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Information scrambling, characterized by the out-of-time-ordered correlator (OTOC), has attracted much
attention, as it sheds new light on chaotic dynamics in quantum many-body systems. The scale invariance,
which appears near the quantum critical region in condensed matter physics, is considered to be important for
the fast decay of the OTOC. In this paper, we focus on the one-dimensional spin-1/2 XXZ model, which exhibits
quantum criticality in a certain parameter region, and investigate the relationship between scrambling and the
scale invariance. We quantify scrambling by the averaged OTOC over the Pauli operator basis, which is related
to the operator space entanglement entropy (OSEE). Using the infinite time-evolving block decimation method,
we numerically calculate time dependence of the OSEE in the early-time region in the thermodynamic limit. We
show that the averaged OTOC decays faster in the gapless region than in the gapped region. In the gapless region,
the averaged OTOC behaves in the same manner regardless of the anisotropy parameter. This result is consistent
with the fact that the low-energy excitations of the gapless region belong to the same universality class as the
Tomonaga-Luttinger liquid with the central charge ¢ = 1. Furthermore, we estimate ¢ by fitting the numerical
data of the OSEE with an analytical result of the two-dimensional conformal field theory, and confirm that ¢ is
close to unity. Thus, our numerical results suggest that the scale invariance leads to a universal behavior of the
OTOC that is independent of the anisotropic parameter, which reflects the universality of the two-dimensional
conformal field theory at low temperatures. Although the one-dimensional XXZ model is integrable, our results
suggest such a universal behavior of generic nonintegrable systems, because the Tomonaga-Luttinger liquid
serves as a low-energy effective theory for many nonintegrable and integrable systems. On the other hand, the
OTOC in our numerical result does not exhibit the exponential decay, as our parameter regime is far from the

semiclassical limit.
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I. INTRODUCTION

While classical chaos is characterized by the Lyapunov
exponent [1], the definition of chaos in quantum systems is
nontrivial, and many studies have been conducted to under-
stand various aspects of quantum chaos [2,3]. In addition
to the conventional indicators of quantum chaos such as the
level statistics [2,3] and the Loschmidt echo [4], scrambling
has recently attracted attention because it sheds new light
on chaotic behaviors in quantum many-body systems [5,6].
Scrambling represents the delocalization process of locally
encoded quantum information. This is characterized by the
out-of-time-ordered correlator (OTOC), which is defined as

F(t) := (WO (OW @)V (0))g, ey

where V and W are local Hermitian operators, and (- - -) B
represents the canonical ensemble average at the inverse tem-
perature 8. We note that the ordering of the times in the OTOC
is different from that for the usual correlation functions. As
the OTOC is closely related to the square of the commutator
C(t) := —([W(), V], it quantifies how the operators W ()
and V (0) become noncommutable as the spatial support of
W (t) increases in time evolution. In quantum systems, the
squared commutator is expected to increase exponentially in
the early-time regime, if the system scrambles fast enough,
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which leads to the exponential behavior of the OTOC of the
form F(t) &~ a — be’' [7,8]. Here, Ay, is referred to as the
quantum Lyapunov exponent. In terms of quantum informa-
tion theory, the averaged OTOC over the operator basis is
equivalent to tripartite mutual information [9] and represents
quantum pseudorandomness [10].

As an important feature of the OTOC, its decay rate has
an upper bound that is referred to as the chaotic bound or the
Maldacena-Shenker-Stanford (MSS) bound [7]. This bound is
achieved by the Sachdev-Ye-Kitaev (SYK) model [8,11-15],
which exhibits the partial scale invariance SL(2, R). More-
over, the two-dimensional conformal field theory (2D CFT)
[16] in the large central charge limit also achieves the upper
bound [17]. We emphasize that these two models exhibit the
scale invariance. We note that the role of scale invariance has
also been studied with the Tomonaga-Luttinger liquid (TLL)
[18] and the Bose-Hubbard model [19,20].

In this paper, we focus on the relationship between the
scale invariance and scrambling with a simple quantum
spin chain. Specifically, we numerically investigate the one-
dimensional quantum spin-1/2 antiferromagnetic XXZ chain,
which exhibits a quantum phase transition between the gap-
less phase and the gapped phase. The low-energy excitations
in the gapless phase are characterized by the TLL and those
in the gapped phase are described by the Ising-like excitations

©2019 American Physical Society
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[21]. For this model, we calculate the averaged OTOC that is
equivalent to the operator space entanglement entropy (OSEE)
[22-26].

We show that there is a qualitative difference between the
behavior of OTOC in the gapless region and that of the gapped
region: the decay of OTOC in the gapless region is faster than
that of the gapped one. This result supports the expectation
that the scale invariance of CFT in a quantum system leads to
fast scrambling [7,8]. Furthermore, our numerical study shows
that the decaying behavior of OTOC in the gapless region is
always similar and does not depend on the anisotropy param-
eter. We therefore suggest that it is universal in the gapless
regime but only at low temperatures. Here we argue that such
a universal behavior comes from the fact that the low-energy
excitations of the gapless XXZ model are described by the
TLL and belong to the same universality class of the 2D
CFT with ¢ =1 [21,27]. We thus expect that the universal
decaying behavior of OTOC in the gapless regime should
hold for various quantum systems including nonintegrable
ones if their low-energy spectra are described by the 2D CFT
with ¢ = 1. In fact, the TLL or the 2D CFT with ¢ =1 is
almost ubiquitous in the low-energy excitations not only for
integrable gapless quantum spin chains such as the spin-1/2
XXZ chain but also for nonintegrable ones.

Our numerical method is the infinite time-evolving block
decimation (iTEBD) method [28-30], which enables us to
directly address the thermodynamic limit. This is a benefit
of the iTEBD compared to other methods such as numerical
exact diagonalization. We estimate the central charge ¢ by
fitting the numerical results with an analytical result of the
2D CFT [31]. As a consequence, we confirm that c is close to
unity, which is consistent with the fact that the XXZ model in
the gapless region belongs to the universality class of ¢ = 1.

This paper is organized as follows. In Sec. II, we explain
the averaged OTOC, the OSEE, and the relationship between
them. In Sec. III, we show our main numerical results of
the averaged OTOC in the gapped and the gapless regions
in the thermodynamic limit. In Sec. IV, we summarize this
paper and make some remarks. In Appendix A, we prove an
inequality concerning the averaged OTOC. In Appendix B,
we introduce the canonical form of the infinite matrix product
operator (iMPO) [32-34]. In Appendix C, we discuss the
details of numerical errors.

II. AVERAGED OTOC AND OSEE

In this section, we define the averaged OTOC and discuss
its relationship to the operator space entanglement entropy
(OSEE).

We define the OTOC at finite temperature by Eq. (1). In the
quantum field theory (QFT), the OTOC requires appropriate
regularizations and the following regularization is commonly
adopted [13,17]:

(W@VW @)V )g — t[IW @)FVIW (1)3V 1, (2)

where §* := e’ﬂﬂ/Z(ﬂ) and Z(B) := tr[e"m]. We adopt this
regularized OTOC, which provides a platform to compare our
study and the previous studies of QFT.

For simplicity, we assume that the total system is on a
lattice and each local site is described by a two-level system

(i.e., a qubit). Let S be the set of all sites and L := |S| be
the number of them. The Hilbert space of the total system is
H = (CH®",

We consider subsystems A, B C S. The number of sites
in A and B are denoted by a and b, respectively. These
subsystems are defined as A :={ij,i,...,i,} and B:=
{j1, j2, --., jo}- An operator belonging to the Pauli operator
basis of A (B) is respectively written as Oa (Op). The op-
erator is explicitly written by a tensor product O = 0i, ®
0, ®---®0;, and Op =0, ® 0}, ® --- ® 0;,, where d; €
{I,, 6X,6Y,67} is a Pauli matrix at site i € S. We denote
the sets of the operator basis of A and B as P and Pg,
respectively.

We now define the averaged OTOC as follows [9,10]:

Fap(?)

1
= 2

OAGPA,OB €Pp

tr[$05 ()04 (0)50s (£)$0A (0)],

3

where we averaged the OTOC over the operator bases P, and
Pg. For the special case of 8 = 0, it has been shown that the
decay of the averaged OTOC is related to the negativity of
tripartite mutual information [9].

We introduce a basic property of the averaged OTOC.
For A and B, we consider subsystems A’ C A and B’ C B,
respectively. Then, the averaged OTOC satisfies

Fap(t) < Fap(t) 4)

(see Appendix A for the proof). This inequality holds even
when A and B have an intersection.

In the same setup, we define the OSEE. For the Hilbert
space of the total system 7, we consider a copy of H and
denote it as 7. We regard a linear operator W acting on # as
a state on the extended Hilbert space H ® H as

W) =W @ I|®), o)

where |®) := ]_[[Lzl(|0),-|0); +[1);|1);) is the Einstein-
Podolsky-Rosen pair between the original system and the
copied system and / is the identity operator. Here, the index
i represents the original system and 7 represents its copy.
We note that this mapping is essentially the same as the
channel-state duality [35]. When the total system is split
into A and B, i.e., S= A UB, ANB =, the OSEE of the
operator W in the region A is defined as

SPPEIW] = —try4[p In 2], (6)
where
L trgg[IW) (W]
= %, @)
(WIW)
with A being the copy of A and B being the copy of B.
Furthermore, the Rényi-n OSEE of W is defined as
S(A)SEE(n)[W]
1 tr W-{- ®ns‘v(l,n,n—l ..... 2)W®n§(l,2,3,...,n)
In [( ) A _ A ] ,
tr[WTW]

1—n

®)
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where S‘(] 23em) s a permutation operator acting on
HE", Wthh cyclically permutes the rephcas of the

subsystem A. Explicitly, the action of S - s given

by S8 lina @ Ljs @ 12)a @ 2)p ® - ® lin)a ®
[Jn)B = li2)a @ |j1)B @ li3)A @ |/2)B - @ lin)a @ | ju—1) ®
lit)a ® |jn)B, Where |i)4 belongs to a basis of the subsystem
A and |j)p belongs to a basis of the subsystem B. We note
that $§""~1?) is the inverse operator of §{ ">,

The averaged OTOC has the following relation to the
OSEE [9]. When S=A UB and ANB = {, the averaged
OTOC is written as

Z(B/2)
pi

2z ™ —SPEOWw B0, ©)

Fap(t) =

where U (B, ) := e~(5+"H From Eq. (4),

ZB/2)
2LZ(B)

OSEE (2)
_SA

< Fap(t) (10)

holds for A’ C A and B’ C B. Thus, the averaged OTOC
Fap/(t) is bounded from below with the Rényi-2 OSEE.
Although the OTOC with local observables is investigated in
many previous studies, we focus on Eq. (9) to consider a lower
bound of the averaged OTOC.

The OSEE is also investigated in QFT. The OSEE of
U(B.t) in quantum critical systems has been calculated an-
alytically by the 2D CFT [31]. In QFT, the total system is not
on a lattice and subsystems are represented by intervals. With
the bipartition A = (—o0, 0] and B = (0, c0), the OSEE of

U (B, 1) is given by
1 2wt
%(1 + ;) In |:cosh (%)] + So,

Y

SUEEMI0 (B, 1)] =

where Sy is an unimportant constant. This formula is derived
with the replica trick as the case of the Calabrese-Cardy
formula [36]. We make a remark on the case of another
partition A = [0, Lx] and B = S\ A. In the limit of Ly > 1,
the OSEE SO ™[0 (8, 1)] becomes double that of Eq. (11)
because there are two boundaries.

We obtain an expression of the averaged OTOC in terms of
the OSEE by substituting Eq. (11) into Eq. (9):

Fap(t) ocexp | — SSFEP0 (B, 01} o

ESL

[ cosh ()]
(12)

In the same manner, for the partition with A = [0, La], the
averaged OTOC is obtained as Fap(t) « [cosh(zﬁ%’)]’c/ 2,

At early times ¢/8 < 1, the above expression of the av-
eraged OTOC is different from F(r) ~ a — be*' that is ex-
pected from the chaotic bound [7,8]. This discrepancy comes
from the fact that we did not take the semiclassical limit (e.g.,
the large-c limit).

On the other hand, at late times z/ >> 1, Eq. (12) reduces
to the exponential decay F ap(t) ~ e~ ~% . We note that from
the 2D CFT with the large-c limit [17] the OTOC with the

primary fields V and W also decays exponentially atz/f8 > 1:
(W@OVW @)V )g
(WW)p(VV)p
where h, is the conformal dimension of V.

The exponent in Eq. (13) is different from that of the
averaged OTOC, because the conformal dimension of the
twist operator for n = 2 is ¢/16. This is not a contradiction
and our results are consistent with Eq. (13). This is because
Eq. (13) is obtained in the parameter region 1 < h, < hy,
[17] with h,, being the conformal dimension of W, which is
not satisfied in our setup. Besides, the positions of the primary
fields in the spacetime in Ref. [17] are different from those in
our setup.

~ e—47‘[hvl’ (13)

III. NUMERICAL RESULTS BY ITEBD

In this section, we present our main numerical results.
Specifically, by using the iTEBD, we calculate the OSEE
of U(B, 1) = e~ 4+ and discuss the qualitative difference
between the gapless and gapped regions.

A. Setup

In this subsection, we describe our setup for the numerical
calculation and the protocol of the iTEBD. The Hamiltonian
of the one-dimensional quantum spin-1/2 antiferromagnetic
XXZ chain is defined as

Hxxz =1 Z o ‘7:+1+6Y6:+1+A( 641 - 1)].
i=—00

(14)

where OX al , and &7 are the Pauli operators at site i, A is

the anisotropy parameter, and J (>0) is the strength of the
exchange interaction. For simplicity, we set J = 1. For 0 <
A < 1, the low-energy excitations from the ground state are
gapless and this model exhibits quantum criticality. From the
2D CFT, it is known that the gapless XXZ model belongs to
the universality class with the conformal charge ¢ = 1 [21,27].
We divide the total system into two semi-infinite subsystems
A={—o00,...,—1,0} and B=1{1,2,..., o0} and calculate
the Rényi-2 OSEE for this bipartition.

We explain the protocol to approximately calculate the
imaginary-time evolution operator by the iTEBD. We perform

the Trotter decomposition [37] of ¢~ and obtain the prod-
ucts of e 2" where AB := B/(4Nrroter) and Nrroer iS the
number of decomposition. In this study, we adopt the Trotter

decomposition of the second order

NA+B) — A2 hB T2 L o3y, (15)

where we set h = —ApB. We split H = A + B into A and B.
Then, A (B) corresponds to the interactions defined in the odd
(even) bonds, respectively.

Then, we approximate the products of the infinitesimal
time evolution operators in the form of the iMPO by re-
peatedly using the singular value decomposition. In general,
the MPO provides a representation of a many-body operator,
which decomposes it into a one-dimensional sequence of lo-
cally defined tensors. With the bond dimension x, we control

224305-3



NAKAMURA, IYODA, DEGUCHI, AND SAGAWA

PHYSICAL REVIEW B 99, 224305 (2019)

(@)

- 444444

Al AZ A1

B dadsddadrannns

Al AZ

FIG. 1. Schematics of the iTEBD. (a) After the Trotter decom-
position of et , we obtain the two-site translation-invariant iMPO
composed of two tensors {A;, A,} by performing the singular value
decompositions. (b) Transformation of the iMPO into the canonical
form composed of four tensors.

the entanglement in the operator space. By assuming the
translational invariance, the MPO can be applied to an infinite
chain and the extended MPO for that case is referred to as the
iMPO. Figure 1(a) shows the approximation protocol of e
by the iTEBD and the iMPO. By construction of the iTEBD
protocol with the Trotter decomposition, we finally obtain
a translationally invariant iMPO composed of two tensors
{A1, Ay} with the two-site unit cell.

After performing the iTEBD, we transform the iMPO
into the canonical form [30] to calculate the OSEE. As
illustrated in Fig. 1(b), the canonical form for the two-site
translationally invariant case is composed of four tensors
{Aa,» Ta;s Aa,, Ta,}, where I'a, and T'y, are complex-valued
tensors with four indices, and A, and A4, are diagonal matri-
ces with non-negative elements. The definition of the canon-
ical form is explained in Appendix B. Using the canonical
form, we can calculate the Rényi-2 OSEE for the bipartition
A={-00,...,—1,0}and B={1,2,..., o0}

We can also approximate the complex-time evolution oper-
ator U (B, t) in the same manner. In the case of the complex-
time evolution, we first approximate U (8, 0) in the form of the
iMPO. By taking it as the initial state, we execute the iTEBD
for U (0, 1).

We note that the MPO formalism itself does not work very
efficiently for the direct calculation of the OTOC [38]. In our
study, we calculated OSEE by using Eq. (12), which relates
the OSEE and the averaged OTOC.

B. Imaginary-time evolution

We now show our numerical results. Figure 2 shows the
imaginary-time dependence of the Rényi-2 OSEE SgSEE @

for U(B,0) = e~%H. The anisotropy parameters are taken as
A =0.25,0.5,0.75,1, 1.6, 1.8, 2, 3. We note that a similar
calculation of imaginary-time evolution has been performed
for a finite chain [34], while our results are for an infinite chain
in the thermodynamic limit.

In the high-temperature region with small 8, the OSEE
increases monotonically as § increases regardless of the exis-
tence of the gap. However, in the low-temperature region with
large B, the difference between the gapless and gapped re-
gions becomes visible. While the OSEE continues to increase

L ‘ 1 [a=025 ——
: == == A=05 —=—

= - A =075

L = = A b A=1
Vo \ A=16 —=—
g 08 g 4| A=18 —o—
Z 0.6 - f " B A3 e
D : 1) A=3 —=—

04 FUY \_\‘ .
-*

0.2 % ,

0 ! ! ! I
0 4 8 12 16

8

FIG. 2. Imaginary time evolution of the OSEE SOSEE @ for the
operator e~ 1 obtained by the iTEBD. The bond dimension y is 512
and the Trotter decomposition width is A = 0.01. Small anisotropy
parameters A = 0.25, 0.5,0.75, 1 correspond to the gapless region
and large ones A = 1.6, 1.8, 2, 3 correspond to the gapped region.
As the temperature decreases, the difference between these regions
becomes more visible.

monotonically in the gapless region, the OSEE in the gapped
region with 1 < A shows nonmonotonic behavior. This result
implies that the OSEE captures the difference between the
excitation structure near the ground state, which is accessible
if the temperature is sufficiently low.

We discuss the reason why the OSEE in the gapped region
exhibits the nonmonotonic behavior. The XXZ model in the
gapped region has twofold degeneracy in the ground states,
which exhibits Z, symmetry. Let Ey be the eigenenergy of
the ground states and |1/f85) and |1ﬂé5) be the corresponding
eigenvectors. In the gapped region and at sufficiently low
temperature 3> 1, we obtain e P ~ =P (|30 ) (y 3| +
W(l;s) (W(l;s|)~ Thus, the corresponding state vector in the ex-
tended Hilbert space is approximated as

ey = (|‘/st>® [VGs) + [Ves) ® [ves))- - (16)

In our numerical calculation, however, the iMPO obtained
by the iTEBD is two-site translationally invariant, while the
operator e~ is one-site translationally invariant. This im-
plies that the one-site translational invariance is not guaran-
teed and can be broken in our results. In such a case, the
ground-state degeneracy is removed by artificial symmetry
breaking, resulting in an artificial nonmonotonic behavior in
numerical calculations [39]. X

Due to the removal of the degeneracy, |e~#¥) is described
by only one of |wgs> or |1//(1;S). This is the reason why the
OSEE in the gapped region shows the nonmonotonic 8 depen-
dence in Fig. 2. As the temperature decreases, the removal of
the degeneracy becomes more visible, and the OSEE decays
more rapidly. As a special case, if the anisotropy parameter
is very large A > 1, the degenerate ground states are rep-
resented as |Yog) = 144 --) and [Wds) = 4141 --+). In
this case, the OSEE of e ## at 8 > 1 is given by

SOSEE(n)[ R ]
= ISR |yds s ]+ 3SR | wés)vés|] +n2
= SOFEO |yl wds|] + 2, 17)
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FIG. 3. OSEE SOPF@ for ¢~%# with A =3 in Fig. 2 is ex-
tracted. The open black circles represent SSSEE @4 1n2 (72<B)
and the black dashed line represents the average of them. If there
were no artificial symmetry breaking, the OSEE at low temperature
would saturate near the black dashed line.

GOSEE (2)

where we used the fact that the entanglement entropies of the
two ground states are the same to obtain the third line. When
the degeneracy is removed, the OSEE decreases by In 2 in the
above equation, because the OSEE reduces to that of a single
ground state.

Figure 3 shows the inverse-temperature dependence of the
OSEE with A = 3, which is already shown in Fig. 2. The
open black circles depict SSSEE @ 4+ 1n2 at low temperature
(7.2 < B) and the black dashed line shows the average of
them. We see that if Eq. (17) holds approximately, the OSEE
at low temperature saturates near the black dashed line.

C. Real-time evolution

We next consider the real-time evolution of the OSEE. In
the following, we adopt sufficiently high temperatures where
the above-mentioned artificial symmetry breaking does not
occur.

(a) 0.6 i T
A=025 ©
0.5 H A=05 o ® -
A=0.75
A=1 ]
S 041 aAsie .
a A=18 4 =
@ 03 A=2 v N P
= § A
A
: v v v ¥
® v
0.1 A v =
- v
4
0 & 1 | | |
0 0.1 0.2 0.3 0.4

1B

Figure 4(a) shows the real-time dependence of
the OSEE for e i+ ot B =4 and with A =
0.25,0.5,0.75,1,1.6,1.8,2. The OSEE in the gapped
region increases less than that in the gapless region. This
implies that the corresponding averaged OTOC decays faster
in the gapless region.

In the gapless region (A = 0.25, 0.5, 0.75, 1), the averaged
OTOC exhibits the same behavior for the different values of
A. As we will argue in the next subsection, this is because
the XXZ model in the gapless region belongs to the same
universality class with the central charge ¢ = 1. In the gapped
region, the energy gap Eg is written as an increasing function

of At Eg ~4nJ exp(—zx/%) [40,41]. From Fig. 4(a), the
increase of the OSEE is smaller if Eg is larger. This implies
that the decay of the averaged OTOC becomes slower, as the
parameter goes apart from the gapless region and the energy

gap Eg becomes larger.

D. Role of the scale invariance

The numerical result in previous subsections implies that
the system with the scale invariance scrambles fast. We will
further investigate the role of scale invariance.

In the context of the 2D CFT, the Rényi-n OSEE is rep-
resented by a correlation function of the twist operators on a

cylinder. Let Leg = g—; cosh %Tt be the effective length. The

two-point function of the twist operator is given by
(T@)T (W)eyt & L™ (18)

where A, = 5(n— ). The OSEE with the bipartition A =

n
(=00, 0] and B = (0, —o0) is written as SgSEE(")(e’gH) =

= In(T ()T (v))ey, and the Rényi-n OSEE is given by

OSEE (2 : :
Sa @ = 5InLeg +a, where a is a constant. Thus, we

expect that the numerical results (even with different tempera-
tures) of the OSEE are characterized by a single function that
depends only on L if the scale invariance emerges.

Figure 5 shows the effective-length dependence of the

. . B ying
OSEE for the complex-time evolution operator e~ (z+iH

(b)) 1 I
X
09 - s v . -
O |
8 A
E 0.8 N A -
< 5=025 © ® oy
S £=05
Q - -
< %7 a=07s -
A=1 ®
06 A=16 ¢
A=18 &
A=2 v
0.5 I | | |
0 0.1 0.2 0.3 0.4

tB

FIG. 4. (a) Real-time dependence of the OSEE SSSEE @ for the complex-time evolution operator e 4+ for the XXZ model. We
subtracted Sy, which is the value of the OSEE at t = 0. (b) Real-time dependence of the averaged OTOC F s corresponding to the OSEE
by Eq. (9). The vertical axis is normalized by dividing by F sg(0). The bond dimension x is 512 and the Trotter decomposition widths on
the imaginary-time axis and the real-time axis are A = Ar = 0.005. Small anisotropy parameters A = 0.25, 0.5, 0.75, 1 correspond to the
gapless region and large ones A = 1.6, 1.8, 2 correspond to the gapped region. The averaged OTOC F g decays faster in the gapless region.

The averaged OTOCS in the gapless region decay in the same manner.
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0.4

GOSEE (2)

log[(Bv/2m)cosh(2m /)]

FIG. 5. The effective-length dependence of the Rényi-2 OSEE
SOSEE® for the complex-time evolution operator e i i
the gapless region (A = 0.5). The horizontal axis is InLegs =
ln[% cosh(%¢)]. For each of the inverse temperatures g =
2,3,4,5,6, we numerically calculate the real-time evolution by
fixing B. The solid line is obtained by the fitting with the fitting range
[3.4].

in the gapless region (A = 0.5). The horizontal axis is
InLegr = ln[‘g—;“' cosh(%’t)]. We plot the Rényi-2 OSEE at 8 =
2,3,4,5,6. For each parameter, we calculate the effective-
length dependence by fixing the inverse temperature and by
changing the real time. As shown in Fig. 5, the data points
almost collapse onto a single curve, which implies that the
OSEE depends only on the effective length L.g. On the right
side of the figure, however, we find that there are some
deviations. We consider that these deviations are caused by
the fact that the bond dimension x used in our numerical
calculation is not large enough. In Appendix C, we evaluate
the numerical errors from the Trotter decomposition and the
bond dimension, where the numerical errors are sufficiently
small in the range of In Legr < 4.

We fit the numerical data points for 8 =2,3,4,5,6
against the fitting function SgSEE @ - ﬁ In Legs + a, which is
from the 2D CFT with fitting parameters ¢ and a. The fitting
range is taken as In L.y < 4. We expect that the universal
behavior of the correlation function appears when Lgg is
sufficiently large.

We perform the fitting by changing the lower end of
the fitting range within In L. < 4, i.e., for intervals [2.5,4],
[3,4], and [3.5,4]. The results are summarized in Table 1. The
obtained values of ¢ are close to unity, which is consistent with
the fact that the XXZ model with A = 0.5 at low temperature

TABLE I. Fitting results for the OSEE shown in Fig. 5 with a
fitting function SQSEE @ = $InLys +a.

Fitting range c a
[2.5,4] 0.957 £ 0.008 0.571 £ 0.007
[3.4] 0.946 £ 0.016 0.581 + 0.014
[3.5,4] 0.96 + 0.06 0.569 + 0.05

is a quantum critical system described by the 2D CFT with the
central charge ¢ = 1. Thus, we conclude that the numerical
results in the gapless region show universal behavior caused
by the scale invariance.

IV. SUMMARY AND DISCUSSION

We have investigated the relationship between the scale
invariance at quantum criticality and the OTOC for the one-
dimensional antiferromagnetic quantum spin-1,/2 XXZ chain.
Specifically, we have numerically calculated the time evolu-
tion of the OSEE for U (8, ) = e~(i+iDH both in the gapless
region and in the gapped region.

We have shown that the OSEE exhibits qualitatively differ-
ent behaviors in the gapless and the gapped regions as demon-
strated in Fig. 4. In the gapped region, the amount of increase
of the OSEE becomes smaller as the system goes away from
the gapless region, which implies that the decay of the aver-
aged OTOC becomes slower. While these numerical results
are for bipartition of the chain (i.e., A = {—o0,..., —1,0}
and B ={1,2,...,00}), we expect a similar behavior for
general A’, B’ because of inequality Eq. (4). Furthermore, as
shown in Fig. 5, the OSEE for U (8, t) in the gapless region at
low temperature exhibits the similar behavior as that derived
by the 2D CFT analytically, which is consistent with the fact
that the 2D CFT is an effective theory of the XXZ model.

In this study, we have performed numerical simulations in
the range of A > 0. We argue that the averaged OTOC in
—1 < A < 0 behaves similarly to thatin 0 < A < 1, because
the low-energy physics is effectively described by the 2D CFT
of ¢ = 1 in all of the gapless regime —1 < A < 1 [21,27]. In
A < —1, on the other hand, it is known that the low-energy
excitation above the ground state is gapped, where magnon
bound states appear [42]. Since the propagation velocity of
free magnons is faster than that of magnon bound states, the
decay of the OTOC in the early-time regime with A < —1
is dominated by the contribution of free magnons and thus
similar to that in the gapped region A > 1.

On the basis of our numerical results, we have concluded
that the scale invariance (or quantum criticality) is important
for the fast decay of the OTOC. On the other hand, we
did not observe that the OTOC in the XXZ model exhibits
the exponential decay and saturates the MSS bound [7], in
contrast to the SYK model [13] and the 2D CFT [17]. This
is consistent with previous results [7], because the saturation
of the MSS bound would come from the semiclassical limit
such as the large central charge limit ¢ > 1 of the 2D CFT,
while this limit cannot be taken in our setup of the XXZ spin
chain. Investigating whether the MSS bound can be saturated
in a spin model with local interactions is a future issue. The
quantum simulator can experimentally address this problem
with ultracold atoms [43] and superconducting qubits [44].
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APPENDIX A: INEQUALITY FOR OTOC

In this Appendix, we prove inequality (4). We first discuss
the representation of the OTOC in the operator space [26].
By using the notation of Eq. (5), we write the inner product
between operators O, and Og as

(Oal0p) = [0} Og]. (A1)
Also, the product O, Og can be written as the following state:
0408) = 0a ®1108) =1 ® O3|04).  (A2)

With the above notations, we represent the regularized

OTOC. We now assume that O, and Og are Hermitian. We
define the Heisenberg representation of Og for the complex-

time evolution as Og(B8, 1) := e’(g’”)HOABe’(g“’)ﬁ/\/Z The
OTOC is then written as
F(t) = tr[Og(B.1)OaOB(B. 1)04]
= (0A0g(B.1)|08(B.1)04)
= (0Al0g(B.1) ® Op(B,1)*|04). (A3)
J

Using the cyclic property of the trace, we also obtain

F(t) = r[Os0g(B, )05 05 (B, 1)]
= (Op(B,1)05|0A08(B, 1))
= (O(B,1)|0r ® O%|0s(B, 1)).

‘We now prove inequality (4). A subsystem of A is denoted
as A’. A basis operator O can be decomposed into a basis
operator of the subsystem A’ and that of A \ A’ as

(A4)

O = OA\A/OA/, [OA\A/’ O] =0.

With this decomposition, we obtain [26]
tw[Os(B, 1)OAO08 (B, 1)0a]
= w[Os(B,1)0On Os(B,1)0n]

+ 1tr{Oa[Oaar. OB (B, )10A[Oa\a', OB (B, D]}
(A5)

We then calculate the OTOC for the subsystems A and B as

Fap(t) = tr[Op (B, 1)0x Op(B, 1)Oa] + 3tr{Oa [Oa\a', O (B, 1)10A[Oa\a', O (B, 1)1}
= Fap(t) — 2tr{O04[0a\s', Os(B. )70 [0a\ar, Os(B. )]}
= FpyB(t) — %([OA\A’, OB(ﬂ, f)]OA’|0A'[0A\A/, OB(ﬂ, )

= Fap(t) — 2{[0an. Os(B.D)1|0x ® 0% 1[Oa\ar, Op(B. 1)]).

Finally, we take the average over the basis operator O, in
the subsystem A’ with Oa\a’ being fixed, and obtain

A A 1 . .
> On® 04 = o1l
OAIEPA/

(A7)

where [y is the identity operator for the subsystem A’. By
taking this average, the second term on the right-hand side
of Eq. (A6) can be regarded as the expectation value of a
reduced density operator par = zi |ia/) (Is/| with a state vector

|[OA\A/, OB(ﬂ, t)]). Since the reduced density operator is
positive semidefinite, this term should be non-negative. Thus,

we obtain
Y Fa()< ) Fap(0)

OnePy Op €PN

(A8)

By taking the average over Op (B,t) and OA\A/, we obtain the
following inequality for the averaged OTOC:

Fap(t) < Fap(®).

By the decomposition of the subsystem B, we can perform the
same procedure and finally obtain Eq. (4).

(A9)

APPENDIX B: CANONICAL FORM OF IMPO

In parallel to the canonical form of iMPS defined in
Ref. [30], we define the canonical form of the iMPO in
the following. For simplicity, we consider a one-dimensional
lattice system composed of d-level local systems. We can

(A6)

(

define the iMPO with the single-site translational invariance
symmetry by two tensors {I", A}, where I" is a complex-valued
tensor with four indices and X is a real-valued tensor with a
single index. The elements of these tensors are represented
by I';j;, and 1 is represented as a diagonal matrix with non-
negative elements X,. While the indices o and B represent
virtual degrees of freedom (virtual bond indices) and run
within 1, ..., x, the indices i and j represent physical degrees
of freedom (physical bond indices) and run within 1, ..., d.

In order to define the canonical form, we introduce the
following tensors R and L:

Rearpr =, (Taprs)(Taphp)", (BI)

i=1,j=1

Liarppr =y, (haliy) (e Tilp)"
i=1, j=1

(B2)

The condition for the iMPO {I", A} to be the canonical form is
written as

ZR(aa'),(ﬁﬁf)5ﬁﬁ' = Néaa (B3)
B.B
Y SuaLaan i) = ndpp- (B4
a,a’

With the canonical form, the Rényi-n OSEE for the bipar-
tition A = {—o0,...,—1,0} and B ={1,2, ..., 00} can be
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FIG. 6. Imaginary-time evolution of the OSEE with AS =
0.04, 0.02, 0.01, 0.005. The bond dimension is taken as x = 512.
The upper figure is for the gapless region A = 0.5 and the lower
one is for the gapped region A = 3.
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FIG. 7. Imaginary-time evolution of the OSEE with x =
256, 384, 512. The width in the Trotter decomposition is taken as
ApB = 0.01. The upper figure is for the gapless region A = 0.5 and
the lower one is for the gapped region A = 3.
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0.02,0.01, 0.005,0.0025. The inverse temperature is S =4
and the bond dimension is x = 512. The upper panel is for the
gapless region A = 0.5 and the lower one is for the gapped region
A=2.

calculated as
X

SO =y (32)" (B5)

a=1

APPENDIX C: NUMERICAL ERROR

In this Appendix, we discuss numerical errors in our calcu-
lation. We show that the errors from the Trotter decomposition
and the bond dimensions are sufficiently small.

1. Imaginary-time evolution

Figure 6 shows the dependence on the width in the Trotter
decomposition of the imaginary-time evolution of the OSEE
in the gapless region A = 0.5 and the gapped region A = 3.
The width in the Trotter decomposition is taken as AB =
0.04,0.02,0.01, 0.005 and the bond dimension is fixed as
x = 512.
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FIG. 9. Real-time evolution of the OSEE with x =
256, 384,512. The inverse temperature is 8 =4 and the width
in the Trotter decomposition is At = 0.005. The upper panel is for
the gapless region A = 0.5 and the lower one is for the gapped
region A = 2.

In the gapless region, the numerical errors from the Trotter
decomposition are smaller than the point size. We estimate
the numerical errors ASOSEE quantitatively from the differ-
ence between the maximum and minimum values for A =
0.04,0.02, 0.01, 0.005. We find that ASOSEE ~ 0.008 at g =
8 and ASOSEE ~ 0.01 at B = 15.2.

In the gapped region, while the numerical errors from the
Trotter decomposition are smaller than the point size in the
high-temperature region with small $, they are not as small in
the low-temperature region with large 8. We consider that this
error in the low-temperature region comes from the artificial
symmetry breaking in the ground state, which is discussed
in Sec. III B. In the high-temperature region, we estimate the
error of the OSEE in the same manner as the gapless region
and we obtain ASOSEE ~ 0.001 at 8 = 4.

Figure 7 shows the x dependence of the imaginary-time
evolution of the OSEE in the gapless region A = (0.5 and the

2.8 I I I T T T T

2.6 HX =256 ° —
24 HX=384 - _
22 H X =512 4 _

1.8
1.6 -
14 —
1.2 -

GOSEE (2)
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0.6 - »°
0.4

log[(Bv/2m)cosh(2m 1/B3)]

FIG. 10. The In L. dependence of the OSEE of the complex-
time evolution operator e G+ i the gapless region A = 0.5 with
x = 256,384, 512.

gapped region A = 3. The bond dimension is taken as x =
256, 384, 512 and the width in the Trotter decomposition is
fixedto A = 0.01.

In the gapless region, the numerical errors from the bond
dimensions are smaller than the point size. We estimate the
numerical errors ASOSEE in the same manner as the case of
the Trotter decomposition. We find that ASOSEE ~ 0.009 at
B = 8 and ASOSEE ~ 0.006 at B = 15.2.

In the gapped region, while the numerical errors from the
bond dimensions are smaller than the point size in the high-
temperature region, they are not small in the low-temperature
region. This behavior is due to the artificial symmetry break-
ing in the ground state. We estimate the error of the OSEE and
obtain ASOSEE ~ 0.006 at 8 = 4.

2. Real-time evolution

When we calculate the real-time evolution at finite temper-

ature, we first calculate U (8, 0) = el by the imaginary-

time evolution and then calculate the real-time evolution to
obtain U (B, t) = e~(4+ The width for the imaginary-time
evolution is fixed as AB = 0.005 and the inverse temper-
ature is B = 4. Figure 8 shows the real-time evolution of
the OSEE with the width in the Trotter decomposition At =
0.02, 0.01, 0.005, 0.0025. We fix the bond dimension as y =
512.

In the gapless region, the numerical errors from the Trotter
decomposition are smaller than the point size. The numerical
errors of the OSEE ASOSEE are estimated as ASOSEE ~ 0.006
att/B = 0.2 and ASOSEE ~ 0.006 at /8 = 0.4.

In the gapped region, though the numerical errors from the
Trotter decomposition are not smaller than the point size, we
have the result that the averaged OTOC decays faster in the
gapless region than in the gapped region. The numerical errors
are estimated as ASOSEE ~ 0.004 at7/8 = 0.2 and ASOSEE ~
0.01 at¢/B8 = 0.4. When we consider SOSEE ™ — S where S
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FIG. 11. The In L dependence of the OSEE of the complex-
time evolution operator e B+ in the gapless region A = 0.5 with
x = 256. The solid line represents the fitting result corresponding to
the fitting range [3,4] in Table II.

is the OSEE at t = 0, the difference between the OSEEs in
the gapless and the gapped regions is approximately 0.08 at
t/B = 0.2 and 0.34 at ¢t/ = 0.4. The numerical errors of the
OSEE from the Trotter decomposition are sufficiently smaller
than the changes of SOSEE (™ — S for our discussion.

Figure 9 shows the real-time evolution of the OSEE with
X = 256, 384, 512. We fix the width in the Trotter decompo-
sition as At = 0.005.

In the gapless region, the numerical errors from the bond
dimensions are smaller than the point size. We estimate the
numerical errors AS9SEE and find that ASOSEE ~ 0.006 at
t/B = 0.2 and ASOSEE ~ 0.006 at /8 = 0.4.
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§OSEE (2)

log[(Bv/2m)cosh(2mt/B)]

FIG. 12. The In L. dependence of the OSEE of the complex-
time evolution operator e #+i0 in the gapless region A = 0.5 with
x = 384. The solid line represents the fitting result corresponding to

the fitting range [3,4] in Table III.

TABLE II. Fitting results for the OSEE with a fitting function
SPFE® = S1n Ly + a with x = 256.

Fitting range c a
[2.5,4] 0.939 £0.016 0.584 £0.013
[3.4] 0.90 £0.04 0.62 £0.03
[3.5.4] 0.89 £0.10 0.62+0.10

In the gapped region, though the numerical errors from
the bond dimensions are not smaller than the point size, the
result does not change because the errors are sufficiently
smaller than the change of the OSEE. The numerical errors
are estimated as ASOSEE ~ 0.008 at7/8 = 0.2 and ASOSEE ~
0.03 at t/B = 0.4. The difference between SOSEE™ _ S in
the gapless and the gapped regions is approximately 0.08 at
t/B =0.2 and 0.34 at t /B = 0.4. Thus, the numerical errors
of the OSEE from the bond dimensions do not affect our
conclusion.

3. Role of scale invariance

We calculate the real-time evolution of the Rényi-2 OSEE
with x = 256,384,512; AB =0.005; and Ar = 0.005.
Figure 10 shows the dependence of the OSEE on the effective
length L.t = 52 cosh %Tt. Each data series corresponds to the
same x and contains data with different temperatures g =
2,3,4,5, 6. When the effective length is sufficiently large as
In L ~ 4, the numerical errors from the bond dimensions
become larger than the point size.

Figures 11 and 12 show the In L = ln[% cosh(%’t)] de-
pendence of the Rényi-2 OSEE of the complex-time evolution

operator e~ i+ with y = 256, 384. We obtain the data by
calculating real-time evolution with fixing B for each g =
2,3,4,5,6. For each bond dimension, we fit the numerical
data of all B’s with a fitting function SSSEE @ — gInLe + a,
which comes from the 2D CFT. The fitting variables are ¢
and a. We adopt three fitting ranges [2.5,4], [3,4], and [3.5,4],
where the numerical errors from the bond dimensions are
sufficiently small. Tables II and III show the results of the
fitting for x = 256 and 384, respectively. The obtained value
of ¢ is close to unity, which is consistent with the fact that the
XXZ model with A = 0.5 at low temperature is a quantum
critical system effectively described by the 2D CFT.

TABLE III. Fitting results for the OSEE with a fitting function
SOPE® = ¢ In L + a and x = 384.

Fitting range c a
[2.5.4] 0.969 £0.014 0.5663 £0.011
[3.4] 0.94 +0.03 0.59 +£0.02
[3.5.4] 0.90 £0.08 0.63 £0.07
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