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Mobility edge of two interacting particles in three-dimensional random potentials
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We investigate Anderson transitions for a system of two particles moving in a three-dimensional disordered
lattice and subject to on-site (Hubbard) interactions of strength U . The two-body problem is exactly mapped into
an effective single-particle equation for the center-of-mass motion, whose localization properties are studied
numerically. We show that, for zero total energy of the pair, the transition occurs in a regime where all
single-particle states are localized. In particular, the critical disorder strength exhibits a nonmonotonic behavior
as a function of |U |, increasing sharply for weak interactions and converging to a finite value in the strong-
coupling limit. Within our numerical accuracy, short-range interactions do not affect the universality class of the
transition.
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I. INTRODUCTION AND MOTIVATIONS

Wave diffusion in disordered media can be completely
inhibited [1] due to interference effects between the multiple
scatterings from the randomly distributed impurities. This
phenomenon, known as Anderson localization, has been ob-
served for several kinds of wavelike systems, including light
waves in diffusive media [2,3] or photonic crystals [4,5],
ultrasound [6], microwaves [7], and atomic matter waves
[8,9].

In quantum systems, this effect appears through the spatial
localization of the wave functions. In the absence of magnetic
fields and of spin-orbit couplings, all states are exponentially
localized in one and in two dimensions, whereas in three
dimensions there exists a critical value Ec of the particle
energy, called mobility edge, separating localized from ex-
tended states. At this point the system undergoes a metal-
insulator transition [10]. Mobility edges have been reported
[11–13] in experiments with noninteracting ultracold atoms
in three-dimensional (3D) speckle potentials, and their mea-
sured values have been compared against precise numerical
estimates [14–18]. Interestingly, Anderson transitions have
also been observed [19] in momentum space, using cold
atoms implementations of the quasiperiodic quantum kicked
rotor, allowing for the first experimental test of universality
[20]. For a correlated disorder, mobility edges occur even
in lower dimensions, as recently observed [21] for atoms in
one-dimensional quasiperiodic optical lattices, in agreement
with earlier theoretical predictions [22,23].

While single-particle Anderson localization is relatively
well understood, its generalization to interacting systems,
called many-body localization, is more recent [24] and is
currently the object of intense theoretical and experimental ac-
tivities [25–27]. Perhaps surprisingly, even the problem of two
interacting particles in a random potential is still open. In a
seminal work [28], Shepelyansky showed that, in the presence
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of a weak (attractive or repulsive) interaction, a pair can
propagate over a distance much larger than the single-particle
localization length. It was later argued [29,30] that all two-
particle states remain localized in one and two dimensions (al-
though with a possibly large localization length), whereas in
three dimensions an Anderson transition to a diffusive phase
could occur even when all single-particle states are localized.
While several numerical studies [31–38] have confirmed the
claim for one-dimensional systems, the situation is much less
clear in higher dimensions, where the computational cost
limits the system sizes that can be explored. In particular,
an Anderson transition was predicted [39,40] to occur in two
dimensions (see also [41] for a recent study of the two-particle
dynamics in a similar model).

In this work we investigate Anderson transitions in a
system of two particles moving in a 3D disordered lattice and
coupled by on-site interactions. The particles can be either
bosons or fermions with different spins in the singlet state.
Based on large-scale numerical calculations of the transmis-
sion amplitude, we compute the precise phase boundary be-
tween localized and extended states in the interaction-disorder
plane, for a pair with zero total energy (well above the ground
state). Importantly, we find that the two-particle Anderson
transition is still described by the orthogonal universality
class.

In Sec. II we map exactly the two-particle Hamiltonian into
an effective single-particle model, Eq. (3), and compute the
associated matrix K. In Sec. III we explain how to extract the
reduced localization length of a pair with zero total energy
from transmission amplitude calculations performed in short
bars. We then identify the critical point of the Anderson tran-
sition via an accurate finite-size scaling analysis. In Sec. IV
we present the phase diagram for Anderson localization of the
pair in the interaction-disorder plane.

II. EFFECTIVE SINGLE-PARTICLE MODEL

The two-body Hamiltonian can be written as Ĥ = Ĥ0 +
Û , where Û = U

∑
m |m, m〉〈m, m| refers to the on-site
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(Hubbard) interaction of strength U and Ĥ0 is the noninter-
acting part. The latter can be written as Ĥ0 = Ĥ sp ⊗ 1̂ + 1̂ ⊗
Ĥ sp, where

Ĥ sp = −J
∑
n,i

|n + ei〉〈n| +
∑

n

Vn|n〉〈n| (1)

is the single-particle Anderson model. Here J is the tunneling
rate between neighboring sites, ei are the unit vectors along
the three orthogonal axes, and Vn is the value of the random
potential at site n. In the following we fix the energy scale
by setting J = 1 and assume that the random potential is
uniformly distributed in the interval [−W/2,W/2]. Then all
single-particle states are localized for W > W sp

c = 16.54 ±
0.01 [42,43].

The Schrödinger equation for the pair can be written as
(E − Ĥ0)|ψ〉 = Û |ψ〉, E being the total energy. Applying the
Green’s function operator Ĝ(E ) = (EÎ − Ĥ0)−1 to both sides
of this equation, we find

|ψ〉 =
∑

m

UĜ(E )|m, m〉〈m, m|ψ〉, (2)

showing that the wave function can be completely recon-
structed from the diagonal amplitudes fm = 〈m, m|ψ〉. By
projecting Eq. (2) over the state |n, n〉, we see that such terms
obey a close equation [44,45]:

∑
m

Knm fm = 1

U
fn, (3)

where Knm = 〈n, n|Ĝ(E )|m, m〉. Hence, for a given energy E
of the pair, Eq. (3) can be interpreted as an effective single-
particle Schrödinger problem with eigen-energy λ = 1/U .
The main purpose of this work is to compute the associated
mobility edge Uc(W ), for E = 0.

We start by considering a 3D grid with transverse size M
and longitudinal size L. Differently from the 3D Anderson
model, the matrix K of the effective Hamiltonian is dense and
its elements have to be calculated numerically by expressing
them in terms of the eigenbasis of the single-particle model,
Ĥ sp|φr〉 = εr |φr〉:

Knm =
N∑

r=1

φnrφ
∗
mr〈n|Gsp(E − εr )|m〉, (4)

where Gsp(ε) = (εI − H sp)−1 is the associated matrix resol-
vent, I is the identity matrix, and φnr = 〈n|φr〉. The eigenbasis
is calculated by imposing open boundary conditions along the
bar and periodic boundary conditions in the transverse direc-
tions. We see from Eq. (4) that the computation of the matrix
K requires N inversions of N × N matrices, N = M2L being
the total number of sites. The matrix inversion is efficiently
performed via recursive techniques [46], exploiting the block
tridiagonal structure of the Hamiltonian (1). This allows one to
reduce the number of elementary operations from N3, holding
for a general matrix, to M6L2. Hence the total cost for the
evaluation of K scales as M8L3, which broadly exceeds the
cost M6L of transfer matrix simulations for the same grid [42].
This drastically limits the system sizes that we can explore. In
our numerics we keep the length of the bar fixed to L = 150
and vary the transverse size M between 8 and 17.
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FIG. 1. Left panel: convergence study of the reduced localization
length �M = 1/(γ̄ M ) of the pair as a function of the position Nz

along the bar. Here γ̄ denotes the Lyapunov exponent, averaged over
Ntr = 701 different disorder realizations, while the length and the
transverse size of the bar are L = 150 and M = 12, respectively.
The upper curve is obtained by calculating the Lyapunov expo-
nent, for each disorder realization, via γ = −F (Nz )/(2Nz ), where
F is defined in Eq. (5). The lower curve is instead obtained by
fitting the data [nz, F (nz )] with nz = 10, 20, ..., Nz by a straight line,
ffit(nz ) = pnz + q, and setting γ = −p/2. Only the fitting method
yields converged results. The total energy of the pair is E = 0, while
the Hamiltonian parameters are W = 23.5 and U = 2. Right panel:
same analysis but for the single-particle Anderson model, Eq. (1), for
ε = 0 (middle of the band) and W = 16.5. The values of L, M, and
Ntr are the same as in the left panel. The dashed line corresponds to
the estimate �M = 0.5814 ± 0.0004 obtained from transfer-matrix
calculations performed on a bar of length L = 105 after averaging
over 240 disorder realizations.

III. NUMERICAL DETERMINATION OF THE
CRITICAL POINT

The logarithm of the transmission amplitude of the pair,
evaluated at a position nz along the bar, is given by [42]

F (nz ) = ln
∑

m⊥,n⊥

|〈m⊥, 1|Gp(λ)|n⊥, nz〉|2, (5)

where Gp(λ) = (λI − K )−1 is the matrix resolvent of the
effective model, m⊥ = (mx, my), and n⊥ = (nx, ny ). In the
limit L � M the function (5) approaches a straight line,
whose slope p determines the Lyapunov exponent γ according
to γ = −p/2. The reduced localization length, needed for
the finite-size scaling analysis, is defined as �M = 1/(γ̄ M ),
where γ̄ is the disorder-averaged Lyapunov exponent.

In order to extrapolate it to L → +∞ from our short
bar, we proceed as follows. For each disorder realization, we
evaluate F (nz ) at regular intervals along the bar and extract the
slope by a linear fit, ffit(nz ) = pnz + q. For a given position
Nz along the bar, we calculate the slope by fitting only data
points with nz � Nz. The results calculated for M = 12, W =
23.5, and U = 2 are displayed in the left panel of Fig. 1
(bottom data curve). We see that the curve is rather flat as Nz

approaches L, suggesting that our fitting procedure is correct
(see Supplemental Material [47]). For comparison, in Fig. 1
we also show (upper curve) the unconverged results obtained
by using p = F (Nz )/Nz (upper curve).
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FIG. 2. (a) Reduced localization length as a function of the interaction strength for increasing values of the transverse size M =
8, 10, 12, 15, 17 of the bar, calculated using the fitting method. The energy of the pair is E = 0 and the disorder strength is W = 23.5,
implying that all single-particle states are localized. The transition takes place at the point where all data curves with sufficiently large M
cross. (b) Zoom of the region containing the crossing points for the largest system sizes. To improve visibility, data points for M = 8, 10, 17
are connected by dotted lines. (c) Numerical determination of the critical point: the value UM , defined by �M (U = UM ) = �c, is plotted as
a function of M−b for M = 10, 12, 15. For the orthogonal class �c = 0.576 and b = 3.94 ± 0.6. The straight line represents a fit to the data,
whose intercept yields the critical value Uc = 2.16 ± 0.04.

The right panel of Fig. 1 presents the same analysis for
the single-particle Hamiltonian (1) at zero energy, ε = 0, and
W = 16.5. This is done by replacing Gp with Gsp in Eq. (5),
keeping unchanged the size of the bar as well as the number of
disorder realizations. The results based on the fitting method
agree fairly well with the very accurate estimate obtained from
transfer-matrix calculations (dashed line).

The critical point of the metal-insulator transition can be
identified by studying the behavior of �M as a function
of the interaction strength U and for increasing values of
the transverse size M. In the metallic phase, �M increases
with M, while in the insulating regime �M decreases for M
large enough. Exactly at the critical point �M becomes scale
invariant, that is, limM→+∞ �M = �c, where �c is a constant
of order unity, which only depends on the universality class
of the model and on the specific choice of boundary condi-
tions. For example, the Anderson model (1) belongs to the
orthogonal universality class, where �c,orth = 0.576 assuming
periodic boundary conditions in the transverse directions.

In Fig. 2 [panel (a)] we plot our numerical results
for the reduced localization length as a function of the
interaction strength for increasing values of M assuming
W = 23.5, so that all single-particle states are localized.
Since E = 0, the value of �M is independent of the sign of
U , so hereafter we assume U > 0. We see that interactions
favor the delocalization of the pair and lead to an Anderson
transition around U = 2.

Identifying the precise position of the critical point is
not straightforward, because the crossing point drifts towards
stronger interactions and upwards as M increases, due to
finite-size effects. Simulating systems with even larger values
of M is computationally prohibitive: the data for M = 17, ob-
tained by averaging Ntr = 470 disorder realizations, required
already 700 000 hours of computational time on a state-of-
the-art supercomputer, and the curve is not smooth.

As shown in the inset of Fig. 2 [panel (b)], the height
of the crossing point for the largest system sizes (couples
M = 12, 17 and M = 15, 17) becomes closer and closer to
�c,orth, suggesting that also the effective model for the pair
belongs to the orthogonal universality class. In this case, no

significant further drift is expected. To verify this hypothesis,
we need to compute the critical exponent ν related to the
divergence of the localization length at the critical point,
ξ ∼ |U − Uc|−ν , and compare it with the numerical value
νorth = 1.573 known [43] for the orthogonal class.

According to the one-parameter scaling theory of localiza-
tion and for large enough M, the reduced localization length
can be written in terms of a scaling function f as

�M = f [u(ω)M1/ν], (6)
where u is a function of the variable ω = (U − Uc)/Uc, mea-
suring the distance from the critical point. Close to it, we can
expand the scaling functions u and f in Eq. (6) in Taylor series
up to orders m and n, respectively, as u(ω) = ∑m

j=0 b jω
j and

f (x) = ∑n
j=0 a jx j . Following [43], we set b1 = 0, a1 = 0,

and a0 = �c. The coefficients a j and b j , as well as Uc and ν,
are then obtained via a multilinear fit. We extract the critical
exponent by fitting the (smoothest) data for M = 12 and M =
15 in the inset of Fig. 2 with the ansatz (6). The latter should in
principle include also irrelevant variables, describing the drift
of the crossing point. However, unlike Uc and �c, the value of
the critical exponent is much less sensitive to these variables.
For n = m = 2 we obtain ν = 1.64 ± 0.13, in full agreement
with the universal value. All other crossings yield consistent
results for ν.

Having found that on-site interactions do not change the
universality class of the transition, we can use this information
to estimate Uc. Let UM be the value of the interaction strength
at which �M (U = UM ) = �c,orth. For sufficiently large M,
one can show [48] that UM = Uc + aM−b, where a is a
numerical constant and b = 1/νorth + yorth. Here yorth is the
leading irrelevant variable, whose value is also universal and
given by yorth = 3.3 ± 0.6 [43]. In Fig. 2 [panel (c)] we show
that the values of UM extracted from our data curves for
M = 10, 12, 15 do vary linearly as a function of M−b. A linear
fit to the data then yields Uc = 2.16 ± 0.04.

IV. PHASE DIAGRAM

Next, we map out the phase boundary between localized
and extended states of the pair in the (U,W ) plane. For
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FIG. 3. Main panel: phase boundary between localized and ex-
tended states in the (U,W ) plane, computed for a pair with zero
total energy, E = 0. The dashed horizontal line corresponds to the
noninteracting limit, W = W sp

c = 16.54. The diagram holds for both
attractive and repulsive interactions. Inset: disorder-averaged density
of states ρK of the effective Hamiltonian of the pair calculated for
W = 23.5 using a cubic grid of sizes L = M = 20 with periodic
boundary conditions.

each value of the disorder strength, we calculate the reduced
localization length as a function of U for M = 10, 12, 15
and extrapolate the critical point from the scaling behavior of
the UM values. To save computer resources, we have limited
the number of disorder realizations resulting in larger error
bars for Uc. Moreover, for W � 21, we have calculated the
intercept by discarding also the data for M = 10, as the
relative deviation (UM − Uc)/Uc increases as W decreases.

The obtained results are displayed in Fig. 3. We see that the
Anderson transition for a pair with zero total energy occurs
in a region where all single-particle states are localized (see
also Supplemental Material [47]). For 23.7 � W � 25.9 the
system possesses two distinct critical points resulting in a
nonmonotonic behavior of the phase boundary. This is best
explained by calculating the disorder-averaged density of
states of the effective model, ρK (λ) = ∑

r δ(λ − λr )/N , λr

being the eigenvalues of the kernel K . The result for W =
23.5 is displayed in the inset of Fig. 3. We see that ρK is
strongly peaked at finite values of λ and exhibits vanishing
(power-law) tails. This can be understood starting from the
strongly disordered limit, W � 1. Since hopping terms can
be neglected, the kernel K becomes diagonal, Knm = δnm/

(E − 2Vn), implying that

ρK (λ) = 1

2W λ2



(
W −

∣∣∣∣E − 1

λ

∣∣∣∣
)

, (7)

where 
 is the unit step function. In particular, for E = 0
the density of states vanishes for |λ| < 1/W . Indeed, in order

to interact, the two particles must lie on the same site n,
so the total energy is given by E = U + 2Vn = 0, implying
|U | = 2|Vn| � W . Reducing the disorder strength allows for
tunneling between neighboring sites and leads to a finite value
of ρK (0), as shown in the inset of Fig. 3. From the above
discussion, one expects that weakly interacting states are the
first to be localized by disorder, whereas states with |U | ∼ W
are the most robust against localization, in agreement with the
phase diagram of Fig. 3.

It is worth mentioning that a nonmonotonic behavior of the
critical disorder strength versus U was also obtained for the
ground state of the Anderson-Hubbard model at finite fillings
in earlier theoretical studies [49,50] based, respectively, on the
dynamical mean-field theory and on the self-consistent theory
of localization.

While interactions favor the delocalization of pair states
with E = 0, their effect on tightly bound states, corresponding
to E � U → ∞, is the opposite. As discussed in Ref. [44],
these states obey the single-particle model (1) with renor-
malized disorder strength Wm = 2W and strongly reduced
tunneling rate Jm = 2J2/|U |, implying that they are localized
by a weak disorder, Wc = 16.54J2/|U |.

V. CONCLUSIONS AND PERSPECTIVES

To summarize, we have studied the localization properties
of two interacting particles in the 3D Anderson-Hubbard
model. Based on large-scale numerical calculations, we have
computed the phase boundary separating localized from ex-
tended states in the (U,W ) plane for zero total energy of the
pair. We have shown that the effective two-body mobility edge
lies in a region where all single-particle states are localized.
In particular, the critical disorder strength depends nonmono-
tonically on U and features a sharp enhancement for weak
interactions. We interpret this result from the behavior of the
disorder-averaged density of states of the effective model.

Our theoretical results can be addressed in current exper-
iments with ultracold atoms [51]. They also provide a solid
test bed for future studies of mobility edges in 3D many-body
systems. Finally, our numerical method can also be adapted
to investigate the localization of Cooper pairs in strongly
disordered superconductors [52,53].
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