xη, (24)

where we have defined S′ = ∂xS. We see that S′ obeys the
same diffusion equation as the particle density in the case
of Clifford evolution [see Eq. (22)], which also served as the
derivative of entropy. We conjecture that this hydrodynamic
equation should be valid not just for Clifford-projective dy-
namics, but for the area-law phase of all models of unitary-
projective dynamics in this universality class.

IV. FLOQUET RANDOM UNITARY CIRCUIT

We now move from Clifford circuits to a fully random
circuit model introduced in Ref. [8]. Specifically, we consider
a one-dimensional L-site Floquet (time-periodic) unitary cir-
cuits generated by Haar-distributed random unitaries, where
the quantum states at each site span a q-dimensional Hilbert
space. We will be taking a large q limit, corresponding to an
infinite-dimensional local Hilbert space.

Our setup for the unitary-projective time evolution is as
follows. The unitary dynamics of the system is modelled by
a Floquet circuit. A nonunitary measurement layer is applied
after every p layers of the unitary circuit. Each time we
apply a measurement layer, we randomly draw f fraction of
sites to perform projective measurements. We make use of
developments [8] allowing exact calculation of the ensemble
average of exponential of the Renyi-α entropies for α � 2
with unitary-projective time evolution in the large-q limit
using diagrammatic techniques. Remarkably, the diagram-
matic approach provides a mapping from ensemble averages
of observables to emergent classical statistical mechanics
problems.

When working with Floquet random circuits, it is impor-
tant to be mindful of the order of limits, since there are
three separate limits being taken: the thermodynamic limit
L → ∞, the long time limit t → ∞, and the limit of large
onsite Hilbert space dimension q → ∞. The appropriate order
of limits depends of course on the problem we are trying
to solve—and the physics is highly sensitive to the order of
limits. For example, when the L → ∞ limit is taken before the
t → ∞ limit, then one obtains the analysis of Ref. [22]. In this
order of limits, the authors of [22] obtain (at least for Renyi-
0 entropy) a phase transition between a low measurement
volume-law phase and a high measurement area-law phase.
In contrast, the analysis we present is in the opposite order of
limits, when t → ∞ before L → ∞. We show that if the limit
q → ∞ is also taken before L → ∞ then there is an area-
law saturation of entanglement entropy for any nonvanishing
fraction f , and no volume-law phase. In contrast, if the limit
L → ∞ is taken before the limit of large q, then we can only
argue for area-law saturation at sufficiently large f , and cannot
exclude the possibility of an area-volume law transition at a
critical f .

FIG. 6. (Left) An example of minimal-length DW diagrams for
〈q−S2 (t )〉 at large q at a time smaller than the saturation time tsat =
L/2, which can be generated as follows [8]: draw a DW beginning
at the position of bipartition from the top to the bottom; Turn the
DW to the left or the right for a distance of lattice spacing when the
DW encounters a 2-gate; Repeat until the DW reaches the bottom
of the diagram. In general, there are 2t of such diagrams, and each
diagram is translated into an algebraic term as q−h = q−t in the
1/q-perturbative expansion of 〈q−S2 (t )〉, where h is the number of
horizontal wall segments along the DW. This implies that S2(t <

L/2) ∼ t . (Right) One of the two minimal-length DW diagrams at
a time larger than tsat. These two diagrams have DW directed solely
to the left or the right, and each contributes a factor of q−L/2. This
implies that S2(t > L/2) ∼ L/2.

A. Large-q analysis

First, we review the model and the results of half-system
bipartite entanglement spreading without projective measure-
ments. The Floquet random unitary circuit (FRUC) is defined
by a qL × qL Floquet operator W = W2 · W1, where W1 =
U1,2 ⊗ U3,4 ⊗ . . .UL−1,L and W2 = 1q ⊗ U2,3 ⊗ U4,5 ⊗ . . . 1q.
Each Ui,i+1 is a q2 × q2 unitary matrix acting on sites i and
i + 1. In Ref. [8], 〈q−Sα (t )〉 is written as a 1/q-perturbative
series in the large-q limit, and is mapped to an emergent
statistical mechanical problem, which, for α = 2, amounts to
generating all minimal-length domain wall (DW) diagrams in
Fig. 6. The solution gives

lim
q→∞〈q(1−α)Sα (t )〉 ∼

{
2t q(1−α)t t � L/2

2 q(1−α)L/2 t > L/2
, (25)

which suggests a linear growth of Sα (t < L/2) ∼ t before the
saturation time, and a volume-law saturation Sα (t > L/2) ∼
L/2 after the saturation time.

For the sake of simplicity, we will assume α = 2 for the
following derivations, but the proofs can be straightforwardly
extended to general Renyi index α. Now, we investigate
the behavior of entanglement entropy growth with unitary-
projective time evolution at a time smaller than the saturation
time. It is instructive to consider the effect of performing a
single projection operator P (c, i) = √

q |c, i〉 〈c, i| onto color
state c at site i and time tP . In Appendix A, we prove that
the relevant diagrams are the minimal-length DW diagrams
whose DW passes through the space-time point i and tP
(Fig. 7, left), because this segment of DW does not give rise
to a factor of q−1 (i.e., this DW segment is “free”), which
makes this diagram more dominant in the 1/q-perturbative
series. The algebraic factor associated to such diagrams is
q−t+1. Generally, for a finite period p, fraction f , and time t
smaller than tsat (to be specified below), the leading diagrams
of 〈q−S2(t )〉 contain DW that passes through the location of
a projection measurement every p unitary layers, and the
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FIG. 7. (Left) An example of DW diagrams for 〈q−S2 (t )〉 at large
q and t � tsat with a single measurement at i and time tP (represented
by the symbols in purple). These diagrams are a subset of the
diagrams in Fig. 6 containing those with DW passing through point
i and tP . Each of such diagrams is algebraically translated to q−h+P,
where P is the number of projection operators along the DW. (Right)
A simplified illustration of the set of minimal-length DW diagrams
before saturation time with multiple layers of projective measure-
ments. A leading order diagram (in red) belongs to the set of “path-
integral” diagrams that scatter off the projective measurements: the
DW begins from the top center of the diagram, walks along one
of the minimal-distance paths (in black), and pass through one of
the measurements (purple dots) on every measurement layer until it
reaches the bottom edge of the diagram.

order is q−t+t//p (Fig. 7, right), where // is the floor division.
An expression for the multiplicity of such leading order DW
diagrams can be written in terms of a transfer matrix (acting
on a Hilbert space labeled by the DW position) as described
in Appendix B.

At a time sufficiently large, the minimal-length DW dia-
grams are the ones with DW ending on the side of the dia-
grams. Without measurements, there are two leading diagrams
where the DW-s are solely directed to the left or the right
(Fig. 6, right). With measurements, minimal-length DW dia-
grams are the ones with DW passing through a certain number
of projection operators to reach the side of the diagrams. We
prove in Appendix A the following equation:

lim
q→∞〈q(1−α)Sα (t )〉

=
{

β q(1−α)(t−t//p) t � ps

γ q(1−α)[(p−1)(s−1)+t (modp)] t > ps
, (26)

where s = ceil(1/2 f ), ceil(·) is the ceiling function, and
where β and γ are independent of q and dependent of L. On
the left-hand side (LHS), we have implicitly averaged over
the positions of projection operators in a given measurement
layer.

The intuition behind the result is can be explained using
Fig. 8. At large t , the leading “staircase” diagrams are the
ones with the DW reaching the side of the diagrams in
the shortest distance, utilizing the “free” segments of walls
provided by the projective measurements (purple segments in
Fig. 8). The area-law saturation originates from the fact that
the DW in these leading staircase diagrams pass through L
free DW segments. Take f = 1/4 as an example, there exists a
realization of projection measurements such that the DW can
reach the side using two measurement layers each of which
provides L/4 “free” DW segments (Fig. 8, right). So the orders
of such diagrams are at least q−2(p−1). In general, it takes

FIG. 8. (Left) The simplified diagrammatic representation of a
realization of projective measurements before ensemble-averaging,
where the locations of projective measurements (purple) are scattered
randomly along the measurement layers. (Right) The minimal-length
diagrams are staircase DW diagrams, which requires specific realiza-
tions of projection measurements. The DW connects the side of the
diagram after ceil(1/2 f ) number of periods. Therefore the order is at
least q−(p−1)ceil(1/2 f ). The right diagram is drawn for f = 1/4.

ceil(1/2 f ) number of “stairs” (and hence periods) to reach
either side of the diagram. This explains Eq. (26).

The combinatoric factor arising from requiring a staircase
configuration of projection measurement locations implies
that the coefficient γ is suppressed in L as f L, but independent
in q (to be discussed further in Sec. IV B). Taking logq on both
side of Eq. (26), and taking the limit q → ∞ for fixed but
arbitrarily large L, we have for large t > ps,

lim
q→∞ Sα � (p − 1) ceil

(
1

2 f

)
, (27)

which means that the Renyi-α entropy for α � 2 saturates
according to the area law for finite p and nonvanishing f in
the limit q → ∞ at any finite but arbitrarily large L. This
is one of the first analytical calculations that demonstrate
an area-law saturation of entanglement entropy in Floquet
random quantum circuit under unitary-projective dynamics,
which remarkably occurs even with an infinite local Hilbert
space dimension.

Some questions naturally follow from this analysis. First,
how does the result extend to finite q? And what happens
when we take the limit of large q, but after we take the
thermodynamic limit L → ∞? To address these questions, we
provide a heuristic argument to show that there are exponen-
tial many staircases diagrams in Sec. IV B, and it is plausible
for the area-law saturation to survive at least for large enough
f , even when we take the limit of large q after we take the
thermodynamic limit.

B. Heuristics for finite q

We provide a heuristic argument for an exponential number
of staircase diagrams, so that it is plausible for the area-law
saturation of Sα for α � 2 to at least survive for large enough
f , when the limit L → ∞ is taken before the limit of large q.
For the sake of simplicity, we consider an alternative set-up
where there is a probability f for each site in a measurement
layer to be projectively measured. Again, we explain the
derivation explicitly for α = 2, but the argument holds for
general α � 2.

The origin of area-law saturation S2 can be related to DW
diagrams that fulfill two criteria. (i) These diagrams have DW
starting from the top center of the diagram and ending on
the side of the diagrams (otherwise the order of the diagrams
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FIG. 9. (Top) The illustration of 1-, 2- and 3-staircase diagrams
for 〈q−S2 (t )〉 from the left to the right. The orders of the diagrams are
q−(p−1)k where k is the number of staircase. The positions of where
the staircases begin give rise to the multiplicity of the k-staircase
diagram, which is proportional to Lk−1/(k − 1)!. (Bottom) Other
variants of staircase diagrams which one may expect to contribute
to the area-law saturation of S2, but for each of these diagrams, one
can identify another “non-Gaussian” diagram [8] that will lead to
cancellations. These diagrams is not explicitly considered in Eq. (28).

decrease in time for p > 1). (ii) These diagrams have DW
passing through at least L projective measurements (otherwise
the diagram would have an order that scales in L). The
diagrams that satisfy these criteria are the staircase diagrams
(e.g., Fig. 8 right). We call a staircase diagram with k number
of staircases a k-staircase diagrams. The 1/q-perturbative
series of 〈q−S2(t )〉 can be written in terms of the contribution
of the k-staircase diagrams (Fig. 9, top) as

〈q−S2(t )〉 ∼ f L
L∑

k=1

ck[q−(p−1)]k + . . . (28)

∼exp[L(ln f + q−(p−1))][q−(p−1)] + . . . (29)

where ck = ∫ L
0 dl1

∫ l1
0 dl2· · ·

∫ lk−2

0 dlk−1 = Lk−1/(k − 1)! is
the multiplicity of the k-staircase diagram. As an example,
the multiplicity of a 2-staircase diagram is of order L because
while the first staircase (counting from the top) always begin
in the top center of the diagram, the second staircase can begin
anywhere between the center and the far right of the diagram
(Fig. 9, top middle). The dots denote all other contributions to

FIG. 10. S2 at large time (t = 200) against L for different values
of f for the Floquet random circuit. The dashed line is the prediction
of S2 at f = 0 from [8].

〈q−S2(t )〉. For general α � 2, the above equation becomes

〈q(1−α)Sα (t )〉 ∼ exp[L(ln f + q(1−α)(p−1))][q(1−α)(p−1)] + . . .

(30)

For the volume-law phase to breakdown, f has to be larger
than

f ∗ = e−q(1−α)(p−1)
. (31)

Note that this argument is not completely rigorous, because
we have not systematically looked at all subleading terms in
the 1/q-perturbative series of 〈q(1−α)Sα (t )〉. In particular, there
can, in principle, be diagrams that are algebraically trans-
lated in negative terms which lead to cancellation with other
positive terms (these are called “non-Gaussian” diagrams
in Ref. [8]). To summarize, we have found an exponential
numbers of staircase diagrams and argued that it is plausible
for a breakdown of volume-law saturation of Sα at least for
large enough f , even when the limit L → ∞ is taken before
the limit of large q.

Lastly, in Fig. 10, we numerically simulate the second
Renyi entropy at large time (t = 200) for system sizes L =
4, 8, 12, 16, 20 for the FRUC at q = 2 and p = 1. For f =
0, the numerical result matches the prediction provided in
Ref. [8]. From the heuristics and Eq. (31), we suspect that the
volume-law phase fails to persist for f > f ∗ = 0.36, which is
compatible with the numerics. We emphasize that the heuris-
tics above only provide an argument of the breakdown of
the volume-law phase at large enough f . For a more detailed
analysis of the transition in terms of the zeroth Renyi entropy
in the random unitary circuits, see Ref. [22].

V. CONSTRAINTS ON VOLUME-LAW PHASES

In this section, we present general arguments which highly
constrain the form of von Neumann entanglement entropy
in systems time evolving via local unitaries and projectors,
assuming a local Hilbert space of finite dimension. We find
that a volume-law entanglement entropy is not stable in
the presence of measurements unless there is a subleading
correction, which should serve as an important signature of
measurement physics within the volume-law phase. Insofar
as Von Neumann entropy upper bounds Renyi entropies of
higher index (e.g., S2), this argument also provides upper
bounds on the scaling of higher Renyi entropies. Throughout
this section, “entropy” refers to Von Neumann entropy, unless
specified otherwise.

We consider a situation where, in alternating time steps,
either nearest-neighbor unitaries or projective measurements
are applied to each site with probability f . The basic obser-
vation is that for any region A, the rate of entropy increase
is only proportional to the size of the boundary |∂A|, while
the rate of entropy decrease on A due to measurement can
generically be proportional to the total entropy of A. The only
way for these rates to balance would be for A to satisfy an area
law. In contrast, a stable volume-law phase requires a state
in which measurements are much less effective at removing
entanglement. We show that this requirement implies the
existence of a subleading term in the entanglement entropy.
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A. Constraining strong volume laws

In this section, we exclude the possibility of volume-law
von Neumann entropy without a subleading correction. First,
we show that any bipartite unitary acting on D × D dimen-
sions can increase the entanglement entropy between the two
parties by no more than 2 ln D. To see this, imagine such a
unitary U : ab → a′b′ with da = da′ = db = db′ = D applied
to a state |ψ〉AaBb, where Alice holds systems Aa and Bob
holds Bb. Then, the increase in entanglement achieved by
applying U to ab is

�Suni = S(Aa′)
ρ

f
Aa′

− S(Aa)ρi
Aa′

= S(a′|A)ρ f − S(a|A)ρi

� S(a′) + S(a) � 2 ln D. (32)

Here we have used the notation of conditional entropy
S(A|B) = S(AB) − S(B). We have also used the subadditiv-
ity of entropy, S(AB) � S(A) + S(B), and the Araki-Lieb
inequality: S(A|B) � −S(A) (Ref. [26]). This is actually a
simplified derivation of a bound found in [27], which studies
the general problem of entanglement generation via bipartite
unitaries.

Next, assuming A = A1 . . . An is composed of subsystems,
we derive an upper bound on the entropy change caused by
measuring a constant fraction f of those subsystems. Letting
T be the collection of subsystems that are not measured,
and MT c be the classical outcomes of the measurement on
the complement T c, we see that the average entanglement-
entropy change by measurement is given by

�Smeas =
∑

T

pT S(AT |MTc ) − S(A1 . . . An) (33)

�
∑

T

pT S(AT ) − S(A1 . . . An). (34)

We can use these two observations to conclude that small-
scale volume-law-like scaling must saturate to an area law for
sufficiently large sizes in any spatial dimension d . For the sake
of contradiction, suppose our A consists of n contiguous spins
A1 . . . An, and that the entropy of the system A scales as

S(A1 . . . An) = γ n + g(n) (35)

= γ |A| + g(|A|), (36)

where g(|A|) = o(|A|) is a correction term. Our goal is to
upper bound

�Smeas � −γ f |A| + o(|A|). (37)

To this end, we apply Eq. (33), but we must handle a slight
subtlety. While Eq. (35) posits only the asymptotic behavior
of entropies of contiguous sets of spins, the right-hand side
of Eq. (33) involves entropies of noncontiguous spins. To
see how this works, fix Tc (the spins being measured) and
label the contiguous systems between successive points in Tc,
V1, . . . ,Vk . The typical size of Vi will be ≈1/ f and there will
be k ≈ f n such contiguous sets.

We give two arguments. In the first argument, we assume
a stronger requirement on our correction term, demanding
g(n) = o(1). Given this, fixing a particular Vi, letting AL

denote a large number of spins to the left of Vi and AR a large
number to the right, strong subadditivity of entropy implies
that

S(Vi ) � S(ALVi ) + S(ViAR) − S(ALViAR). (38)

Applying the assumed scaling, this becomes

S(Vi ) � γ (|AL| + |Vi|) + γ (|Vi| + |AR|) (39)

− γ (|AL| + |Vi| + |AR|) + o(1) (40)

→ γ |Vi|. (41)

As a result, we find that

∑
T

pT S(AT ) =
∑

T

pT S(V1 . . . .Vk ) (42)

�
∑

T

pT

∑
i

S(Vi ) (43)

�
∑

T

pT γ |Vi| (44)

= (1 − f )γ n. (45)

Substitution into Eq. (33) then yields Eq. (37) as desired.
In the second argument, we allow a more relaxed scaling,

where we do not require that the correction term g(n) ∼
o(1), but only require that the deviations around area law are
independent and random (with mean zero) for different sets
and over different realizations of T . In this case, we find

∑
T

pT S(AT ) =
∑

T

pT S(V1 . . . .Vk ) (46)

�
∑

T

pT

∑
i

S(Vi ) (47)

=
∑

T

pT

∑
i

(γ |Vi| + g(Vi)) (48)

= (1 − f )γ n +
∑

T

pT

∑
i

(g(Vi )) (49)

= (1 − f )γ n + O(
√

n). (50)

In both cases, we find∑
T

pT S(AT ) � (1 − f )γ n + O(
√

n), (51)

so that the entropy change due to measurement satisfies

�Smeas = �
∑

T

pT S(AT ) − S(A1 . . . An) (52)

� (1 − f )γ n − γ n + o(n) (53)

= − f γ n + o(n). (54)

The change in entanglement entropy caused by one round
of local unitaries satisfies

�Suni � 2l ln q � 2|∂A| ln q, (55)

where l is the number of q × q unitaries that straddle the
boundary between A and B, which is equal to the length of
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the boundary of A. Combining this with the change in the
entanglement entropy due to measurement gives us

�Stot = �Smeas + �Suni (56)

� − f γ |A| + 2|∂A| ln q + o(|A|). (57)

Note that for sufficiently large n = |A|, this becomes negative
since |∂A| scales more slowly than |A|. As a result, a stable
entropy of form Eq. (35) cannot be achieved. In particular, if
we hope for volume-law scaling of the form S(A) = γ |A|, we
find positive entropy growth rate can only be sustained for

2|A| d−1
d ln q � γ f |A|, (58)

which requires

|A| �
(

2 ln q

γ f

)d

. (59)

Alternatively, volume-law entanglement must break down
around a saturation entropy

Smax ≈ γ

(
2 ln q

γ f

)d

. (60)

We can also show that a strong volume-law behavior is
impossible in 1D with a simpler argument. Given a set A,
the local-unitary steps will tend to increase the entanglement
entropy of A, while the projective measurements will tend
to decrease it. Our goal is to identify the size at which
these competing forces balance out. To understand the rate
of entropy reduction due to measurements, we make some
assumptions about the structure of the state on A. In particular,
we consider a situation where the entanglement entropy of A
is nearly maximal (the state is nearly maximally mixed) and
see how large an A is consistent with this. In a sense, we are
asking how big can A be and be consisent with a very strong
notion of volume law. Suppose A has |A| spins. Then, after one
step of measurements, a fraction f |A| spins will be measured,
and the resulting entropy will be (1 − f )|A| ln q, which is an
entropy change of �Smeas = − f |A| ln q. When a layer of local
unitaries is applied, only two of the unitaries will straddle the
edges of A (one at each end). The unitary step will therefore
increase the entanglement entropy of A by �Suni � 4 ln q. So,
after one unitary step and one measurement step, the change
in entanglement entropy is

�Stot = �Smeas + �Suni (61)

� 4 ln q − f |A| ln q. (62)

We therefore find �Stot � 0 for 4 � f |A|. This suggests
that for |A| � 4/ f , unitary-projective dynamics will increase
the entanglement entropy of A, but that it will saturate
around |A| ≈ 4/ f . This simple argument holds only for near-
maximally mixed states on A.

B. Logarithmic corrections and phase transitions

Now we argue that our general argument does allow for
logarithmic corrections to area laws, and also for phase transi-
tions between area-law phases with and without logarithmic
corrections. The argument is simple: suppose the entropy

scales as

S(A1 . . . An) = γ |∂A| ln |n|. (63)

An argument analogous to that presented in the previous
section gives

�Smeas � γ |∂A| ln(1 − f ), (64)

�Stot � 2|∂A| ln q − γ |∂A| ln(1 − f ). (65)

For f < fc = 1 − q2/γ , the upper bound on �S is positive,
such that entropy growth of the form Eq. (63) can be sustained
indefinitely, leading to a ln L correction to area-law behavior.
For f > fc, �Stot < 0, and the scaling Eq. (63) cannot be
sustained, allowing only for a true area law.

VI. CONCLUSIONS

In this work, we have investigated the entanglement
dynamics of a system featuring a combination of unitary and
projective time evolution, which have competing effects on
quantum entanglement. We have argued that the effects of
projection can keep the system in a state of low entanglement,
featuring an area law for entanglement entropy, in contrast
with the volume-law entanglement entropy resulting from
generic pure unitary time evolution. We have constructed
several toy models which capture the important features of
unitary-projective evolution, such as the growth of short-range
entanglement due to unitary evolution and the removal of
entanglement at any scale by projective measurements. In the
simplest model, described in the language of Bell pairs, an
area-law phase persists down to arbitrarily low measurement
rates. We have also shown that, starting from a product state,
entanglement can often overshoot its late-time value prior to
saturating to the area law. We then constructed a generalized
cluster model which features an area-to-volume law transition
at a finite critical measurement rate. We have tested this
intuition in various concrete yet analytically tractable
realizations of unitary-projective evolution. Specifically,
we have studied Clifford evolution in one dimensional
qubit systems, and a Floquet random unitary circuit in one
dimension. In all cases, we find a stable area-law phases. In
some models, the area-law phase persists to arbitrarily weak
but nonzero measurement rates, whereas in others it gives
way at a critical measurement rate to a low measurement
volume-law phase. We have further demonstrated that in
the low measurement volume-law phase there must be a
subleading correction to the volume law (i.e., a strong volume
law is impossible at any nonzero measurement rate).

We thus conclude that projective measurements can gener-
ically restrict systems to area-law entanglement, at least for
a sufficiently high measurement rate. This implies—counter-
intuitively—that measurement of a quantum system can in-
hibit thermalization through local unitary time evolution, and
help keep the system in a low entanglement state. This seems
to be rather good news for efforts to store and manipulate
quantum information.

The results of this manuscript are now consistent with nu-
merical work by Li, Chen, and Fisher [21,23], and by Skinner,
Ruhman, and Nahum [22]. In Li, Chen, and Fisher, numerical
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data on unitary-projective evolution in systems of size up to
L = 500 was reported, and a phase transition was observed
between a high measurement phase in which entanglement
entropy reached a volume law. Meanwhile, Skinner, Ruhman,
and Nahum reported numerics on system sizes up to L = 24
and observed an analogous area-to-volume law transition.

Our work paves the way for future investigations into
unitary-projective dynamics. There is much that remains un-
known about the new measurement-driven area-law phase,
as well as the area-to-volume law transition. The transition
appears to have an important relationship with certain sta-
tistical mechanics models, such as percolation [22], though
the extent to which all properties of the transition can be
understood in this language remains unclear. Regarding the
new measurement-driven area-law phase itself, to what extent
can the system be understood as an athermal “localized”
phase? Also, since area-law entanglement entropy is more
commonly associated with quantum ground states, can the
measurement-driven phase host unusual sorts of quantum
orders, such as seen in the context of localization protected
order [28]? There are many interesting questions remaining to
be answered in this exciting new field.

Note: the results presented here supersede those of all
previous versions of this manuscript, which contained some
erroneous claims.
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APPENDIX A: EVALUATION OF 〈q(1−α)Sα (t )〉 IN SEC. IV

1. Second Renyi entropy

In this section, we prove Eq. (26) for α = 2 for the model
described in Sec. IV A. The case of α > 2 is discussed in
Appendix A 2. We take for granted what is proven in Sec. IV C
and Appendixes B 2 and E in Ref. [8]. We begin by reviewing

the emergent statistical mechanical problem described in
Sec. IV C. in Ref. [8] without projective measurements.

〈q−S2(t )〉 can be expressed as a 1/q-perturbative series in
the large-q limit, which can in turn be mapped to a partition
function of the following ensemble at zero temperature. (This
mapping is exact only in the large-q limit.) The ensemble
consists of configurations [diagrammatically represented in
Fig. 11(L)] whose state variables live in blocks and take
values from the set {a, b, a1, a2, b1, b2, x} (Fig. 14 in Ref. [8]).
Between every pair of vertically neighboring blocks d1 and
d2, there is a local Boltzmann weight CH(d1, d2) (explicitly
derived and written in Table 1 in Ref. [8]) which is diagram-
matically represented as the horizontal boundary (with a width
of lattice spacing) between the two blocks [Fig. 11(C), top].
Without projective measurements, the weight is unity if and
only if d1 = d2, so it is useful to distinguish the boundaries
between domains of blocks of different values, which we call
domain walls (DW). The associated global Boltzmann weight
of diagram G (which we also refer to as the order of G) is the
product of all local Boltzmann weights of walls w = (d1, d2)
between neighboring blocks d1 and d2,

O(G) =
∏
walls

CH(w) . (A1)

In the limit q → ∞, the partition function is dominated by
diagrams with the largest Boltzmann weight or the highest
order. It is proven [8] that the leading order diagrams are
minimal-length DW diagrams with DW separating domains
of A and B blocks (Fig. 6).

The presence of projection operators effectively provides
locations where DW can form without lowering the order of
a diagram. In other words, DW-s that pass through projection
operators are “free.” To be precise, we state, in Table I, the
local Boltzmann weight function CH

proj(·, ·) for two vertically
neighboring blocks that sandwich a projection measurement
in-between. This function is derived using the same method
introduced in Ref. [8] and two examples are provided in
Fig. 11(C), bottom. Importantly, CH

proj(·, ·) differs CH(·, ·) in
the following way: aside from the diagonal entries of the
table, there is a single entry, namely, (a, b), in the table of
CH

proj(·, ·) that gives a Boltzmann weight of unity. This implies
that the projection operators effectively provide locations at
which DW can form without reducing the overall order of
the diagram. We will use this observation to show that S2(t )
saturates to an area law in late time in the large-q limit.

We proceed in the proof with three steps. (i) We analyze the
diagrams row-by-row, and show an upper bound in the order
for each row of walls (which is defined by two neighboring
rows of blocks). (ii) We identify the leading order diagrams
by invoking the “sink-source” arguments [8], and by showing
that these diagrams saturate the bounds found in (i). (iii) We
show that all diagrams with the highest order are algebraically
translated into positive factors (so there can be no cancellation
between these contributions).

We label each row of blocks as in the far left of Fig. 11(L),
and a row of walls by the label of the row of blocks above.
For step (i), consider 3 types of rows of walls: (a) even rows
of walls without projection operators along the rows [e.g., row
2 in Fig. 11(L)]; (b) odd rows of walls which cannot have any

224307-13



CHAN, NANDKISHORE, PRETKO, AND SMITH PHYSICAL REVIEW B 99, 224307 (2019)

FIG. 11. (L) Top: the block representation of a leading order DW diagram for 〈q−S2(t )〉 for the Floquet model specified in Sec. IV A in
the large-q limit in early time t . The far left column labels the rows of blocks. The configuration of the top row of blocks is fixed by the
boundary condition of the trace structure of the observable 〈q−S2 (t )〉 (see Ref. [8] for details). We compute 〈q−S2 (t )〉 by evaluating the partition
function of the following ensemble. Each realization in the ensemble has state variables living in each block and local Boltzmann weights
between two vertically neighboring blocks. Only nontrivial Boltzmann weights (the ones smaller than unity) are drawn in red. The locations of
projective measurements are drawn in purple. (L) Bottom: a dictionary between the simplified diagrammatic representations in the main text
and the ones in the appendices. (C) Top left: the diagrammatic representation of the local Boltzmann weight (in red) between two vertically
neighbo ring blocks d1 and d2. (C) Top right: a block (not at the edges of a diagram) has four local Boltzmann weight with its neighboring
blocks. (C) Bottom: this figure illustrates the derivation of Table I. Reference [8] is required to understand the figures. (C) Bottom left: the
LHS is the top view of two vertically neighboring block with time axis vertical and space axis horizontal. The right-hand side (RHS) is the
side view of the block in terms of loops on site i with time axis vertical and space axis pointing out of the page. The purple dots represent
the projective operators. We have CH

proj(a, b) = 1, because as long as the top and bottom blocks have local contractions, this region of the
diagram has saturated its highest possible order. (C) Bottom right: the loop on site i with purple dots is of length at least 3 due to the nonlocal
contraction. This implies that the existence of this loop reduces the overall order of the diagram by q−1 from the highest possible order, since
the 3-loop could have been split into smaller loops. Consequently, we have CH

proj(a, b1) = q−2/3. (R) Examples of leading order configurations
of different types of row of walls. (a) An even row of walls without projection operators along the rows. (b) An odd row of walls (which cannot
have any projection operators). (c) Even rows of walls with projection operators. (c) Bottom: if multiple projection operators are located next
to each other in space, there can be a leading order configuration in which a DW between domains a and b horizontally extends over a number
of sites.

projection operators [row 3 in Fig. 11(L)]; and (c) even rows
of walls with projection operators [row 4 in Fig. 11(L)].

The following upper bounds in the order of rows of type (a)
and (b) are proved in Ref. [8] using Table 1 in the reference.
For case (a), if there are two types of blocks, a and b, on
the top row of blocks, the upper bound of the order of the
row of walls is q−1, given rise by a single factor of CH(a, b)
[while all the other local Boltzmann weights are CH(a, a) =
CH(b, b) = 1, see Fig. 11(R)(a)]. Note that if there is only

TABLE I. Upper bounds for the local Boltzmann weight
CH

proj(·, ·) associated with the boundaries between two vertically
neighboring blocks that sandwich a projective measurement in-
between. The matrix is symmetric and so only the upper triangle is
written explicitly. The upper bounds are saturated by all Boltzmann
weights that appear in the leading order diagrams of 〈q−S2 (t )〉 in the
large-q limit. Note in particular that CH

proj(a, b) = 1, while CH(a, b) =
q−1 in Ref. [8].

ω a b a1 a2 b1 b2 x

a 1 1 q−1/2 q−1/2 q−2/3 q−2/3 q−1

b 1 q−2/3 q−2/3 q−1/2 q−1/2 q−1

a1 1 q−1 q−3/4 q−3/4 q−1/2

a2 1 q−3/4 q−3/4 q−1/2

b1 1 q−1 q−1/2

b2 1 q−1/2

x 1

a single type of blocks, say b, along the top row of blocks,
then the upper bound of unity is always saturated by choosing
the bottom row of blocks identical to the top one, i.e., also b.
For case (b), regardless of the number of block types in the
top row of blocks, one can always find a configuration of
row of walls with order unity, by choosing the bottom row
of blocks identical to the top row of blocks [Fig. 11(R)(b)].
For case (c), the upper bound of order is unity even if there
are two types of blocks, say a and b, on the top row of
blocks [cf. case (a)], because the DW between domains of
block a and b can occur at the position of the projective
measurement. Furthermore, depending on the realization of
positions of projection operators, a leading row of walls can
be an extended segments of horizontal DW [Fig. 11(R)(c),
bottom]. This concludes step (i).

To find candidates of leading order diagrams, we invoke
the “sink-source” argument introduced in Ref. [8]. Suppose
we assign an orientation to a wall (e.g., if there are only
domains a and b in the diagram, we can choose a DW to be
directed forward if domain a is on its left and b on its right.)
A source is a point in the diagram from which a outwardly
directed DW has to originate. For example, the center top of
the Fig. 11(L) has a source, because regardless of whether
the block immediately below is of type a or b, a DW has
to be generated. A sink is similarly defined. Importantly, a
DW originated from a source must end at a sink. Due to this
argument, for 〈q−S2(t )〉, there must be a DW coming from
the center top of Fig. 11(L) and ending either (1) along the
bottom edge of the diagram (Fig. 7, right) or (2) on the side
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of the diagram (Fig. 8, right). Since the order of a diagram
decreases as the DW length increases, the minimal-length DW
diagrams of types (1) and (2) are candidates for leading order
diagrams.

Now we identify the highest order diagrams of types (1)
and (2). For type (1), there exists a minimal-length DW
diagram [as illustrated in Figs. 7 and 11(L)] that saturates
the highest order q−1 on every row of walls: Every even
row of walls without measurements saturates the highest
order q−1 [as in (a) in Fig. 11(R)], and every odd row
and even row with measurement saturate the highest order
of unity [as in (b) and (c) in Fig. 11(R)]. Therefore the
highest-order diagram of type (1) has an order q−t+t//p, where
t//p is the number of measurement layer the DW passes
through.

For type (2), recall that we are averaging over a separate
ensemble of measurements over their positions in Eq. (26)
(the other average is over the Haar ensemble). In this aver-
age, there are realizations of the circuit that have projective
measurements forming a stair-case configuration as in Fig. 8,
right (the purple lines). These realizations are suppressed in
L as f L but nevertheless are the dominant contributions in
the limit q → ∞ for fixed but arbitrarily large L (the limit
L → ∞ is discussed in Sec. IV B). The minimal-length DW
for such configuration reaches the side of the diagram with
at most ceil(1/2 f ) numbers of period. Diagrams of this type
are leading order diagrams because each of them saturates the
highest order bound for each row that form the staircase [in a
similar way to the case of type (1) above]. To find the order
of the leading diagrams, we count the number of even rows of
wall without projective operators, and obtain the exponent in
the second case of Eq. (26).

At early time, type (1) diagrams provide the leading order
diagrams because type (2) diagrams do not exist due to
insufficient number of staircases. At sufficiently late time,
type (2) diagrams dominates because the order of diagrams
of type (2) does not scale in t . In Ref. [8], it is proven that
the only leading order diagrams are of types (1) and (2) in
early and late time, respectively (the appearance of projective
measurements only trivially change the proof of this statement
in Ref. [8]). The time of the regime-change between (1) and
(2) is determined by the time when s = ceil(1/2 f ) number
of staircases can form. This gives t∗ = ps. This concludes
step (ii).

Finally, we check (iii) to ensure the leading diagrams do
not translate into algebraic terms that cancel each other out. To
this end, note that the leading order diagrams of type (1) and
(2) always have odd rows of walls of type (b) in Fig. 11(R).
Such diagrams are called “Gaussian” [8], and are algebraically
translated into positive contributions to 〈q−S2(t )〉. We have
therefore proved Eq. (26).

2. Higher Renyi entropies

For α > 2, while it is difficult to compute the multiplicity
of leading order diagrams for 〈q−S2(t )〉 before saturation time,
the order of the leading order diagrams (which is our main
interest) are known [8]. The proofs for α � 2 can be straight-
forwardly extended from the proof for α = 2 as follows: in
step (i) of Appendix A 1, the upper bound for rows of type (a)
for general α is q(1−α) instead of q−1. In step (ii), the leading
diagram candidates remain the same, except that they saturate
the new upper bound in order on every odd rows of walls
without projective measurements. Step (iii) is identical, and
therefore, Eq. (26) follows.

APPENDIX B: MULTIPLICITY OF DIAGRAMS FOR
QUANTUM PURITY FOR SMALL t IN SEC. IV

In this section, we use a transfer matrix to write an expres-
sion for the multiplicity of diagrams of 〈q−S2(t )〉 at t � ps for a
fixed realization of the positions of projective measurements.
The vertical segments of a DW live on the bonds between
neighboring sites. If we label the bond between site x and
x + 1 as the xth bond (for open boundary condition, we label
the bond on the left of site 1 as 0, and the one on the right
of site L as L), then a basis for the Hilbert space of DW
is |x〉, where x = 0, 1, . . . , L. In the absence of projective
measurements, the multiplicity of all possible minimal-length
diagrams of 〈q−S2(t )〉 can be generated by a transfer matrix
that maps |x〉 to |x − 1〉 and |x + 1〉 with a weight of unity at
each time step. In the presence of measurements, a projection
operator at site i can map |i − 1〉 to |i〉, and |i〉 to |i − 1〉. If
there is only a single projective measurement P (i) at site i
and time tP , we can write the multiplicity as

〈q−S2(t )〉 =
L∑

x f =0

〈x f | T t−tPP (i)T tP |L/2〉 q−t+1, (B1)

where T is the L + 1 by L + 1 transfer matrix given by

T =

⎡
⎢⎣

0 1
1 0 1

1 0 · · ·
· · · · · ·

⎤
⎥⎦, P (i) = |i〉 〈i − 1| + |i − 1〉 〈i| .

(B2)
This approach is generalizable to a diagram with multiple
projective measurements. However, complication arises when
there are multiple projective measurements at neighboring
sites on the same measurement layer. For instance, if there
are measurements at both sites i and i + 1, then there will be
additional terms like |i + 1〉 〈i − 1|, which shifts the DW by
two lattice spacings.
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