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Time-dependent density functional theory (TDDFT) has developed into an efficient and versatile description
of realistic extended many-electron systems driven, e.g., by strong laser fields. It accounts for the fully coherent
evolution of the N-electron wave packet representing an isolated system. Decoherence as encountered in open
systems by coupling to external degrees of freedom of a bath of, e.g., phonons or defects, is, by construction,
absent. In this work we present an open-quantum system (OQS) extension of TDDFT accounting for dephasing
and decoherence due to electron-phonon or defect scattering. We test the OQS-TDDFT for high-harmonic
generation and irreversible changes of dielectric properties in solids driven by strong ir and mid-ir laser pulses.
We present applications to diamond as a prototypical wide band-gap dielectric. For weak pulses we demonstrate
the equivalence of OQS-TDDFT with the solution of the Bloch equations for the reduced one-particle density
matrix while differences appear at high excitation densities. Our study highlights the importance of the accurate
representation of the band structure in simulations of the harmonic spectrum. Narrow avoided crossings within
the Brillouin zone can give rise to Bloch-type oscillations.
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I. INTRODUCTION

The description of the electronic system of solids is notori-
ously difficult to achieve due to the large number of interacting
particles involved in the extended system and requires drastic
simplifications. One of the most successful methods for the
determination of the ground state in many-electron systems is
density functional theory [1] (DFT) based on the notion that
all physical observables of any system can be expressed as
functionals of the local density n(�r). The extension of DFT to
model the dynamics of time-dependent electronic systems is
founded on the Runge-Gross theorem [2] setting the stage for
a plethora of investigations of systems interacting with time-
dependent external potentials Vext (t ). Incorporating periodic
boundary conditions in crystalline solids, it became possible
to study the electronic dynamics in solids driven by strong and
short laser pulses [3]. While many physical observables can be
accounted for by TDDFT, in particular in the linear-response
regime for weak pulses, major challenges remain.

One current topical case in point is the high-harmonic
generation (HHG) spectrum, the highly nonlinear optical
response of solids. While experiments display a sequence
of well-pronounced odd harmonics in the so-called “plateau
regime” at frequencies well above the band gap [4–7], stan-
dard effective single-particle Schrödinger equations [8,9], or
solutions of the Kohn-Sham equations of TDDFT [10–12]
display noisy and largely structureless high-frequency spectra
in the nonperturbative regime. Pronounced harmonics are
only recognizable for low orders inside or just above the
band gap. It was therefore proposed that dephasing and de-
coherence of the driven electronic wave packet along the
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excursion inside the solid might be responsible for this dis-
crepancy [5,6,8,13,14] as excited electrons in a solid will suf-
fer elastic and inelastic scattering events with, e.g., phonons,
crystal defects, impurities, or at higher excitation densities,
undergo electron-electron scattering.

Extension of TDDFT and time-dependent current den-
sity functional theory (TDCDFT) to open quantum systems
is still a widely open problem. Extensions of the Runge-
Gross theorem [2] using a master equation approach [15] or
stochastic methods [16–18] have been presented for inter-
acting many-electron systems. To account for the dephasing
influence of higher-order terms of the BBGKY hierarchy [19]
on the coherence of the one-particle reduced density matrix
[1RDM and its diagonal elements, the one-particle density
n(�r, t )] exchange-correlation functionals with memory ker-
nels have been proposed [20–23]. In the stochastic mean-
field approach [24] closely related to the truncated Wigner
approximations [25], initial correlations are included in the
propagation through stochastic ensembles of density matrices.
Alternatively, electron-electron collisions have been explicitly
included during the propagation in terms of Boltzmann-type
collision kernels within the framework of the stochastic time-
dependent Hartree-Fock (STDHF) approximation [26,27].
Applications to realistic three-dimensional (3D) solids and to
the regime of nonlinear driving have remained an unsolved
problem. Extensions of TDDFT to the electronic systems
with coupling to environmental degrees of freedom [28–31]
have so far only been presented for atoms, molecules, or
small model systems. Yet, an operational protocol for the
implementation in real-space real-time TDDFT simulations of
extended systems appears to be missing.

In the present work we extend the TDDFT simulations of
laser-solid interactions to an open-quantum system (OQS-)
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TDDFT. The electronic system described by TDDFT is al-
lowed to interact with external (“environmental”) degrees of
freedom representing, e.g., phonons or lattice defects. We
focus on dephasing and decoherence in the electronic system
induced by an external bath rather than on decohering effects
of intrinsic multiparticle correlations on the 1RDM accounted
for by memory kernels. System-bath interactions allow for en-
ergy exchange, induce stochastically fluctuating phases and,
eventually, dephasing of the electronic wave packet. Including
these processes consistently while preserving the properties
of the time evolution of the nonlinear Kohn-Sham (KS)
equations, most importantly the particle number, is key for
a successful implementation of OQS-TDDFT. For the present
case of laser-solid interactions we exploit Houston orbitals as
the pointer states of decoherence [32]. The method outlined in
the following is, however, general and is applicable for a wide
array of nonequilibrium scenarios. The present approach can
be viewed as the extension of stochastic wave-function meth-
ods [18] or Lindblad-Redfield approaches [33,34] to the realm
of TDDFT. As a first proof of principle we demonstrate the
equivalence of the present OQS-TDDFT with the Bloch equa-
tion (BE) approach to the time-dependent one-body reduced
density matrix (TD-1RDM), when using the same ground-
state DFT input for the band structure and dipole coupling
matrix elements and the same phenomenological decoherence
or dephasing rate 1/τdec = 1/T2. This correspondence holds
remarkably well for weak fields and even for moderately
strong fields when the applicability of electronic ground-state
properties is, a priori, not obvious. We demonstrate this equiv-
alence for high-harmonic spectra. Decoherence is found to be
primarily responsible for modifying the nonlinear response at
late times and suppressing the induced post-pulse currents.
OQS-TDDFT allows one, however, to go beyond the weak-
field limit and to simulate the strong-field regime approaching
the dielectric break-down regime. One hallmark of decoherent
dynamics is the irreversible electronic excitations from the
valence band to the conduction band at the conclusion of the
pulse modifying the dielectric properties of the medium.

In Sec. II we briefly review the present implementa-
tion of the real-time real-space TDDFT. Its generaliza-
tion to an open quantum system approach, OQS-TDDFT,
is introduced in Sec. III. We benchmark the OQS-
TDDFT against the TD-1RDM evolution using the stan-
dard Bloch equations and demonstrate the importance of
accounting for decoherence in the calculation of the
linear and nonlinear response of diamond in Sec. IV.
Atomic units (e = h̄ = me = 1) are used throughout this
paper unless otherwise stated.

II. TIME-DEPENDENT DENSITY FUNCTIONAL THEORY

In the present real-space real-time formulation [3] of
TDDFT describing the nonlinear electron dynamics induced
by strong and short laser pulses in crystalline insulators we
solve the time-dependent Kohn-Sham (KS) equations,

i∂t un�k (�r, t ) = ĤKS
�k (t ) un�k (�r, t ), (1)

with the KS Hamiltonian,

ĤKS
�k (t ) = 1

2 ( �p + �k + �A(t ))2 + VKS[n(�r, t )], (2)

for the periodic orbitals un�k (�r, t ) entering the Bloch wave
functions for periodic potentials,

φn�k (�r, t ) = ei�k�run�k (�r, t ). (3)

The electron-electron and electron-ion interactions and the
exchange-correlation (XC) potential are included in the effec-
tive one-electron KS potential VKS[n(�r, t )], a functional of the
local electron density n(�r, t ). In this work we use the local-
density approximation (LDA) to VXC with the parametrization
of Perdew and Zunger [35]. The method for implementing
the open-quantum system approach presented in this paper
is, however, independent of the choice of the exchange-
correlation potential. The coupling to the radiation field in
terms of the vector potential �A(t ) in dipole approximation
�A(t ) = − ∫ t

−∞ dt ′ �F (t ′) with �F (t ) the electric field employs
the velocity gauge [Eq. (2)] in order to preserve the periodicity
of the Bloch states in the presence of the strong field.

A suitable basis for expanding the periodic orbital un�k (�r, t )
in the presence of the �A(t ) field are the Houston or-
bitals [36,37],

uH
n�k (�r, t ) = exp

(
−i
∫ t

dt ′εn�k+ �A(t ′ )

)
uGS

n�k+ �A(t )
(�r ), (4)

where uGS
n�k+ �A(t )

are the ground-state orbitals shifted by �A(t ) in

�k space with an additional global phase factor depending on
the eigenenergies εn�k . They resemble the Volkov states [38]
employed in strong-field atomic and molecular physics and
represent the solution of Eq. (1) in the adiabatic limit of slowly
varying �A(t ). The expansion of the time-dependent periodic
orbitals in Houston orbitals,

un�k (�r, t ) =
Nvb∑
i=1

αin�kuH
i�k (�r, t ) +

Ncb∑
i=1

βin�kuH
i+Nvb�k (�r, t ), (5)

carries the key advantage that the number of bands required
to be included in converged calculations can be restricted to
those that are nonadiabatically coupled, preferentially near
avoided crossings in the band structure. Moreover, Eq. (5)
allows for a well-defined separation into Nvb valence- and
Ncb conduction-band contributions. These properties will also
play a key role in our implementation of decoherent dynamics.

For the simulation results presented in this paper we choose
diamond as prototypical wide band gap dielectric solid. The
cuboid 4.77 × 4.77 × 6.74 a.u.3 unit cell is discretized on a
Cartesian grid with spacing 0.21 a.u. and 0.29 a.u. parallel
and orthogonal to the polarization direction of the laser pulse
polarized parallel to the � − X direction. This unit cell con-
tains four C atoms of which the inner shell 1s2 electrons are
frozen and included in norm-conserving pseudopotentials of
the Troullier-Martins form [39]. In reciprocal space we apply
a Cartesian grid with spacing 0.02 a.u. and 0.07 a.u. parallel
and orthogonal to the polarization direction, respectively.
For the time propagation we employ a fourth-order Taylor
expansion using a time step of 	tTDDFT = 0.015 a.u. All dis-
cretization parameters were carefully checked for numerical
convergence. We will consider the electronic dynamics in
diamond driven by few-cycle strong linearly polarized laser
pulses �F (t ), either by an infrared pulse with λ = 800 nm
corresponding a cycle period of T ≈ 2.7 fs or a mid-ir pulse
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with λ = 3200 nm with T ≈ 10.7 fs. With increasing cycle
period the influence of dephasing is expected to increase even
for few-cycle pulses.

The physical observables considered in the following can
be extracted from the induced current density averaged over
the unit cell volume Vc,

�J (t ) = − i

Vc

∫
Vc

d3r
∑

n�k
φ∗

n�k (�r, t )[ĤKS(t ), �̂r]φn�k (�r, t ), (6)

which is directly accessible from the TDDFT orbitals. In par-
ticular, the HHG spectrum can be calculated using Larmor’s
formula [40],

Sn̂(ω) ∝
∣∣∣∣Ft{ d

dt
�J (t ) · n̂

}∣∣∣∣2 = ω2| �J (ω) · n̂|2, (7)

where n̂ is the unit vector in the polarization direction.

III. INTRODUCING DECOHERENCE INTO TDDFT

A. An open two-level system

Our strategy to incorporate dephasing and decoherence
into TDDFT is patterned after open-quantum system ap-
proaches developed for the stochastic extension of the time-
dependent Schrödinger equation (TDSE) [18,41,42]. Accord-
ingly, the stochastic TDSE contains in addition to the system
Hamiltonian H , a stochastically fluctuating system-bath in-
teraction Vk (often referred to as “kicks”) which, in general,
couples the system to the environment at random times ti. This
stochastic system-bath interaction accounts for both dissipa-
tion and fluctuations in line with the dissipation-fluctuation
theorem [43]. The time evolution of the state |ψ (t )〉 is
consequently given by an alternating sequence of continu-
ous evolution operators governed by the system Hamiltonian
U (ti+1, ti ) = T exp(−i

∫ ti+1

ti
H dt ′) interrupted by stochastic

perturbations described by the evolution operator U ( j)
k ,

|ψ ( j)(t )〉 =
∏

i

[
U ( j)

k U (ti+1, ti )
]|ψ (t0)〉. (8)

Ensemble averages over M different realizations of the se-
quence of stochastic interactions {|ψ ( j)(t )〉}, referred to as
the quantum trajectories, yield the reduced density matrix
(RDM),

ρ(t ) = 1

M

M∑
j=1

|ψ ( j)(t )〉〈ψ ( j)(t )|, (9)

which, for a wide class of stochastic processes, can be shown
to obey a Lindblad-type equation of motion [34],

d

dt
ρ(t ) = −i[H, ρ(t )] + T ρT † − 1

2
[T †T, ρ]+, (10)

with the transition operators T (T †) induced by Vk rep-
resenting the system-bath interaction. For effective one-
particle quantum trajectories, ρ(t ) represents the 1RDM. In
the present case of the open-quantum system extension of
TDDFT, the starting point is the Kohn-Sham equation of
motion [Eq. (1)] rather than the TDSE.

We first illustrate the explicit construction of the relaxation
or decoherent dynamics in analogy to that of Eqs. (8) and (10)

with the help of a simplified two-level system with the states
denoted by {|a〉, |b〉} coupled to an external bath with quantum
state (|s〉, s = 0, . . .) representing, e.g., a phonon bath. The
index s abbreviates the set of all quantum numbers of the bath.
In the following |a〉 and |b〉 will correspond to valence and
conduction band states, respectively. Assuming for simplicity
that the phonon bath is initially in its ground state |s = 0〉
(e.g., at zero temperature), the initial nonentangled product
state of system and environment may be, in general, a coherent
superposition of the valence and conduction-band states,

|ψ0〉 = α|a, 0〉 + β|b, 0〉, (11)

with |α|2 + |β|2 = 1. The initial electronic 1RDM is given by
the trace over the phonon degrees of freedom |s〉,

ρ(t0) = Trs(|ψ0〉〈ψ0|) =
(|α|2 αβ∗

α∗β |β|2
)

. (12)

For the initial state [Eq. (11)], ρ(t0 = 0), of course, still
represents a pure state. The interaction Vk now couples the
electronic and phonon degrees of freedom. For sufficiently
small interaction time intervals 	t and weak coupling within
the Born-Markov limit [44], the amplitudes for state admix-
tures are given in first-order approximation by time-dependent
amplitudes,

c(a)
s (	t ) = −i	t〈a, s|Vk|a, 0〉, (13)

c(b)
s (	t ) = −i	t〈b, s|Vk|b, 0〉, (14)

resulting in the entangled state,

|ψ (	t )〉 = αNa(	t )

[
|a, 0〉 +

∑
s>0

c(a)
s (	t )|a, s〉

]

+βNb(	t )

[
|b, 0〉 +

∑
s>0

c(b)
s (	t )|b, s〉

]
, (15)

with renormalization factors,

Na,b(	t ) =
(

1 +
∑
s>0

|c(a,b)
s (	t )|2

)−1/2

. (16)

The total probability for an electron in state |a〉 (or |b〉) to
induce a transition in the phonon bath during the time interval
	t is Pj (	t ) = 1 − N 2

j (	t ) (with j = a, b). For suitable
choices of the stochastic variable 	t the coupling to the bath
[Eq. (15)] allows for the discretization of the system-bath
interaction and the introduction of discrete decoherence steps
in analogy to Eq. (8). In general, the coupling strength to the
environment will depend on the electronic state. In the limit
that only the conduction-band state |b〉 can excite phonons,
only Nb(	t ) < 1 while Na(	t ) = 1. For the entangled state
Eq. (15), after tracing out the phonon degree of freedom the
1RDM after one decoherence step becomes

ρ(	t ) =
( |α|2 αβ∗Dab(	t )

α∗βD∗
ab(	t ) |β|2

)
, (17)

with

Dab(	t ) = Na(	t )Nb(	t )

(
1 +

∑
s>0

c(a)
s (	t )c∗(b)

s (	t )

)
(18)
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the decoherence factor. Equation (17) represents for all
|Dab| < 1 a mixed state and remains a pure state only for
Na = Nb = Dab = 1 (i.e., for vanishing phonon coupling).
The evolution of ρ [Eq. (17)] during one decohering time step
can be formally written as

ρ(	t ) = R(	t )ρ(0), (19)

in terms of the relaxation superoperator R(	t ) in Liouville
space [45,46] with

Ri j,kl (	t ) = δikδ jl ×
{

1 (i = j)
Dab(	t ) (i < j)
D∗

ab(	t ) ( j < i)
. (20)

In the basis of the time-dependent Kohn-Sham orbitals,
R(	t ) will be, in general, explicitly time dependent, i.e.,
R(t,	t ). For notational simplicity we suppress this depen-
dence in the following. The time evolution of ρ(t ) over finite
time intervals from t0 = 0 to t can now be formally written in
analogy to Eq. (8) by a sequence of alternating steps of smooth
evolution governed by the system Hamiltonian and discrete
stochastic perturbations due to environmental couplings,

ρ(t ) =
m−1∏
i=0

{
R(	t ) T exp

[
−i
∫ ti+1

ti

dt ′ L (t ′)
]}

ρ(t0 = 0),

(21)

with tm = t . In Eq. (21), L (t ) denotes the explicitly time-
dependent Liouvillian of the unitary evolution, [H (t ), . . .], in
between stochastic scatterings requiring the time-ordered (T )
exponentiation. Analogously to Eqs. (8) and (10), an ensemble
average over stochastic realizations of Eq. (21) should be
taken.

B. Decoherence in TDDFT

1. Generalization to N levels

We now generalize the open two-level system (Sec. III A)
to the Kohn-Sham Hamiltonian for the electronic structure
in solids. The Kohn-Sham system can be viewed as an en-
semble of electronic N-level systems, each member of which
corresponds to one discrete �k (grid) point that is adiabati-
cally shifted by the vector potential. We restrict ourselves in

the following to (approximately) quasimomentum conserving
scattering processes such as electron-phonon scattering or
distant (soft) electron-electron scattering for which the as-
sociated quasimomentum transfer is smaller than the k-grid
spacing 	k. For each �k point, the KS system consists of
N orbitals {|a1〉, . . . , |aNvb〉, |b1〉, . . . , |bNcb〉} with Nvb valence
band states and Ncb conduction band states and Nvb + Ncb = N
being the number of basis functions sufficient to represent
all excited states that acquire population during the time
propagation. For notational simplicity we drop the index for
the �k point in the following.

The initial state of the system at t = 0 is taken to be the
ground-state density matrix,

ρ(0) =
N∑

n=1

wn|�n(0)〉〈�n(0)|, (22)

with occupation numbers wn = 1 for 1 � n � Nvb and wn =
0 for states in the conduction band. The ground-state KS
orbitals (|�GS

n 〉 = |�n(0)〉) also coincide with the natural
orbitals, a property which is lost after the first decoherence
step (see below). At any time during the time evolution we
expand the KS orbitals in the Houston basis [Eq. (4)] denoted
by {|ai〉, |bi〉} representing the field-shifted valence {|ai〉} and
conduction band {|bi〉} states. Generalizing Eq. (11) the states
of the combined system of electronic states and environmental
degrees of freedom (e.g., phonons) prior to a decohering
scattering event read,

|ψn〉 = |�n, 0〉 =
Nvb∑
i=1

αin|ai, 0〉 +
Ncb∑
i=1

βin|bi, 0〉, (23)

with
∑Nvb

i=1 |αin|2 +∑Ncb
i=1 |βin|2 = 1. Since the Houston states

are capable of adiabatically following the strong-field pertur-
bation and couple dynamically only through “high” frequency
components of the field driving transitions among them, they
are well suited to act as “pointer states” [32], i.e., the preferred
basis with respect to which off-diagonal elements of the
density matrix,

, (24)
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will decohere. The off-diagonal entries depicted in green in
Eq. (24) describe valence intraband coherences, red entries
corresponding to conduction-band intraband coherences, and
blue entries to interband coherences. Accordingly, we con-
struct the relaxation superoperator R(t,	t ) for the density
matrix in the Houston basis. The scattering probabilities for
a particle in a valence band orbital, Pai (	t ) = 1 − N 2

ai
(	t ),

and for a particle in a conduction band orbital, Pbi (	t ) = 1 −
N 2

bi
(	t ), will, in general, be different (typically Nai (	t ) >

Nbi (	t )) and orbital (i) and �k dependent. Simple approxima-
tions for scattering rates can be derived from, e.g., mean free
paths for electron-phonon, electron-defect, or distant electron-
electron scattering. Generalizing Eq. (20), the matrix elements
of R(	t ) follow from Eq. (23) as

Ri j,kl (	t ) = δikδ jl ×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 (i = j)

Daia j (	t ) (i < j � Nvb )

D∗
aia j

(	t ) ( j < i � Nvb )

Daib j (	t ) (i � Nvb < j)

D∗
aib j

(	t ) ( j � Nvb < i)

Dbib j (	t ) (Nvb < i < j � N )

D∗
bib j

(	t ) (Nvb < j < i � N )

(25)

with

Daia j (	t ) = Nai (	t )Na j (	t )

(
1 +

∑
s>0

c(ai )
s (	t )c∗(a j )

s (	t )

)
,

(26)

Daib j (	t ) = Nai (	t )Nb j (	t )

(
1 +

∑
s>0

c(ai )
s (	t )c∗(b j )

s (	t )

)
,

(27)

Dbib j (	t ) = Nbi (	t )Nb j (	t )

(
1 +

∑
s>0

c(bi )
s (	t )c∗(b j )

s (	t )

)
.

(28)

Analogously to Eq. (21), the time evolution of the density
operator is now formally given by

ρ(t ) =
m−1∏
i=0

{
R(	t ) T exp

[
−i
∫ ti+1

ti

dt ′ LKS(t ′)
]}

ρ(t0),

(29)
with LKS(t ′) the time-dependent Liouvillian acting on the
Kohn-Sham system. After each application of the relax-
ation operator the density matrix is decomposed into a
sum of dyadic products of new orbitals |�′

n(ti )〉 with new
weights w′

n,

ρ(ti ) =
N∑

n=1

w′
n|�′

n(ti )〉〈�′
n(ti )|, (30)

which are further propagated during the next time step using
the KS Hamiltonian. In general, an ensemble average over
stochastic realizations of Eq. (29) is required.

2. Numerical implementation

For the implementation of the protocol outlined above
[Eqs. (22)–(30)] Houston orbitals acting as “pointer states”

are required as input. They should be calculated before each
decoherence step by diagonalization of the (GS) KS Hamil-
tonian shifted in reciprocal space for each quasimomentum
associated with the instantaneous vector potential �k0 + �A(t ).
As recalculating Houston orbitals for each step is extremely
time-consuming, in the present implementation we prepare
KS orbitals prior to the TDDFT propagation on a very fine �k
grid with spacing 	k = 6 × 10−4 a.u. along the polarization
direction of the laser pulse. During the propagation, Houston
orbitals pertaining to the continuously distributed quasimo-
mentum �k0 + �A(t ) [Eq. (23)] are approximated by those KS
orbitals at the closest grid point �k ≈ �k0 + �A(t ). This approxi-
mation significantly speeds up the calculation but introduces a
small discretization error. The algorithm employed to correct
for this discretization error is described in Appendix A.

We simplify solving Eq. (29) by taking the following steps:
First, we solve the real-space real-time Kohn-Sham equations
for the N = Nvb + Ncb orbitals un(�r, ti ) = 〈�r |�n(ti )〉 from
time ti to ti+1 with the density in ĤKS[n(�r, t )] calculated
using the weights wn, n(�r, t ) =∑N

n=1 wn|un(�r, t )|2. After five
time steps we apply the decoherence operator R(	t ) at time
ti+1 to account for decoherence accumulated over the period
	t = ti+1 − ti = 5 × 	tTDDFT = 0.075 a.u. We replace in the
following the ensemble average over different realizations by
one single “representative” time propagation using a fixed
	t . Variation of the precise value of 	t have been found to
leave the numerical results unchanged as long as 	t 
 τdec.
Application of the decoherence step after 	t results in a
changed density matrix ρ(ti+1) and a new set of weights and

orbitals,
√

wn|�n(ti+1)〉 R(	t )−−−→ √
w′

n|�′
n(ti+1)〉.

As discussed above, Nai (	t ) and Nbi (	t ) will in general
depend on the orbital i and momentum �k. For the simple test
calculations shown here and for the direct comparison with
the results of the BE for the TD-1RDM we use Nai (	t ) = 1
and Nbi (	t ) = N (	t ) independent of i and �k for all i ∈
{1, . . . , Ncb}, corresponding to an effective decoherence time
τdec � 	t

1−N (	t ) . This implies that the blue and red entries

in Eq. (24) are damped per decoherence step by e−	t/τdec

and e−2	t/τdec , respectively, while green entries remain un-
changed. Note that when using microscopic input [Eqs. (26)–
(28)] rather than this model input, deviations from a simple
exponential decay are to be expected. Using the numerical
procedure described in Appendix A inclusion of decoherence
increases the CPU time for propagation compared to the
TDDFT propagation by about a factor of 4 while maintaining
a high level of numerical accuracy. The present implementa-
tion of decoherence is conceptually independent of the level
of sophistication employed for the underlying TDDFT, in
particular of the choice of the exchange-correlation potential
VXC. In addition to the A-LDA we have also tested the Tran-
Blaha-mBJ approximation for the VXC featuring the correct
band gap of diamond [47]. While the enlarged band gap
accommodates additional band-gap harmonics, the change
in the XC potential leaves the effect of decoherence largely
unchanged. For reasons of computational efficiency we have
used the A-LDA VXC for the numerical results presented
below.
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C. Bloch equations in the Houston basis

For a comparison with previously employed methods for
incorporating decoherence in driven solid-state electron dy-
namics, we propagate the one-particle reduced density matrix
ρ

�k
mn in the Houston basis [Eq. (4)] by solving the Bloch

equations for centro-symmetric systems,

∂tρ
�k
mn = −iω�k+ �A(t )

mn ρ
�k
mn + i �F (t )

∑
l

( �d �k+ �A(t )
ml ρ

�k
ln − �d �k+ �A(t )

ln ρ
�k
ml

)
− (1 − δmn)

ρ
�k
mn

τmn
, (31)

for a dense set of �k points initially in the first Brillouin
zone and shifted in reciprocal space in time by the quasimo-
mentum associated with the vector potential. The last term
in Eq. (31) represents the loss of coherence between bands
m and n with decoherence time τmn corresponding to the
“transverse” relaxation time T2. The “longitudinal” relaxation
time is quite long, T1 � T2, and does not affect the evolution
of the 1RDM over time scales relevant for this work (a few
tens of femtoseconds) and is omitted. For weak to moderate
laser intensities where the electronic system is still close
to its ground state and a strong nonlinear response is not
yet expected to significantly modify the band structure and
introduce dynamical correlation effects, the BE approach to
the TD-1RDM [Eq. (31)] is expected to closely match the
OQS-TDDFT results if the same input from ground-state DFT
calculations is used. Accordingly, the transition frequencies
ω

�k
mn = εm�k − εn�k and the dipole matrix elements,

�d �k
mn =

{
i �p �k

mn

ω
�k
mn

, ω
�k
mn �= 0

0, ω
�k
mn = 0

, (32)

are extracted from the set of KS orbitals used as the initial
state of TDDFT. We emphasize that accurate input from 3D
electronic structure calculations, in particular near avoided
crossings, for both the band structure and the magnitude and
phase of the coupling matrix is essential to reach agreement.
Simplified and reduced dimensionality models can achieve
qualitative agreement at best.

For the decoherence times we choose in line with our OQS-
TDDFT calculation,

τmn =
{∞, m, n /∈ CB

τdec, else
τdec/2, m, n ∈ CB

. (33)

The induced current density corresponding to Eq. (6) is given
in terms of the TD-1RDM by

�J (t ) ∝
∑

�k

∑
m,n

�p �k+ �A(t )
mn ρ

�k
mn, (34)

and can be separated into intraband (m = n) and interband
(m �= n) contributions �J intra and �J inter, respectively, allowing
for a detailed analysis of inter- and intraband HHG applying
Eq. (7) to �J intra and �J inter. This clear separation is, again,
consequence of the fact that we formulate the BEs in the
Houston basis.

For the BE calculations shown in this work we use a
Cartesian �k grid with step size 0.01 a.u. and 0.07 a.u. parallel
and orthogonal to the polarization direction of the laser,

respectively. To accurately resolve narrow avoided crossings
in the band structure, the transition frequencies and dipole
matrix elements are calculated on an extremely fine �k grid
with spacing 0.0003 a.u. taken from the DFT ground state.
The time evolution of the BEs composed of four valence
and four conduction bands is calculated with a fourth-order
Runge-Kutta propagator with a time step of 	tRK = 0.1 a.u. It
should be noted that by neglecting the self-consistent response
of the N-electron system the TD-1RDM approach to the prop-
agation is computationally much faster (by a factor of ∼103)
than OQS-TDDFT but at the price of a very time-consuming
calculation of consistent sets of initial-state coupling-matrix
elements and band structures on much finer �k grids.

IV. COMPARISON BETWEEN OQS-TDDFT
AND BLOCH EQUATIONS

In order to test the applicability of the newly developed
OQS-TDDFT, we present a detailed quantitative comparison
between the induced currents, the resulting HHG calculated
with both BE and OQS-TDDFT employing identical input for
band-structure and decoherence times, and the response of
wide band-gap materials to strong field driving. We choose
moderately intense laser pulses in the ir [λ = 800 nm, 12
cycles total pulse duration τir ≈ 32 fs with a sin2 envelope
of the vector potential corresponding to a pulse duration of
τ ≈ 12 fs of the full width at half maximum (FWHM) of
the intensity] and mid-ir (λ = 3200 nm, eight cycles total
pulse duration τmir ≈ 85.4 fs and τ ≈ 31 fs of the FWHM
of the intensity] frequency ranges irradiating diamond as a
prototypical target material with a band gap of about 5 eV well
beyond the one-photon energies of the laser pulses. Additional
mesoscopic propagation effects which we have shown to be
important for a realistic quantitative comparison with the
experiment [12] are intentionally omitted from the present
calculation aiming at benchmarking the effect of decoherence
on the microscopic dynamics.

We start this section by an analysis of the linear response
of diamond as determined by time propagation of the “kicked”
system allowing for a simple numerical test of our implemen-
tation of OQS-TDDFT and for the determination of a lower
bound for the decoherence time τdec.

A. Linear response properties of diamond

The term TDDFT is used for two different settings: on the
one hand for the calculation of the linear response (LR) of
materials using Kohn-Sham orbitals from a ground-state DFT
calculation (LR-TDDFT; for solids see, e.g., [48,49]) and,
on the other hand, for the time propagation of Kohn-Sham
orbitals as discussed in this paper. Usually, linear-response
properties of solids, e.g., the oscillator strengths for excita-
tions from the ground state, are calculated using the former
method. Here, we use the real-time propagation method after
excitation of the extended system by a δ-shaped electric pulse
or, equivalently, a step function in the vector potential, �A(t ) =
�A0θ (t ). For small step heights, A0 � 0.001 a.u., the system
remains well within the regime of linear response and one can
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deduce the dielectric function of the material,

ε(ω) = 1 + i
4πσ (ω)

ω
, (35)

with the frequency-dependent conductivity σ (ω) derived from
Ohm’s law,

σ (ω) = −J (ω)/A0, (36)

and J (ω) the Fourier transform of the oscillating current
J (t ). Starting from the ground state, J (t ) induced by the
constant vector potential A0 along the polarization direc-
tion results exclusively from interband excitations. When
accounting for decoherence with energy and momentum in-
dependent decoherence time τdec = const exponential damp-
ing of the induced current J (t ) allows for a direct com-
parison of results from conventional and OQS-TDDFT. Our
simulations using OQS-TDDFT and TDDFT confirm that
the induced current accounting for decoherence Jdec(t ) ≡
JOQS
τdec

(t ) = JTDDFT(t )e−t/τdec to within numerical accuracy,
thus confirming the correct numerical implementation of de-
coherence in OQS-TDDFT. We compare the simulated linear-
response properties of LDA diamond close to the band-gap
energy (onset of absorption) by plotting the loss function for
different decoherence times τdec together with experimental
data given by

Im

[
− 1

ε(ω)

]
= 2nκ

(n2 + κ2)2
, (37)

with

ε(ω) = (n2 − κ2) + i2nκ, (38)

where n(ω) and κ (ω) are the energy-dependent refractive
index and extinction coefficient, respectively. n(ω) and κ (ω)
have been measured for many materials and are readily avail-
able from data tables (e.g., [50]).

Due to the small step height A0 of the vector potential the
results of the LR calculations are extremely sensitive to the
�k-grid density. We find that the k spacing capable of reaching
convergence in simulations of induced electron dynamics in
the strong-field regime (see Sec. II and results below) is
still insufficient to obtain realistic loss functions in the linear
response limit of very weak A0. We have therefore increased
for the linear-response simulation the �k-grid density by setting
	k⊥ = 0.03 a.u. (instead of 	k⊥ = 0.07 a.u.).

Figure 1 shows the loss functions calculated by TDDFT
(τdec → ∞) and OQS-TDDFT for τdec = 10 fs. The experi-
mental data [50] have been horizontally shifted by 1.45 eV
to compensate for the well-known underestimate of the band
gap by LDA. The onset of absorption (steepness, step height)
is well reproduced by both simulations. Sharp edges in the
loss function are smoothed in the presence of decoherence.
From the comparison with the experiment near the absorption
edge it is obvious that the decoherence time τdec should be
well above 10 fs. We use τdec = 10 fs in the remainder of
this work as a lower bound taking into account that increasing
the excitation density is expected to open additional channels
for decoherence thereby possibly slightly decreasing τdec. Pre-
liminary measurements of the transmission of single pulses
as a function of the intensity [51] indicate that an effective
decoherence time τdec = 10 fs corresponding to a scattering

FIG. 1. Simulated (lines) and experimental (symbols) loss func-
tions of diamond. Experimental data have been horizontally shifted
by 1.45 eV to correct for the LDA band-gap error. Simulations have
been performed using TDDFT (without decoherence, τdec → ∞,
black lines) and OQS-TDDFT (strong decoherence, τdec = 10 fs,
red line; τdec = 5 and 1 fs, blue dash-dotted and dashed lines,
respectively).

rate of 0.1 fs−1 still considerably overestimates the decoher-
ence rate in high quality diamond crystals even for intense
pulses with intensities of the order of 1013 W/cm2. Shorter
decoherence times (blue lines in Fig. 1) lead to unphysical
results highlighted by the complete disappearance of the band
gap for τdec � 1 fs.

One key advantage of the time-propagation method over
LR-TDDFT is the possibility to calculate the change of the di-
electric properties induced in the material by a time-dependent
external potential beyond linear response. We illustrate the
potential of this method with the help of the following ex-
ample (Fig. 2). For a mid-ir laser pulse with λ = 3200 nm and
peak intensity of I0 = 5 × 1012 with a total duration of eight

FIG. 2. Change of loss function relative to the ground-state
response, 	 Im(−1/ε), induced by irradiation of diamond by a
3200-nm laser pulse with I0 = 5 × 1012 W/cm2. Due to the small
excitation density changes are small on an absolute scale (see Fig. 1).
However, large relative differences are found between the coherent
(τdec → ∞) and decoherent dynamics (τdec = 10 fs)
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FIG. 3. Current density in diamond induced by an ir laser pulse
(λ = 800 nm, I0 = 1013 W/cm2, total duration 12 cycles) calculated
with (dashed blue lines) and without (red solid lines) decoherence
using (a) OQS-TDDFT and (b) Bloch equations (BE).

cycles we have first performed the time propagation of the
system both in the absence (τdec → ∞) and in the presence
of strong decoherence (τdec = 10 fs). At the conclusion of
the pulse we set all off-diagonal elements of the density
matrix in the Houston basis which for �A = 0 is equivalent
to the KS basis to zero thereby neglecting all intraband and
interband coherences. This can be viewed as an incoherently
excited electronic system with nonvanishing conduction band
population. We then probe the linear response of this out-of-
equilibrium system by a δ pulse. As expected, an excitation
density present in the conduction band after the conclusion of
the laser pulse leads to the opening of additional loss channels
in the band gap. While the absolute value of the induced
change is rather small the simulations show qualitatively
different results for τdec → ∞ and τdec = 10 fs indicating the
importance of accounting for decoherence in time-dependent
systems to determine out-of-equilibrium properties.

B. Total induced currents and high-harmonic generation

The temporal profiles of the current densities predicted
by the OQS-TDDFT and the BE (Figs. 3 and 4) agree well
with each other on an absolute scale, both in the absence
(τdec → ∞) and in the presence (τdec = 10 fs) of decoherence.
For this test the decoherence time was chosen to represent
a lower bound for the electron-phonon scattering time or,
equivalently, the upper bound for the phonon-scattering rate
in order to assess the overall influence of decoherence on
the induced currents and the observables derived from it. In
the absence of decoherence the excellent agreement between
TDDFT and BEs indicates that even at moderately strong
driving laser fields the electronic structure of the ground state
still provides a realistic framework for the ensuing electron
dynamics. The persistence of this agreement in the presence of
decoherence demonstrates that the present OQS-TDDFT con-
verges in the limit of weak to moderately strong perturbation
and for phenomenological decoherence times to the Bloch

FIG. 4. Same as Fig. 3 but for a mid-ir laser pulse (λ = 3200 nm,
I0 = 5 × 1012 W/cm2, total duration eight cycles); (a) TDDFT,
(b) BE.

equations with a transverse relaxation time T2 = τdec. The
influence of decoherence becomes increasingly important at
late propagation times t > τdec while the pulse is still on. For
the few-cycle pulse with λ = 800 nm (oscillation period T ≈
2.7 fs) the current amplitude is only slightly reduced and the
major consequence of decoherence is near-complete damp-
ing of post-pulse “ringing”, i.e., the field-free current gets
efficiently attenuated (Fig. 3). These post-pulse fluctuations
originate from the excited-state coherences associated with
the off-diagonal elements of the density matrix which persist
in the absence of interactions with its surroundings. For mid-ir
pulses (λ = 3200 nm) with a cycle period of T ≈ 10.7 fs, i.e.,
of the order of τdec, the influence of decoherence is consid-
erably more dramatic while the pulse is still on (Fig. 4). The
induced current is no longer in phase with the driving pulse
and its frequency distribution gets considerably modified. The
resulting high-harmonic spectra for the ir pulse (Fig. 5) and
the mid-ir pulse (Fig. 6) feature a broad irregularly fluctuating
distribution for frequencies well above the band gap extending
for the mid-ir pulse to near the ∼60th harmonic (Fig. 6).
Low-order intraband harmonics are increased in intensity by
up to an order of magnitude when including decoherence
while high-frequency interband harmonics are decreased by
a similar amount. However, a well-defined HHG spectrum
with pronounced peaks at odd harmonics, as expected for
inversion-symmetric crystals, is missing. This feature has
been observed previously and was attributed to the neglect of
decoherence [5,6,8,13,14]. Only by assuming extremely short
decoherence times of the order of 1 fs (or significantly smaller
than the cycle period for ir pulses), the onset of a regular
HHG spectrum could be recovered. The physical origin of
such fast decoherence processes has remained unexplained.
We note that such rapid decoherence, if present, would be a
major stumbling block for the realization of ultrafast coherent
optoelectronics on the femtosecond scale. It could be recently
shown [12] that mesoscopic propagation effects of the light
field are key to restoring a well-characterized HHG spectrum
without the need for invoking such short decoherence times.
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FIG. 5. HHG spectrum derived from the currents shown in Fig. 3
(λ = 800 nm, h̄ω = 1.55 eV) calculated with (dashed blue lines) and
without (red solid lines) decoherence using (a) OQS-TDDFT and
(b) Bloch equations (BE).

The Gabor transform of the signal allowing for a time-
frequency analysis of the nonlinear optical response is shown
in Fig. 7. The most important effect of decoherence is the
strong suppression of the post-pulse high-frequency radiation
emitted from the polarization current due to excited-state
coherences persistent in the absence of damping. The Gabor
transform reveals a pronounced “tilt” of the harmonic peaks
above the band gap (upper panels for λ = 800 nm): Late
emission is associated with lower emission energies while
early emission corresponds to higher frequencies. This chirp
is reminiscent of the contribution from a distribution of “long
trajectories” in the semiclassical three-step model of atomic
HHG [52,53]. The strong tilt in the present case even leads
to an overlap of different harmonic orders when projected
onto the frequency axis resulting in the smearing out of well-

FIG. 6. HHG spectrum derived from the currents shown in Fig. 4
(λ = 3200 nm, h̄ω = 0.39 eV) calculated with (dashed blue lines)
and without (red solid lines) decoherence using (a) OQS-TDDFT and
(b) Bloch equations (BE).

defined peaks at odd harmonics. Only for the low-order band-
gap harmonics (<5 in the present case) and for the highest
frequencies near the cutoff where only few semiclassical
trajectories can contribute a more clearly visible harmonic
structure emerges. We note that the present result from OQS-
TDDFT closely agrees with corresponding simulations using
Bloch equations (not shown).

C. Intra- vs interband currents

The relative importance of intraband and interband current
contributions to the HHG spectra has been a topic of lively de-
bate (see, e.g., Ref. [6] vs Ref. [8] and a recent review on solid-
state HHG [54]). The driven motion of excited electrons and
holes within a given conduction or valence band represents the
intraband current. Deviations from a purely parabolic shape of
the band give rise to high-frequency components in the current
density and, consequently, in the emitted radiation. These
contributions strongly depend on the details of the underlying
band structure contributing to the current. Moreover, when the
vector potential of the pulse is large enough to drive excited
carriers across the Brillouin-zone boundary, i.e., A(t ) > �X,
their direction of motion changes resulting in Bloch oscilla-
tions contributing to intraband HHG. On the other hand, the
coherent excitation of electrons and holes allowing for the
coupling between the bands and inducing a rapidly oscillating
polarization current gives rise to the interband contribution
to HHG. The presence of decoherence can have important
implications for the interplay between intraband and interband
currents. Figure 8 displays an example for mid-ir driving.
The total current drastically changes and gets reduced at late
times t > tdec. This results from the significant change of
the relative weight of the intraband and interband currents
which are phase shifted relative to each other by π . In the
presence of decoherence [Fig. 8(c)] interband and intraband
contributions become comparable for late times while the
interband contribution dominates when decoherence is ne-
glected [Fig. 8(b)]. While the maximum vector potential is too
small to induce conventional Bloch oscillations, we observe a
novel scenario of Bloch oscillations, i.e., reversal of the group
velocity, in diamond already for A(t ) � 1

2�X where we find
an avoided crossing in the band structure (see Appendix B).
Driving an intraband current across this region well inside the
Brillouin zone results in a reversal of the carrier velocity in
close analogy to that near the Brillouin-zone boundary. The
time windows within which the quasimomentum associated
with the vector potential exceeds the quasimomentum where
the avoided crossing is located is marked in Fig. 8. Within
these windows these intra-Brillouin zone Bloch oscillations
[dips in the intraband currents in Figs. 8(b) and 8(c)] enhance
the intraband current. This demonstrates the importance of
using realistic band structures in simulations of HHG in
solids instead of simple tight-binding models of the band
structure.

The low-energy part of the resulting HHG spectrum
(Fig. 9) gives further insight into the interplay between intra-
and interband HHG. While the low-order band-gap harmon-
ics (in the present case up to n = 5) are dominated by the
intraband current, the high harmonics well above the band
gap are completely dominated by interband contributions. The
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FIG. 7. Time-frequency analysis (Gabor transform) on a logarithmic color scale of the radiation emitted from diamond for an ir pulse
(upper row) and a mid-ir pulse (lower row). Left column panels without decoherence; right column with strong decoherence (τdec = 10 fs).
Laser parameters as in Figs. 3 and 4. Width of Gabor wave packet σ = 2 fs (upper row) and σ = 5 fs (lower row). Results from the Bloch
equations (not shown) closely agree.

FIG. 8. Separation of intra- and interband currents induced by
a mid-ir laser pulse with λ = 3200 nm, I0 = 5 × 1012 W/cm2, and
total duration of eight cycles. The time intervals within which
the vector potential of the pulse (a) exceeds half the distance to
the Brillouin-zone boundary and reaches the avoided crossing, i.e.,
|A(t )| > �X/2, are shaded in gray. The total currents (red solid lines)
are decomposed into intraband (blue dashed lines) and interband
(green dash-dotted lines) contributions for (b) fully coherent (τdec →
∞) and (c) decoherent (τdec = 10 fs) dynamics. Total currents cal-
culated using TDDFT and BE are (almost) identical; extraction of
interband and intraband currents was done from our BE simulation.

relative weight between intraband and interband emission at
high frequencies is only marginally affected by the presence
of decoherence while we find noticeable changes for the
band-gap harmonics.

D. Response to strong-field driving

The present OQS-TDDFT allows one to treat the strongly
nonlinear response to strong-field driving accounting for de-
coherence when the excitation density is sufficiently high
and, consequently, the ground-state electronic structure can
no longer fully account for the response. During strong-field
laser irradiation a significant fraction of the electrons are
transiently excited to the conduction band. Most of these
electrons are excited close to the peaks of the oscillating
electric field of the laser pulse. This can be recorded in terms
of an oscillating energy exchange between the radiation field

FIG. 9. Decomposition of the total spectrum of the segment
of low-order harmonics of Fig. 6 (red solid lines) induced by a
mid-ir laser pulse with λ = 3200 nm, I0 = 5 × 1012 W/cm2, and
total duration of eight cycles into intraband (blue dashed lines) and
interband (green dash-dotted lines) contributions for (a) coherent
(τdec → ∞) and (b) decoherent dynamics (τdec = 10 fs).
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FIG. 10. Carrier excitation density as a function of intensity fol-
lowing a 12-cycle ir pulse with λ = 800 nm for different decoherence
rates calculated using BE. For decoherence times τdec → ∞ and
τdec = 10 fs excitation densities have also been calculated using
OQS-TDDFT (open circles). Deviations between OQS-TDDFT and
BE (solid line) are only about 2% even for short decoherence times
and high intensities I � 1013 W/cm2.

and the electronic system. Incorporation of dephasing strongly
suppresses the coherent deexcitation processes by destroying
the well-defined phase relation between particle and hole
wave packets to be recombined. As an important consequence
the persistent excited carrier density after conclusion of the
laser pulse is strongly enhanced. In turn, the optical properties
such as the linear-response dielectric function εex(ω) as well
as the nonlinear response of the excited (ex) electronic sys-
tem are significantly altered compared to the corresponding
ground-state response. The resulting excitation density is a
function of both the laser intensity and the decoherence rate
(Fig. 10). This nonlinear response can be experimentally
probed in a pump-probe setting. The excitation density and,
in particular, the frequency-dependent transmittivity could be
mapped out by a probe pulse arriving subsequently to the
strong pump pulse (c.f. Sec. IV A). We find an approximately
linear dependence of the excited carriers on the decoherence
rates (Fig. 10). Even at intensities close to the destruction
limit for diamond (at a vacuum intensity of about I0 ∼ 2 ×
1013 W/cm2) the BE model (solid lines) still closely agrees
with the OQS-TDDFT (symbols).

V. CONCLUDING REMARKS

In this work we have presented an open quantum system
extension of TDDFT paving the way toward realistic sim-
ulations of excited solid-state systems including decohering
processes. The basic idea underlying the present approach
is to expand the time-dependent Kohn-Sham orbitals into a
basis of pointer states of decoherence for which the relaxation
operator can be easily constructed. Repeated application of
the relaxation (super)operator to the reduced density matrix
as the system evolves in time according to the Kohn-Sham
equations allows one to consistently account for decoherence
effects within TDDFT. We have validated our approach by an

in-depth comparison with the solutions of the Bloch equations
for the reduced density matrix within which decoherence
can be straightforwardly included via a finite dephasing or
transverse relaxation time T2. We have first verified that for the
prototypical problem of electron dynamics in diamond driven
by moderately strong ultrashort ir and mid-ir laser pulses
the induced current and the resulting high-harmonic radiation
TDDFT and the BE solutions agree with each other to within
the numerical accuracy in the limit of fully coherent dynam-
ics, i.e., in the absence of decoherence. Key to this agree-
ment is that ab initio input from the same ground-state DFT
calculation that also provides the initial state of the TDDFT
simulation is used in the BE calculation. Intra-Brillouin zone
Bloch oscillation contributions to intraband harmonics, here
identified for the first time, require the accurate representation
of the band structure. For moderately strong fields and large
band gaps the excitation density remains sufficiently small
such that the ground-state electronic structure still governs the
nonlinear response to the field. The near-perfect agreement
between the TDDFT and BE approaches is found to persist
in the presence of decoherence, i.e., for finite T2, clearly
indicating that the present OQS extension of TDDFT allows
for the consistent inclusion of dephasing while preserving
fundamental properties of TDDFT, in particular conserving
particle number density.

In our numerical test cases we have used a constant deco-
herence time for all excited states of the system to allow for
a quantitative comparison between results of OQS-TDDFT
with solutions of the Bloch equations. Extensions to state
and �k-dependent decoherence times as derived from inelastic
mean free paths for decohering processes can be easily imple-
mented. For ultrashort laser pulses with durations comparable
to or even shorter than the decoherence times, realistic simu-
lations of the nonlinear electronic response in solids requires
the inclusion of decoherence effects. This is also true for long
wavelengths and oscillation periods comparable to or longer
than the decoherence time. While for large band-gap materials
excitation densities after conclusion of the pulse remain small
up to laser intensities near the destruction limit of the ma-
terial allowing for the use of the numerically simpler Bloch
equations based on ground-state properties, large excitation
densities as expected in metals, and small-band gap semicon-
ductors will require a treatment self-consistently accounting
for time-dependent changes induced in the electronic system.
The only available method to date capable of performing this
task is time-dependent density functional theory. The method
presented here allows one to consistently include dephasing
processes in solids by interaction with the environment such
as, e.g., electron-phonon or electron-defect scattering within
TDDFT.
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APPENDIX A: ERROR CORRECTION IN THE
NUMERICAL IMPLEMENTATION

In our implementation of the decomposition (23) the Hous-
ton orbitals at �k0 + �A(t ) are approximated by GS orbitals
at the closest grid point �k ≈ �k0 + �A(t ). Due to the slight
mismatch between states at �k0 + �A(t ) and �k a small fraction
of the wave function is artificially mapped onto energetically
high lying conduction band states. To prevent the incorrect
assignment and propagation of these components, we treat
them separately from the decoherence step. While the dom-
inant fraction of the wave function is represented within
the truncated Houston basis, we store the remaining density
incorrectly assigned to higher conduction bands in (non-
normalized) auxiliary functions |hn〉 = |hn, 0〉 with 〈hn|hn〉 

1. Accordingly, we expand the KS orbitals [see Eqs. (22)
and (23)],

√
wn|ψn〉 = √

w̄n|�n, 0〉 + |hn〉

=
Nvb∑
i=1

αin|ai, 0〉 +
Ncb∑
i=1

βin|bi, 0〉 + |hn〉, (A1)

prior to the decoherence step. The auxiliary functions |hn〉 ac-
count for the discretization error and store that part of the wave
function not properly represented in the discretized Houston
basis. After the decoherence step, we add each |hn〉 to the
correct modified KS orbitals |�̃m〉 following the decoherence
step. Only close to avoided crossings in the band structure the
indices m and n may differ, in most cases m = n, as expected.

We adopt the following diagonalization scheme to assure
|�̃m〉 is as close to |�n〉 as possible, i.e., to find the correct
mapping m → n: Starting from the density matrix after the
decoherence step [Eq. (30)] we choose the first state m = 1
to include all density-matrix elements which overlap with the
energetically lowest Houston state |a1〉,

√
w̃1|�̃1〉 = eiϕ1

√
ρ11

⎛⎜⎜⎝
ρ11

ρ21
...

ρN1

⎞⎟⎟⎠, (A2)

leaving us with the residual density matrix,

ρR1 = ρ − w̃1|�̃1〉〈�̃1|

=

⎛⎜⎜⎝
0 0 · · · 0
0 ρ22 − ρ21ρ12

ρ11
· · · ρ2N − ρ21ρ1N

ρ11
.
.
.

.

.

.
. . .

.

.

.

0 ρN2 − ρN1ρ12
ρ11

· · · ρNN − ρN1ρ1N
ρ11

⎞⎟⎟⎠, (A3)

where no contributions of |a1〉 are left. We then search for
the wave function |�n〉 before the decoherence step with
maximum overlap with

√
w̃1|�̃1〉,

max |
√

w̄nw̃1〈�n|�̃1〉|, (A4)

to find the correct index n associated with m = 1. The phase
ϕ1 [Eq. (A2)] is chosen such that the relative phase between
|�n〉 and |hn〉 is preserved, i.e., 〈�n|�̃1〉 ∈ R+, before adding

FIG. 11. Current density in diamond induced by a nir laser pulse
(λ = 800 nm, I0 = 1013 W/cm2, 12 cycles) for τdec = 10 fs with
(blue) and without (red) corrections to the wave function (upper
panel). Failure to properly account for discretization errors leads to a
maximum accumulated loss of norm of the KS orbitals of �0.1% of
the 16 active electrons in the system (lower panel).

the auxiliary function to the
√

w̃1|�̃1〉,√
w′

1|�′
1〉 =

√
w̃1|�̃1〉 + |hn〉. (A5)

Before calculating the next state
√

w′
2|�′

2〉, |hn〉 is removed
from the set of auxiliary functions.

FIG. 12. Band structure of diamond along three lines parallel and
close to � − X and increasing distance to � − X (from left to right
	k⊥ ≈ 0.05, 0.08, 0.15 a.u.). Bottom panels are magnifications of
the band structure in the surrounding of the avoided crossing marked
red in upper panels.
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This procedure is repeated analogously for all residual
matrices ρR j resulting in N orbitals

√
w̃m|�̃m〉 and new√

w′
m|�′

m〉 which serve as new KS orbitals that are further
propagated in time [Eq. (30)] until the next decoherence step
occurs. Using the method outlined above, we find perfect
agreement in any observables comparing results from our
OQS-TDDFT for very long decoherence times τdec → ∞
and from the conventional TDDFT propagation. Applying the
correction step, the number of electrons is conserved and no
unphysical kinks in the current density are observed (blue
lines in Fig. 11). Omitting this correction step, i.e., truncating
the basis (Ncb = 16) without using the auxiliary functions,
leads to an accumulated loss of �0.1% of the active electrons
in the system [Fig. 11(b)] corresponding to 〈hn|hn〉 � 10−7 for
all times and orbitals. Furthermore, it induces small saw-tooth
oscillations in the current density [red line in Fig. 11(a)].
Jumps of the current density indicate transitions between
neighboring �k points on our grid of precalculated approximate
Houston states.

APPENDIX B: BAND STRUCTURE OF DIAMOND

As mentioned in Sec. IV C we find reversal of the group ve-
locity of excited electrons for vector potentials much too small
to drive occupation from the � point to the Brillouin-zone
boundary (X). There, further increase of the field strength
would induce a jump from �k → −�k in addition to the (pos-
sible) sign change of the group velocity dε(k)/dk (Bloch
oscillation). For diamond we observe sign reversals of the
group velocity (intraband current) already at approximately
half the field strength necessary to induce Bloch oscillations.
Analysis of the band structure of diamond reveals narrow
avoided crossings at about half the distance between � and X
(Fig. 12) with small coupling strengths between neighboring
bands for laser polarization parallel to the � − X direction.
Carrier density reaching the avoided crossing will therefore
change the sign of its group velocity with large probability
and induce the oscillations observed in the intraband current
[Fig. 8(c)].
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