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The mixed quantum-classical nonadiabatic molecular dynamics (NAMD) is a powerful tool to study many
phenomena, especially ultrafast carrier transport and cooling. Carrier decoherence and detailed balance are two
major issues in NAMD. So far, there is no computationally inexpensive approach to incorporate both effects.
While the decoherence effect can be easily included in the state density matrix formalism and the detailed balance
can be included in surface hopping or the wave function collapse approach, it is difficult to include both of them
in a unified formalism. In this work we introduce a state density matrix formalism (referred to as P-matrix)
including both the decoherence and detailed balance effects for NAMD. This method is able to explicitly treat
the decoherence between different pairs of adiabatic states. Moreover, the off-diagonal density matrix elements
are divided into two parts, corresponding to energy-increasing and energy-decreasing transitions. The detailed
balance is then enforced by a Boltzmann factor applied to the energy-increasing transition part. The P-matrix
formalism is applied to study hot-hole cooling and transfer processes in Si quantum dot (QD) systems. The
calculated hot-carrier relaxation time is consistent with experiments. In a QD-pair system, the hot-hole cooling
time shows weak dependence on the QD spacing. However, the hot-carrier transfer rate from one QD to another
is found to decrease exponentially with the QD-QD distance. When the QD spacing is small (∼1 nm), the
hot-carrier transfer can be very efficient. It is also shown that the explicit treatment of decoherence time is
important in order to treat this hot-carrier transfer correctly.
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I. INTRODUCTION

Nonadiabatic molecular dynamics (NAMD) simulation
[1,2] is a widely used approach to study carrier dynamic
processes involving excited states, such as charge relaxation
[3–5], recombination [6], and transport [7–10]. NAMD simu-
lation is often carried out in a mixed quantum-classic (MQC)
fashion, in which the electron degree of freedom is de-
scribed quantum mechanically following the time-dependent
Schrödinger equation (TDSE), whereas nuclear movement
is treated classically following Newton’s second law. There
are many MQC algorithms. In principle one can also con-
sider the dynamics of the whole open system, namely, the
quantum subsystem coupled with the environment. This leads
to the quantum-classical Liouville equation and generalized
quantum master equation approaches [11–16]. Despite their
rigor, their implementation could be complicated. Mean-field
Ehrenfest dynamics (MFE) [17–20] and fewest switches sur-
face hopping (FSSH) [21–23] are two simpler and more
widely used algorithms. In the MFE, the nuclear movement
follows the average atomic force provided by all the electron
states solved by TDSE. There is no branching either for
the electron wave function or for the nuclear trajectory, and
the electron wave function is always described by a single
coherent electron state (a many-electron state), instead of by
an ensemble of states. In the FSSH approaches, the nuclei
move along one adiabatic energy surface and stochastically
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hop to other surfaces, and the hopping rate is determined by
an auxiliary wave function following the TDSE.

Due to the inconsistencies between quantum and classical
mechanics in MQC-NAMD, there could be several issues
[24]. One difficulty is to maintain the detailed balance, i.e.,
to reproduce the Boltzmann quantum state population in the
long-time thermal equilibrium. It is well known that the MFE
lacks detailed balance [7,25,26], leading to overheating of the
electronic subsystem. The reason is that MFE is based on the
electronic wave function alone, which does not include either
the quantum-mechanical wave function of the phonon or any
electronic coupling to an outside open system. This limits the
capability of MFE in the study of equilibrium properties and
energy relaxation processes. Detailed balance can be forced
in MFE by introducing symmetrical coupling matrix elements
with quantum corrections [27], but by doing so, the transition
probabilities obtained from the TDSE are changed. Another
possible solution is to include both zero-point electronic
energy and windowing on top of MFE [28], but it suffers
from numerical instabilities [29]. On the other hand, although
surface hopping does not satisfy detailed balance rigorously,
the energy conservation requirement during the hopping by
rescaling the relevant nuclei kinetic energy provides the de-
tailed balance in an empirical and approximate way [30].
Unfortunately, the original surface-hopping algorithm does
not have the proper decoherence.

Decoherence is another quantum-mechanical phenomenon
caused by the separation of nuclear wave functions for differ-
ent electronic states (or, say, potential energy surfaces). It de-
scribes the phenomenon in which an original single-electron
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state breaks down into many components which lose the abil-
ity to interfere with each other. More specifically, the system
at t = 0 can be described as �(r, 0)�(R, 0), where �(r, 0)
is the electron wave function and �(R, 0) is the nuclear wave
function. At time t , the wave function will be evolved into∑

i φi(r, t )�i(R, t ) (φi is an electronic adiabatic state). Due to
the separation of nuclear wave functions, 〈�i(R, t )|� j (R, t )〉
decays with time, and the interference between φi and φ j also
vanishes. If 〈�i(R, t )|� j (R, t )〉 becomes zero for i �= j, then
φi(r, t ) and φ j (r, t ) become decoherent (the dot product for
most physical operators between these two states becomes
zero). As a result, from the electron wave function point of
view, different φi(r, t ) can be described as an ensemble of
wave functions, e.g., the wave function has “collapsed.”

In their original forms, the separation of nuclear wave
functions is not included in MFE and FSSH; hence, the wave
functions are fully coherent. Many empirical approaches have
been proposed to introduce decoherence correction in MFE
and FSSH. For example, one method is to include a coherence
penalty functional that accounts for decoherence effects on
the Hamiltonian in MFE [31]. Moreover, decay-of-mixing
approaches have been developed for both MFE and FSSH
[32,33], in which the coefficients of the wave functions are
modified using a decoherence time after the evolution of
TDSE at each time step. Another set of popular approaches
to describe decoherence is the explicit wave function collapse
scheme, for example, the instantaneous decoherence [34],
augmented fewest switches surface hopping [35],
decoherence-induced surface hopping (DISH) [36], and
mean-field dynamics with stochastic decoherence [37]. In
these algorithms, the wave function will be decomposed into
several adiabatic states �(r, t ) = ∑

i φi(r, t ). Then it will
stochastically choose an adiabatic state φi(r, t ) to be broken
away from the rest of �(r, t ), and one will then continue
the simulation either with φi(r, t ) or with �(r, t ) − φi(r, t ).
Much like in the surface-hopping algorithm, the energy
conservation requirement during the collapse restores the
detailed balance. Such wave function collapse approaches
have been used to study many interesting problems [38–42].
However, there could still be potential issues. The probability
of collapsing for � = φi + φ j + φk depends on the average
coherence time between each adiabatic state and the rest
of the adiabatic states. But this is hardly satisfactory. For
example, φk can have a short coherence time with φi but
a long coherence time with φ j . Thus, breaking φk away
from the rest of the wave functions would be a disservice
to the coherence between φk and φ j . More deeply, this
means the system cannot already be described by a single
electronic wave function at any given time without including
the phonon wave function in an entangled manner. It is
simple to solve this issue in a density matrix formalism,
where the off-diagonal terms Di j , Dik , and Djk all decay
differently following their own coherent time. However, to
take into account the detailed balance, so far one has to adopt
a stochastic solution like surface hopping, as discussed above.
In contrast, MFE is deterministic, so only one trajectory is
needed; hence, it is computationally efficient. Unfortunately,
there is not yet a method to incorporate both decoherence
and detailed balance in a unified deterministic density matrix
formalism.

For the original MFE and FSSH, the effect of the wave
function evolution to the nuclear movement is explicitly
included. Such “back reaction” is necessary for small systems
like molecules and cases where the trajectory of the nuclei is
the main concern (e.g., in a chemical reaction with branching).
But MFE and FSSH can also be combined with the neglect of
the back-reaction approximation (NBRA) [43], in which the
back reaction is explicitly ignored (but may be implicitly in-
cluded by correction terms), and one just takes an average nu-
clear trajectory, e.g., from the conventional ground-state Born-
Oppenheimer molecular dynamics (BO-MD). This is a good
approximation for many large systems in which the nuclear
movement will not be dramatically altered by a single hot-
electron wave function, and the focus of the study is not on the
nuclear movement but on the electron dynamics, like the case
for hot-carrier cooling or transfer in a quantum dot, bulk, sur-
face, or large molecule. The NBRA brings considerable com-
putational savings since the trajectory can be precalculated
using normal MD before doing the electronic dynamics. The
NBRA has made it possible to calculate electron dynamics
for systems with several hundred atoms at the first-principles
density functional theory (DFT) level. Thus, to achieve an
efficient and accurate NAMD simulation, it is highly desirable
to develop density matrix MFE formalism under NBRA and
include both decoherence and detailed balance.

In this work, we will use the NBRA since the focus
of our study is the carrier dynamics. We will modify the
conventional density matrix approach, so it can incorporate
the detailed balance element in the formalism. Including this
effect allows us to study carrier cooling and charge transfer,
which are among the most interesting topics under NBRA and
for large systems. The resulting approach takes the output of
a conventional BO-MD (e.g., under DFT) and calculates the
NAMD as a postprocess. We will then apply this formalism
(referred to as P-matrix) to study the hot-carrier relaxation
and transfer in Si quantum dots (QDs). Although our P-matrix
formalism describes an ensemble of the carrier dynamics, it
does not carry out the calculation using explicit stochastic
process like in surface hopping or the wave function collapse
approach. As a result, it is computationally efficient.

II. METHOD

In the NAMD approach, the single-particle state ψl (t ),
which satisfies the TDSE, is usually expanded by the adiabatic
eigenstates φi(t ), namely,

i
∂ψl (t )

∂t
= H (t )ψl (t ), (1)

ψl (t ) =
∑

i

Cl
i (t )φi(t ), (2)

H (t )φi(t ) = εi(t )φi(t ). (3)

Here H (t ) is the single-electron Hamiltonian, which under
NBRA depends on only the nuclear position R(t ). In the den-
sity matrix formalism, the density matrix Di j (t ) can represent
an ensemble of single-particle states {ψl ,wl}. Here wl is the
statistical weight of ψl . Using φi(t ) as the basis, we have

Di j (t ) =
∑

l

wl (t )Cl
i (t )Cl

j (t )∗, (4)
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with Di j (t ) = Dji(t )∗ and Dii(t ) � 0. It is easy to show that
the time evolution of Di j (t ) satisfies the following equation
[44]:

∂

∂t
Di j (t ) = −i

∑
k

[Vik (t )Dk j (t ) − Dik (t )Vk j (t )]

= −i[V, D]i j, (5)

with

Vi j (t ) = δi jεi(t ) − i

〈
φi(t )

∣∣∣∣∂φ j (t )

∂t

〉
. (6)

The off-diagonal term in Di j (t ) represents coherent cou-
pling between adiabatic states φi and φ j . A straightforward
approach commonly used to include the decoherence phe-
nomenon is to introduce a decay term into Eq. (5) [21,45]:

∂

∂t
Di j (t ) = −i[V, D]i j − (1 − δi j )

Di j (t )

τi j (t )
, (7)

where τi j is the pairwise decoherence time. τi j can be cal-
culated either in advance or on the fly. Here it enters only
as a parameter. In principle, any method for calculating τi j

can be used. By approximating the nuclear wave function as a
product of frozen Gaussian wave packets, Wong and Rossky
proposed an instantaneous decoherence time as [45]

τi j (t ) =
[∑

n

1

2anh̄2

[
Fn

i (t ) − Fn
j (t )

]2

]-1/2

. (8)

Here an is the width of the Gaussian wave packets for nuclei,
Fn

i is the Hellmann-Feynman force from state i, and n runs
over all phonon modes. Based on Eq. (8) and under the ther-
mal equilibrium approximation, we have derived a simplified
expression of τi j (see Ref. [44] for details):

τi j (t ) =
√

24(kBT )2〈∣∣ ∂
∂t [̃εi(t, t ′) − ε̃ j (t, t ′)]

∣∣2〉
t ′

, (9)

where the brackets 〈·〉t ′ indicate the average over t ′ < t ,
ε̃i(t, t ′) = 〈φi(t )|H (t ′)|φi(t )〉, and T is the temperature. Our
tests show that Eqs. (9) and (8) give the same magnitude
of τi j (Fig. S1 in Ref. [44]). Equation (9) simply uses the
adiabatic state eigenenergy from the BO-MD simulation to
calculate the decoherence time between φi and φ j and thus
is suitable for NBRA. However, unlike Eq. (8), which is
an instantaneous formula at time t , Eq. (9) requires a time
average with t ′. To avoid the situation where the index of i
changes with time for the same characteristic adiabatic state
φi (e.g., due to state crossing), we have used φi(t ) to calculate
the expectation value of H (t ′) to define ε̃i(t, t ′). As shown in
Ref. [44], this ε̃i(t, t ′) can also be calculated from the BO-MD
output.

Besides the quantum decoherence, the other major issue of
Eq. (5) under NBRA is the lack of detailed balance. Here we
propose a correction to this problem. To restore the detailed
balance between the i to j transition and j to i transition,
one can multiply the probability for the energy-increasing
transition by the Boltzmann factor exp(− 
E

kBT ), similar to the
FSSH and DISH under the NBRA limit. Therefore, to correct
Eq. (5), the key point is to distinguish the energy-increasing

and energy-decreasing transitions in the density matrix for-
malism. The off-diagonal term Di j and its corresponding
term VjiDi j in Eq. (5) describe the occupied state transition
between states i and j. Unfortunately, this single Di j = D∗

ji
term includes both the transitions from i to j and from j
to i. Our key observation is that we can break it into two
terms: Di j = Pi j + P∗

ji, with Pi j �= P∗
ji, and Pi j describes the

pumping from state j to i. More specifically, we have their
time evolution equations:

∂

∂t
Pi j = −i[V, P]i j − iVi j (Pii + P∗

j j ) (i �= j), (10)

∂

∂t
Pii = −i[V, P]ii. (11)

Keeping in mind that Vi j = V ∗
ji , one can show that Eqs. (10)

and (11) can reproduce the original Eq. (5). Note in the above
formula the imaginary part of the diagonal term Pii does not
play any role. So we can always enforce Pii to be a real
number; then Dii = 2Pii. To understand Eq. (10), we can focus
on the terms involving only i and j states on the right side;
then it becomes ∂Pi j/∂t = −i(εi − ε j )Pi j − iVi jD j j , where
the first term is a simple phase evolution term and the second
term is obviously the term which pumps the charge from
state j to state i. The charge change in state i is described
by Eq. (11): ∂Dii/∂t = −2Re(iVi jPji ) + 2Re(iPi jVji ) (the Re
comes from the fact we keep only the real part of Pii),
where the first term represents the loss of charge due to the
pumping from i to j and the second term represents the
increase of charge due to the pumping from j to i. Having
distinguished the pumping from i to j and from j to i, we can
now introduce an empirical constraint to force the detailed
balance. If transition from i to j increases the energy, e.g.,
εi < ε j for electrons (or εi > ε j for holes), we then multiply
Re(iPjiVi j ) by a Boltzmann factor exp(− 
E

kBT ) so that the i
to j transition is suppressed. Meanwhile the Re(iPi jVji ) term
will be kept unchanged. Similarly, if the j to i transition
increases the energy, the Boltzmann factor should be applied
to Re(iPi jVji ). This is much like the FSSH or wave function
collapse scheme, where if the hopping (or collapsing) causes
an electron energy decrease, the event is always allowed. But
if it causes an electron energy increase 
E , then it depends
on the corresponding phonon transition degree of freedom.
If this phonon degree of freedom has a kinetic energy larger
than 
E , then this process is allowed, and the kinetic energy
will be rescaled. If the kinetic energy is less than 
E , then
this stochastic event will be abandoned. Since the probability
for this phonon degree of freedom to have energy larger
than 
E is exp(− 
E

kBT ) (assuming a thermal equilibrium), the
allowing probability (for this event to happen) should also be
proportional to exp(− 
E

kBT ). This is exactly the requirement for
detailed balance. To put everything together, we finally have

∂

∂t
Pi j = −i[V, P]i j − iVi j (Pii + P∗

j j ) − Pi j

τi j
(i �= j), (12)

∂

∂t
Pii = −Re(i[V, P]ii )

+
∑

j

Re(iPi jVji ) f (
εi j )

[
exp

(−|
εi j |
kBT

)
− 1

]
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−
∑

j

Re(iPjiVi j )[1 − f (
εi j )]

×
[

exp

(−|
εi j |
kBT

)
− 1

]
, (13)

in which 
εi j = εi − ε j and f (x) = 1(0) for x > 0 and
f (x) = 0(1) for x < 0 for an electron (hole).

To carry out Eqs. (12) and (13), the only thing needed is
Vi j (t ) from Eq. (6). This can be obtained from the conven-
tional BO-MD simulation. In the BO-MD, as implemented in
the DFT plane-wave pseudopotential code PWMAT [46,47], the
overlap matrix 〈φi(t − 
t )|φ j (t )〉 between two consecutive
steps t − 
t and t is output for every time step t along with
the eigenenergy εi(t ). Here, typically, 
t is about 1–2 fs. A
fixed number of adiabatic states is used in Eq. (2), e.g., 40 for
the example studied below. This is the only place where the
calculation might be slightly more expensive than the usual
BO-MD simulation since one might need more unoccupied
states. This information can then be used to construct a
linear interpolating Hamiltonian from t − 
t to t [7,20]. This
Hamiltonian will be used to integrate Eqs. (12) and (13) from
t − 
t to t with a much smaller time step (e.g., as small as
10−5 fs). Since this is a small-dimension Hamiltonian, the
integration is fast. The technical details of the integration are
given in Ref. [44]. Overall, this postprocess NAMD simula-
tion does not take much time compared to the original BO-
MD simulation. Note for pure FSSH with NBRA but without
decoherence, the computational cost is similar to that of our
method because in this case the solution of the TDSE [Eq. (5)]
is independent of the hopping events; thus, many surface-
hopping trajectories can be calculated with the TDSE solved
only once. However, unlike the pure FSSH-NBRA, when
decoherence is included via wave function collapse (like in
the DISH method), the integration of the TDSE is required for
each stochastic realization of the surface-hopping trajectory
because the wave function collapse will affect the solution of
TDSE. The cost of solving the TDSE increases linearly with
the number of realizations of the stochastic process, which can
become an issue, as discussed in Ref. [48].

III. SIMULATIONS AND RESULTS

In the following we apply the above method (referred to
as the P-matrix method) to investigate the hot-hole relaxation
process in silicon quantum dot systems. Density functional
calculations were preformed using PWMAT [46,47], a GPU-
based code with a plane-wave basis. The plane-wave cutoff
energy is 30 Ry. Test calculations show that this cutoff is
sufficient to obtain converged eigenenergies, nonadiabatic
coupling coefficients, and forces [44]. Molecular dynamics
(MD) simulations were performed at ∼300 K under the NVE
ensemble with the Verlet algorithm. The time step for MD is
1 fs. About 40 states are used in the valence band to expand
the hot-carrier wave function in Eq. (2). The norm-conserving
pseudopotentials [49] and the local-density approximation
(LDA) functional [50] are adopted. Although our formalism
can be equally applied to different functionals, e.g., LDA or
Heyd-Scuseria-Ernzerhof hybrid functional (HSE), in actual
simulations, the choice of the functional should be considered

carefully. For example, a previous study shows LDA and
HSE give very different nonadiabatic couplings for Si7 and
Si26 clusters [51]. One possible reason is that these systems
are not passivated, so there are many highly localized states
induced by the dangling bonds. In such cases the LDA will
predict much more delocalized states compared to the HSE
results. On the other hand, Ref. [51] also showed that for
well-passivated systems like SiH4 and Si2H6, the difference
between the LDA and HSE results are quite small because the
wave function localization in these systems is provided by the
spatial confinement of the QD. Our current fully passivated
Si QD belongs to the latter case; thus, LDA should be good
enough.

We first look at the single silicon QD, as shown in
Fig. 1(a). The constructed QD contains 87 Si atoms, and the
surface is passivated by H atoms. At t = 0, a hot hole is
excited to 0.66 eV below valence band maximum (VBM).
The population-weighted average energy Eave of the hot hole
is calculated for t > 0 to study the hot-hole cooling pro-
cess using P-matrix. For comparison, we also used Eq. (5)
(TDSE-NBRA) and the modified Ehrenfest (ME) algorithm
in Ref. [7]. The TDSE-NBRA does not include either the
decoherence effect or the detailed balance. The ME method
is similar to the FSSH under the NBRA approximation. It has
the detailed balance correction (DBC), but the decoherence is
missing. In ME, the Boltzmann factor is applied in the TDSE
to the charge transfer rate between states i and j at every
instant of t . This is unlike the P-matrix formalism, where
the Boltzmann factor is applied to Pi j in Eq. (13), which is
a time-accumulated quantity (see Eq. (24) in Ref. [44]). In
Fig. 1(a) it can be seen that, due to the lack of DBC in the
TDSE-NBRA, the hot hole stays around 0.6 eV below the
VBM and does not cool down. In contrast, the calculated
Eave from both ME and P-matrix show clear hot-hole cooling
behavior. However, the cooling rates are quite different. The
hot-hole relaxation time Tr is calculated by fitting the excess
energy 
E (t ), defined as 
E (t ) = EVBM(t ) − Eave(t ), into an
exponential decay function Aexp(−t/Tr ). The results are pre-
sented in Fig. 1(b). ME gives a Tr of 62 fs, whereas P-matrix
gives 195 fs. Test calculations for a larger QD with 175 Si
atoms were also performed, and the fitted Tr is 248 fs from
the P-matrix method (see Fig. S6 in Ref. [44]). Thus, further
increasing the size will not induce an order-of-magnitude
change in Tr . In experiment, the hot-carrier relaxation time of
Si is determined to be 240–260 fs [52,53]. Other theoretical
calculations also suggest that in Si nanostructures the carrier
cools down in a few hundred femtoseconds [54,55]. These
results are consistent with our P-matrix result. The reason for
the overestimation of the decay rate by ME is the following.
In the perturbation treatment of the quantum-mechanical tran-
sition between two states i and j, the energy conservation is
required through Fermi’s golden rule. When this requirement
is satisfied (through another phonon mode energy), the charge
transfer from state i to j will accumulate linearly. On the
other hand, when this conservation is not satisfied, the charge
transfer oscillates as a sinusoidal function (thus, the averaged
transition rate is zero). In the ME (or FSSH treatment for this
matter), this charge transfer is treated instantaneously at every
time t . For the case of carrier cooling, if i to j charge transfer
decreases the energy, every time it is positive, it is accepted
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(a) (b) (c)

FIG. 1. (a) The population-weighted average energy (colored lines) of the hot hole calculated by the P-matrix, ME, and ED, as well as the
adiabatic eigenenergies (gray lines). The inset shows the structure of the Si quantum dot. (b) The excess energy calculated by P-matrix and
ME. Dashed lines are exponential decay fitting. (c) The hot-hole cooling rates calculated by fixing the decoherence time τ at different values
using the P-matrix method. The dashed line indicates the result obtained using explicit τ .

100%. However, for negative transfer, it is suppressed by the
Boltzmann factor. This leads to a large net charge transfer
even when the energy conservation is not satisfied. This
problem is avoided in our P-matrix algorithm. As we show in
Ref. [44], in P-matrix, if one ignores the indirect i → k → j
transition, the transition between i and j does satisfy Fermi’s
golden rule but with a broadening of the δ function by the
dephasing time 1/τi j . In addition, our test calculations using
a three-level model system show that the P-matrix method is
able to reproduce the Boltzmann distribution at equilibrium
[44].

For further validation of its accuracy, a direct comparison
between the P-matrix method and other existing schemes with
both decoherence and detailed balance could be informative.
In a recent study, the carrier relaxation times in fluorinated
silicon QDs were calculated using FSSH under NBRA and
with the decay-of-mixing scheme for decoherence [56]. The
calculated cooling time for a hot electron with an initial
energy of ∼1 eV in a Si66F40 QD is 493 fs. We took this study
as a benchmark and did the same calculation for the same
system using the P-matrix method. The resulting cooling time
is 590 fs, in reasonable agreement with the reported value.

The calculated τi j for the 87-atom Si QD using Eq. (9)
varies from 7 to over 80 fs, with a peak distribution around
20 fs (see Fig. S2 in Ref. [44] for the histogram). We note that
in Ref. [57] a simple method was proposed to calculate τi j ,
using the standard deviation of the energy gap. This method
is similar to Eq. (9), and both give the same magnitudes of τi j

(see Ref. [44] for more discussions). Furthermore, it would
be interesting to see how the decoherence time affects the
hot-hole cooling rate. To explore this, we did test calculations
using a constant τ for all τi j . Figure 1(c) shows the cooling
rate as a function of different τ values. It is seen that as τ

increases, the cooling rate 1/Tr also increases. This is more
significant when τ is small. In a previous study, using a
model two-level system, Pradhan et al. showed that the upper
bound for the electronic transition rates is proportional to
the decoherence time [58]. The reason is that the coherent
evolution (accumulation) of electronic states is limited within
the decoherence timescale. The observed positive correlation
between the cooling rates and the decoherence time here is
in agreement with their conclusions. From Fig. 1(c), one also
sees that the cooling rate calculated using the explicit τi j is

similar to that using a constant τ ∼ 25 fs. Thus, 25 fs is
the typical timescale for the wave function decoherence in
the QD studied here. In many other systems the decoherence
timescale is similar [38,39].

Next, we investigate the hot-carrier cooling and transfer
in Si QD pairs. In the constructed systems, two 87-atom
Si QDs (QD1 and QD2) are connected by a -S-(CH2)n-S-
ligand. The distance between the QDs is thus controlled by
the C chain length n. Three cases with different QD spacing
were studied, namely, n = 4, 8, and 12, as shown in Fig. 2.
Because the interaction between QD1 and QD2 is relatively
weak, most of the eigenstates in the QD pairs are localized
in one particular QD. At t = 0, QD1 is excited by placing a
hole in a state which is completely localized inside QD1 and
∼0.7 eV below VBM. The charge cooling and transfer are
then calculated by P-matrix. The calculated Eave are shown
in Figs. 2(a)–2(c). The fitted relaxation times are T n=4

r = 179
fs, T n=8

r = 200 fs, and T n=12
r = 180 fs. The energy decay

behaviors are quite similar to those in the case of a single QD,
and the relaxation time shows weak dependence on the QD
spacing.

For the charge transfer between the two QDs, one can ex-
pect that the QD spacing will have great influence. To analyze
this process, the charge density ρ(r) of the hot hole is cal-
culated by ρ(r) = ∑

i j Di jφi(r)φ j (r)∗, and the populations of
the hot hole in QD1 and QD2 are then determined by wQD1 =∫

VQD1
ρ(r)dV and wQD2 = ∫

VQD2
ρ(r)dV . Note wQD1 + wQD2

always equals 1. As described above, initially, wQD1 = 1
and wQD2 = 0. A decrease in wQD1 indicates charge transfer
from QD1 to QD2 and vice versa. Figure 3(a) shows wQD1

as a function of time for the three QD-pair systems. The
curves are also fitted into an exponential decay function,
0.5exp(−t/t0) + 0.5 (as the two QDs have the same structure,
one can expect the average population on either QD to be
0.5 when t → ∞), in which t0 gives a typical timescale of
the charge transfer. For n = 4, 8, and 12, t0 = 205, 1423,
and 8649 fs, respectively. Therefore, the charge transfer rate
decreases as the QD spacing increases. Experimentally, the
charge transfer time between quantum dots is found to be
sensitive to the QD size [59,60]. For instance, in CdSe/TiO2

systems, the charge transfer time decreases by three orders
of magnitude (from ∼100 to ∼0.1 ns) when the size of the
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FIG. 2. (a) The average energy and excess energy of the hot hole as a function of time for the n = 4 QD pair. The dashed line is exponential
fitting. (b) and (c) The same as (a) but for the n = 8 and n = 12 QD pairs, respectively.

CdSe QD decreases from 7.5 to 2.4 nm [59]. In our simulation
the diameter of the Si QD is only ∼1.3 nm, which is much
smaller than 2.4 nm. In this regard, our resulting (sub-)10-ps
charge transfer time should be reasonable when compared
with experiments [59,60].

As discussed, the hot-hole relaxation time Tr for the Si QDs
is ∼200 fs. Hence, when the QD spacing is large (n = 12), the
hot hole in QD1 will lose its excess energy before it transfers
to QD2. When the QD spacing decreases, the hot-hole transfer
becomes more efficient. In the case of n = 4 (QD spacing
is 1 nm), t0 is quite close to Tr , indicating that excitation in
QD1 is able to create a significant amount of “hot” carrier in
QD2. It is also interesting to explore the relationship between
the QD spacing d and t0. As presented in Fig. 3(b), t0 scales
exponentially with d , and their relationship can be fitted to

FIG. 3. (a) The hot-hole population on QD1 as a function of time
for the three QD-pair systems. (b) The charge transfer timescale t0 as
a function of QD spacing d . The dashed line is exponential fitting.

t0 = A exp(d/d0). The fitted A and d0 are 3.95 fs and 0.26 nm,
respectively. The carrier transfer in the QD pair system can be
understood by the state coupling when their energies anticross
each other [7]. The coupling strength decays exponentially as
a function of the QD-QD distance, as shown in Fig. 3(b). The
rate of charge transfer is a competition between the transfer
rate and the internal QD cooling as the lower-energy (below
VBM) region has a higher density of states and also tends
to have a larger coupling constant (e.g., below the ligand
molecule highest occupied molecular orbital level).

Finally, we would like to have more discussion of the effect
of decoherence time τi j . As mentioned, one advantage of the
P-matrix is that the decoherence between different pairs of
electronic states can be treated independently. For example,
in the Si QD-pair systems, there could be two different types
of τi j . When both states i and j are localized in the same
QD, their energy fluctuations have similar trends since they
are both affected by the atomic vibration of the same QD,
especially for the surface atom vibrations, which significantly
alter the inner QD potentials. Hence, the τi j value in this case
could be relatively large. In contrast, when i and j belong to
different QDs, their energy fluctuations can be quite different,
resulting in a relatively small τi j according to Eq. (9). In
the wave function collapse scheme, for each state there is
only one associated average decoherence time, and there is no
way to distinguish between intra- and inter-QD decoherences.
Such an effect is especially significant when the average τ

is small. To demonstrate this point, we have calculated the
charge transfer rate for the n = 12 QD-pair case using both
the explicit calculated τi j and a fixed average τ (the rate 1/τ

equals the average rate of 1/τi j). To see how the magnitude
of the decoherence time affects the trend, we also rescale
τi j and τ using a factor r. The results for different r are
shown in Fig. 4. It is seen that although with r = 1, the
difference using τi j and averaged τ is small, with r = 0.2,
the difference becomes significant (in this case the averaged
τ is 3.2 fs). Thus, the explicit treatment of decoherence time
is important, especially when the decoherence time is short
(several femtoseconds).

IV. CONCLUSIONS

In conclusion, using the density matrix representation,
we have developed a NAMD formalism under the NBRA
approximation incorporating both decoherence and detailed
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FIG. 4. The charge transfer rate for the n = 12 QD-pair case using both the explicit calculated τi j and the averaged τ , with different
reducing factors r applied to the decoherence times.

balance effects. In this formalism, the decoherences between
different pairs of electronic states are treated independently.
The density matrix is divided into two parts so that one
can distinguish the energy-increasing and energy-decreasing
adiabatic state transitions. The detailed balance correction is
then included by a Boltzmann factor applied to the energy-
increasing transitions. This formalism overcomes the lack of
decoherence and overestimation of the cooling rate in the ME
(and possibly FSSH); it also overcomes the pitfall of the wave
function collapse where the decoherence time τi j cannot be
treated independently. Computationally, the P-matrix method
is also inexpensive. The hot-hole cooling and charge trans-
fer processes in Si QD systems were investigated using the
proposed method. The calculated hot carrier relaxation time
is consistent with experiments. In the QD-pair systems,
the hot-hole cooling time is almost independent of the

QD spacing, while the charge transfer rate between QDs
decreases exponentially as the QD spacing increases. It
is also shown that the explicit treatment of decoherence
time is important to accurately predict the charge transfer
rate.
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