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Robustness of delocalization to the inclusion of soft constraints in long-range random models
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Motivated by the constrained many-body dynamics, the stability of the localization-delocalization properties
to the inclusion of soft constraints is addressed in random matrix models. These constraints are modeled by
correlations in long-ranged hopping with the Pearson correlation coefficient different from zero or unity. Coun-
terintuitive robustness of delocalized phases, both ergodic and (multi)fractal, in these models, is numerically
observed and confirmed by the analytical calculations. First, the matrix inversion trick is used to uncover the
origin of such robustness. Next, to characterize delocalized phases, a method of eigenstate calculation, sensitive
to correlations in long-ranged hopping terms, is developed for random matrix models and approved by numerical
calculations and the previous analytical ansatz. The effect of the robustness of states in the bulk of the spectrum
to the inclusion of soft constraints is generally discussed for single-particle and many-body systems.
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I. INTRODUCTION

Absence of thermalization in interacting many-body quan-
tum systems has attracted significant interest and boosted
numerous studies of different possibilities to violate the
eigenstate thermalization hypothesis (ETH) both in static and
driven systems. The first and most developed way to do this is
to randomize system parameters by including disorder. This
phenomenon is called many-body localization (MBL) [1,2].
Like in a single-particle case of Anderson localization [3],
disorder induces destructive interference and provokes emer-
gent local integrals of motion [4,5] blocking the excitation
transport.

An alternative way to break ETH in absence of disorder
is to add some hard constraints to the many-body system,
that crucially reduce the Hilbert space by separating the
Hamiltonian into the disjoint subblock structure, see Fig. 1(a).
These hard constraints can be realized either by infinitely
strong interactions [6–9], additional integrals of motion
[10–12], or gauge invariance [13]. As a result, such hard
constraints produce special low-entanglement states (such as
many-body scars) in the bulk of the spectrum [6,7], giving sig-
nificant contribution to the typical infinite-temperature states
and revealing themselves via infinitely long-lived oscillations
in quenched observables [14]. However, in real life, none
of barriers is infinite. The effect of soft constraints on the
thermalization in such systems is nontrivial and under hot
debate nowadays as the finite-energy barriers between disjoint
Hilbert space subblocks might be prevailed at high tempera-
ture, Figs. 1(c) and 1(e).

For this reason, it is of fundamental importance to study
a simple model in which hard and soft constraints can be
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FIG. 1. Sketch of constraints in [(a), (c), and (e)] many-body
systems and [(b), (d), and (f)] random matrix models. Hard constraint
corresponds to (a) the infinite barrier U = ∞ between blocks of
Hamiltonian (shown pictorially as parabolic potentials) at any tem-
perature T and (b) the absence of any fluctuations j0/ j̃ = ∞ in long-
ranged hopping in random matrix analogs. The opposite limit of very
small constraint allows large fluctuations in both cases [(c) and (d)]
due to small ratios U/T � 1 and j0/ j̃ � 1. The most nontrivial case
of soft constraint with finite but large barrier U/T � 1 and j0/ j̃ � 1
(e) provides the way to overcome the barrier with a thermal-activated
rate in the many-body case and (f) suggests that delocalization is
determined by the width of the distribution (Peff ), but not by its peak
position (P).
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easily realized and corresponding localization properties can
be precisely investigated. This would provide efficient criteria
to characterize the effects of soft constraints in generic cases.

The straightforward analog of hard constraints in single-
particle systems is given, e.g., by fully correlated long-
ranged hopping in random matrix models [15–19]. Indeed,
in these models, the complete correlations of all hopping
terms, Fig. 1(b), impose the hard constraints like in the case
of many-body scars and localize the states in the bulk of
the spectrum. However, due to the single-particle nature of
these systems, all states in the spectral bulk become localized
[20]. Soft constraints in this case can be easily realized by
considering partial correlations of long-ranged hopping with
noninteger Pearson correlation coefficient. In this work, we
consider such single-particle disordered models with partially
correlated long-ranged hopping, Figs. 1(d) and 1(f), investi-
gate both numerically and analytically their eigenstate statis-
tics and phase diagrams, and reveal unexpected robustness of
delocalized phases to soft constraints, Fig. 1(f).

In most random matrices, the delocalized side of the local-
ization transition (corresponding to ETH in many-body sys-
tems) is represented by Gaussian Wigner-Dyson ensembles
[21]. One of most well-known examples of a d-dimensional
random matrix model confirming this statement and demon-
strating the Anderson localization transition (ALT) at any d
(including d � 2) is the power-law random banded matrix
ensemble (PLRBM) [22],

Ĥ = ε̂ + ĵ, ε̂ =
∑

n

εn|n〉〈n|, (1a)

ĵ =
∑
m,n

jmn|m〉〈n| , (1b)

written in d-dimensional basis of N lattice sites |n〉. This
model is characterized by the independent Gaussian dis-
tributed hopping terms jmn, with the standard deviation
〈 j2

mn〉1/2 ∝ |m − n|−a power-law decaying at large distances
|m − n| � 1 and its ALT is governed by the decay exponent
a responsible for the ratio of the on-site disorder εn = Hnn

[23] and hopping terms. The system shows ergodic (localized)
wave-function statistics for a < d (a > d), while the ALT
point a = d is characterized by so-called nonergodic extended
(multifractal) wave functions typical for the ALT phase dia-
gram at the criticality [24,25].

However recently there have been found several models
showing the whole nonergodic extended phases, see, e.g.,
Refs. [19,26]. The milestone random matrix example in
this row is the Rosenzweig-Porter ensemble (RP) [27]. This
nominally 1d model has infinitely long-ranged independent
Gaussian distributed hopping elements with the N-dependent
variance 〈 j2

mn〉 ∝ N−γ and apart from the ALT transition
at γ = 2 [28–34], it exhibits an ergodic transition (ET) at
γ = 1 from the ergodic phase (γ < 1) to a whole phase of
nonergodic extended states (1 < γ < 2) characterized by a
nontrivial fractal support set [35,36] of wave functions [26]
with the fractal Hausdorff dimension D = 2 − γ , 0 < D < 1.
This behavior has been further confirmed by several analytical
and numerical papers [37–45].

The question of constraints (hopping correlations) im-
posed in both above mentioned models has been considered

recently in Ref. [19]. Indeed, the new paradigm of the ALT
suggested there states that hopping correlations 〈 jmn jm′n′ 〉 −
〈 jmn〉〈 jm′n′ 〉 	= 0 shrink in general an ergodic phase towards
smaller disorder strengths extending both localized and multi-
fractal phases. In the case when all hopping integrals are fully
correlated (with unit Pearson’s coefficient), the localization
at any disorder strength is restored [15,18,46] similar to the
case of the short-range Anderson model in d = 1, 2 [3,47].
An example of such random matrix models with fully cor-
related hopping elements jm 	=n = C|m − n|−a, decaying with
the distance |m − n| as a power-law like in PLRBM, has been
suggested in a seminal paper by Burin and Maksimov (BM)
[15]. The infinitely long-ranged limit of this model (analogous
to RP) with complete correlations between hopping terms
jmn = CN−γ /2 has been shown to be exactly integrable by
Yuzbashyan and Shastry (YS) [16,17]. Both these models
demonstrate localization for all eigenstates, except measure
zero, for all values of parameters a and γ . Note that the
statistics of the site-independent scalar C ∼ 1 does not play
any role here.

A representative type of correlations considered in
Ref. [19] is the hard constraint (correlations with Pearson’s
coefficient +1) of certain pairs, (m, n) and (m′, n′), of hop-
ping terms,

jmn/ jm′n′ = f (m, n)/ f (m′, n′) > 0 . (2)

Here, f (m, n) > 0 is the deterministic function of indices
m, n, and possibly of the system size N . For uncorrelated
models (like PLRBM and RP) the pairs are only (m′, n′) =
(n, m), while in fully correlated examples (BM and YS) all
pairs of (m′, n′) and (m, n) are involved. In the intermediate
translation-invariant case, |m′ − n′| = |m − n| [20].

In this paper, we address a complimentary aspect of soft
constraints, namely, partial hopping correlations of all pairs
of hopping terms

0 < 〈 jmn jm′n′ 〉 <

√〈
j2
mn

〉〈
j2
m′n′

〉
. (3)

For this we consider both PLRBM and RP models with
finite hopping average values that interpolate between original
uncorrelated PLRBM and RP ensembles and their fully corre-
lated counterparts, BM and YS models [48]. The unexpected
stability of the delocalized phases to soft constraints in both
cases is demonstrated. The delocalization is shown to survive
even for relatively narrow distributions with mean values j0

much larger than the width j̃, see Fig. 1(f). The positions of
the ALT and possible ET are shown to be governed solely by
the distribution width j̃, but not by relative fluctuations j̃/ j0,
see Fig. 2 and Peff in Fig. 1(f). This brings us to the conclusion
that soft constraints added to the initially delocalized phase
do not break delocalization of any state in the bulk of the
spectrum, Fig. 1(e), even if the hard constraint does, Fig. 1(a).

In order to uncover the origin of this counterintuitive result,
we first use the matrix inversion trick suggested in Ref. [19]
to rewrite the eigenproblem in the coordinate basis in an
alternative way. Furthermore we develop the self-consistent
method of eigenvector calculation based on the averaging
over off-diagonal matrix elements, allowing one to access
wave-function statistics and, in particular, confirming the
phenomenological ansatz known in the literature for RP
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FIG. 2. Phase diagram of RP model with partial correlations
(5) with average hopping j0 ∼ N−γ0/2 and its standard deviation
j̃ ∼ N−γ̃ /2. (left) Both the Anderson localization transition, γeff =
2, and the ergodic transition, γeff = 1, are governed solely by γ̃ ,
while γYS = max(γ0, 2) (12) affects wave-function profile only in
the localized phase at γYS < γ̃ . Right panels show the behavior of
γeff along different cuts (I-IV) shown in left panel.

ensemble [42–44] (see also Ref. [38]). Unlike the stan-
dard renormalization group analysis [22,49] or the Wigner-
Weisskopf approximation [42] used in the literature before,
this self-consistent method is sensitive to the hopping cor-
relations. In the current problem, the full ALT diagram of
previously mentioned models is calculated with help of these
methods.

The rest of the paper is organized as follows. In Sec. II, we
formulate the random matrix models in the focus. Section III
shows how the naive guess for the behavior of these models
fails, and provide numerical results along with localization-
delocalization phase diagrams. Section IV describes the ma-
trix inversion trick which explains the behavior of these
models and allows us to uncover the origin of unexpected
stability of delocalized phases. In Sec. V, we demonstrate
the self-consistent method of eigenfunction calculation on the
example of RP ensemble with finite mean hopping values. In
Conclusion, we sum up our results and give an outlook.

II. MODELS

Throughout the text we focus on the generalized Ander-
son’s single-particle model with long-ranged hopping terms,
represented by the Hamiltonian (1). The uncorrelated diag-
onal disorder is given by independent identically distributed
random on-site energies εn with zero mean and fixed variance

〈εn〉 = 0 ,
〈
ε2

n

〉 = W 2. (4)

The summation in (1b) is taken over pairs of sites m, n
coupled by hopping integrals

jmn = j∗nm = j0(|m − n|) + hmn j̃(|m − n|) , (5)

characterized by the distant-dependent mean and standard
deviation values, respectively,

〈 jmn〉 = j0(|m − n|) , σ j = j̃(|m − n|) , (6)

where σ 2
j = 〈 j2

mn〉 − 〈 jmn〉2. For simplicity, we restrict our
consideration to d = 1, unless stated otherwise. Here and
further, we denote by hmn i. i. d. random variables with zero
mean 〈hmn〉 = 0 and unit variance 〈|hmn|2〉 = 1.

The PLRBM and RP ensembles correspond to j0 = 0 and

j̃PLRBM = 1

|m − n|ã and j̃RP = N−γ̃ /2 , (7)

respectively, while for BM and YS models in contrast j̃ = 0,

j0
BM = 1

|m − n|a0
, and j0

YS = N−γ0/2 . (8)

As infinitely long-ranged models (like RP and YS) do not
have the notion of distance, the main tool used to characterize
the properties of their delocalized and localized phases is the
standard multifractal (MF) analysis. This analysis is based on
the spectrum of fractal dimensions [50]

f (α) = 1 − α + lim
N→∞

ln[P(|ψE (n)|2 = N−α )]/ ln N , (9)

defined via the distribution of wave-function amplitudes
P(|ψE (n)|2) with the N scaling of eigenfunctions |ψE (n)|2 ∝
N−α , see Fig. 3.

Other long-ranged models (like PLRBM and BM) provide
additional tools, e.g., the spatial decay of eigenfunctions with
the distance |n − n0| from its maximal value at n = n0 [18,19]
given by the typical wave-function decay, see Fig. 4,

|ψE (n)|2typ ≡ exp[〈ln |ψE (n)|2〉] ∼ |n − n0|−aeff . (10)

Here 〈. . .〉 denotes the average over disorder and over eigen-
states in the middle of the spectrum. The energy level statistics
(see, e.g., Ref. [51]) as basis-invariant characteristics gives the
definite information about the fully ergodic (Wigner-Dyson)
phase and the phase localized in a certain basis with the
Poisson level statistics [19,52].

For RP model, the spectrum of fractal dimensions f (α) is
shown to be linear in α = − ln |ψE (n)|2/ ln N for γ̃ � 1, with
the slope 1/2 [26]

f (α) =
{

1 + (α − γ̃ )/2, αmin < α < γ̃

−∞, α < αmin or α > γ̃
, (11)

and an additional point f (0) = 0 for γ̃ > 2. Here, αmin =
max(0, 2 − γ̃ ). The f (α) in the ergodic phase, γ̃ < 1, co-
incides with the one at γ̃ = 1 and is represented by the only
point f (1) = 1 [26].

The Yuzbashyan-Shastry (YS) ensemble (or as sometimes
called the Type-I model) [16–18,46,53] characterized by de-
terministic infinitely long-range hopping terms jmn = j0gmgn,
with the constants gm ∝ O(1) of order of one, is exactly
integrable [16,17] and known to have all localized states
for j0 < 1/N and all, except one, localized states for j0 >

1/N [17,19,46,53]. The generalization of this ensemble to
N-dependent hopping elements (8) shows a single-site local-
ized phase for γ0 > 2 and a critical behavior at γ0 < 2 with
the spectrum of fractal dimensions given by (11) with γ0

replaced by the following expression [19] (see Appendix A
for analytical derivations)

γYS = max(γ0, 2) � 2 . (12)
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FIG. 3. Spectrum of fractal dimensions f (α) of RP model with partial correlations (5) for different scaling of the average hopping j0 ∼
N−γ0/2 and its standard deviation j̃ ∼ N−γ̃ /2. The finite-size data are numerically extrapolated to infinity from system sizes N = 29 . . . 214 with
Nr = 103 disorder realizations in each. Dashed lines show analytical predictions (11) and (17a) for f (α). (a) The naively expected case of small
γ̃ < γ0, 2 with fluctuations j̃ � j0 dominating over correlated hopping j0 and determining the corresponding delocalized phase by γeff = γ̃ .
(b) The case of large γ̃ > γ0, 2 where correlated hopping dominates j0 � j̃ and localized the system with γeff = γYS = max(γ0, 2) � 2.
(c) Nontrivial case min(γ0, 2) < γ̃ < max(γ0, 2) showing the dominant correlated hopping j0 � j̃, with the phase governed solely by γeff = γ̃ .

PLRBM undergoes the ALT at a = 1, showing ergodic behav-
ior at a < 1 and power-law localization at a > 1 [24,25], with
the decay rate equal to the parameter a

|ψE (n)| ∝ |ψE (n0)|/|n − n0|a (13)

at the large distance |n − n0| � 1 from the maximal point n0,
maxn |ψE (n)| = |ψE (n0)|.

In BM model [15,18,19,46,54–57], the fully correlated
counterpart of PLRBM, which is determined by the Hamil-
tonian (1) with the hopping elements (8), all, except measure
zero of the states, are power-law localized (13) in the entire
region of the parameter a. However, the power-law decay rate
aBM is not equal to a, but instead is always larger than one (see
Refs. [18,19] for details)

aBM = max(a, 2 − a) � 1 . (14)

III. INTUITIVE GUESS AND NUMERICAL RESULTS

What would be the phase diagram for general models (1–6)
with both finite mean j0 and fluctuating j̃ hopping terms? For
the first glance, it is natural to expect that the behavior of un-
correlated models (7) should be dominant as soon as j̃ � j0

(γ̃ < γ0 or ã < a0) as the distribution of hopping elements is
relatively wide and nearly centered at zero, see Fig. 1(d), and
vice versa the models with deterministic hopping (8) should
dominate at j̃ � j0 (γ̃ > γ0 or ã > a0) when the distribution
is relatively narrow and its width can be neglected, Figs. 1(b)
and 1(f).

However, this is not the case. Indeed, from the numerical
calculations, one can see that these models undergo the ALT
(and the ET for RP case) at the same points as their uncor-
related counterparts: γ̃ = 2 (γ̃ = 1) and ã = 1 irrespective to
the amplitude j0 as if all mean values are zero, j0 = 0, Fig. 2.
Moreover, the wave-function statistics of such models in all

FIG. 4. Typical wave-function spatial decay ln |ψE (n)|2typ = 〈ln(|ψE (n)|2〉 vs n for PLRBM model with partial correlations (5) for different
power-law decay rates of the average hopping j0

n ∼ |n|−a0 and its standard deviation j̃n ∼ |n|−ã. The data are numerically calculated for the
system size N = 214 and Nr = 103 disorder realizations. Dashed lines show analytical predictions (13, 17b) of this power-law decay. Panels
show the cases similar to ones in Fig. 3: (a) small ã < 1, a0 with dominant fluctuations j̃ � j0 leading to the expected ergodic phase and aeff =
ã; (b) large ã > a0, 2 − a0 where correlated hopping dominates j0 � j̃ and the localized phase is governed by aeff = aBM = max(a0, 2 − a0 );
(c) nontrivial case min(a0, 2 − a0 ) < ã < max(a0, 2 − a0 ) of dominant correlated hopping j0 � j̃ governed solely by aeff = ã. The data with
ã < 1 in panels (a) and (c) are shifted with respect to each other for clarity.
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phases, Figs. 3 and 4, coincides with the one of a simple
mixture of two uncorrelated long-ranged hopping models of
the type (7), with hopping terms

jmn = hmn j̃(|m − n|) + h0
mn j̃0(|m − n|) , (15)

where the function j̃0(|m − n|) is described by (8) with the
parameters γ0 and a0 of fully correlated models (YS and BM)
replaced by their effective values (12) and (14), respectively.
Thus, in the leading approximation, one can replace the
mixture of hopping elements by their maximum

jmn = hmn max[ j̃(|m − n|), j̃0(|m − n|)] (16)

and map the model with partial correlations to the one with
zero mean (equivalent to RP and PLRBM) and parameters γ

and a in Eqs. (11) and (13) replaced by effective ones

γeff = min(γ̃ , γYS) = min(γ̃ , max(γ0, 2)) , (17a)

aeff = min(ã, aBM) = min(ã, max(a0, 2 − a0)) . (17b)

This is the main result of this paper shown here numerically,
Figs. 3 and 4, and confirmed further analytically.

The qualitative explanation of this unexpected stability of
delocalized states originates from the fact that the models with
deterministic long-range hopping terms (like YS and BM)
demonstrate only localized eigenfunction statistics in the bulk
of the spectrum, but never delocalized. As a result, in the
mixture these fully correlated models can compete with their
uncorrelated counterparts only in the localized phase, ã > 1
or γ̃ > 2, Fig. 2, affecting the wave-function spatial profile in
the locator expansion [3,49,58] (see also Ref. [19] for more
detailed discussion). In terms of soft constraints, this means
that, as soon as typical states in the spectral bulk are consid-
ered, the infinite temperature corresponding to them prevail
over the finite barrier of soft constraint between previously
disjoint subblocks of the Hamiltonian and brings the system
to the phase where it was before imposing constraints.

To understand the origin of the above mentioned be-
havior of partially correlated models (3), summarized in
Eqs. (15)–(17a), in the next section, we describe a matrix
inversion trick [19] providing an alternative representation of
the eigenproblem and apply it to the mixture of YS and RP
model as an example.

IV. MATRIX INVERSION TRICK

Here we restrict our consideration of the matrix inversion
trick to the case of the mixture of RP and YS models (for the
mixture of PLRBM and BM models please see Appendix B).
For the first time, this method has been suggested by us in
Ref. [19] to analytically prove the duality of the eigenfunc-
tion power-law decay in the 1d BM model (14) numerically
discovered in Ref. [18] and to generalize both Anderson
localization [3,49,58] and Mott ergodicity [59] principles
for the models with correlated hopping. However recently
there have been found several many-body [60,61] and higher-
dimensional, d > 1, single-particle models [62,63], applied
to which this method easily uncovers their phase diagrams
and the wave-function structure by the extension the locator
expansion validity range.

(a) (b)

FIG. 5. Sketch of the spectrum of deterministic hopping (18),
(a) diverging from either (solid blue line) or both (blue and yellow
lines) sides, but has a finite gap, and (b) spectrum of the inverse
matrix M̂ (19) with diminished divergence(s).

Let’s first consider the pure deterministic (BM or YS)
model (8). The matrix inversion trick is based on the spectral
properties of the hopping matrix

ĵ0 =
∑
〈m,n〉

j0(|m − n|)|m〉〈n| ≡
∑

p

j0
p|p〉〈p| (18)

diagonalized in a certain basis |p〉 (momentum basis for BM
model). If the spectrum j0

p of this matrix diverges from either
side in the thermodynamic limit (e.g., j0

max = maxp j0
p → ∞

for N → ∞ and j0
min = minp j0

p is finite) or even from both
sides, but has a finite spectral gap, see Fig. 5(a), one can
diminish the effect of these divergent terms to the hopping
elements, inverting the matrix (1 + ĵ0/E0) ≡ M̂−1

M̂ = (1 + ĵ0/E0)−1 =
∑

p

|p〉〈p|
1 + j0

p/E0
. (19)

This matrix inversion sends the diverging top-spectrum (or
edge-spectrum) terms close to j0

max to the denominator of the
sum while the condition E0 + j0

min > 0 avoids the divergence
of the contributions from the bottom (or states close to the
gap) of the spectrum, see Fig. 5(b). The optimization of
E0 ∼ Nβ over the parameter β [19] gives the smallest effective
hopping terms at β = 0 in the whole parameter range (please
see Appendix B for details).

After the matrix inversion trick the problem takes the form

[(1 + ĵ0/E0)−1(E − ε̂ + E0) − E0]|ψE 〉 = 0 . (20)

The diagonal part M0 of the matrix (1 + ĵ0/E0)−1
m,n = Mm−n

forms effective on-site disorder M0εn and eigenvalue M0(E +
E0) − E0 of the problem, while the hopping terms are formed
by Mm−n 	=0(E − εn + E0).

The main idea behind this matrix inversion trick uses the
fact that the eigenstates with large hopping energies | j0

p| � 1
are barely affected by the disorder ε̂. Thus they nearly coin-
cide with those hopping matrix eigenstates |p〉 that give the
main contribution to (18). All other eigenstates corresponding
to small hopping energies | j0

p| ∼ O(1) are orthogonal to these
large-energy states at the spectral edge and thus almost or-
thogonal to the main contribution to the hopping matrix given
by them. As a result the states in the bulk of the spectrum
“see” the hopping terms Mm−n 	=0(E − εn + E0) which are
significantly reduced compared to the initial ones j0

m−n.
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For the case of YS model the rank-1 matrix ĵ0 has the
only nonzero eigenvalue j0

p=0 = N1−γ0/2 corresponding to the
zero-momentum state 〈n|0〉p = N−1/2 with arbitrary rest basis
states |gk 	=0〉 orthonormal to |0〉p [64].

The same matrix inversion trick (20) can be applied as well
to the model (6) with partial correlations (3)

[(1 + ĵ0/E0)−1(E − ε̂ − ˆ̃j + E0) − E0]|ψE 〉 = 0 , (21)

where we inverse only the deterministic hopping part with the
semi-infinite spectrum.

As a result Eq. (21) takes the predicted form of Eq. (15)

[ε̂ + ˆ̃j + ˆ̃j0 + r̂]|ψE 〉 = E |ψE 〉 . (22)

with the fluctuating elements of the matrix ˆ̃j0

j̃0
mn = − E − εn + E0

N + E0Nγ0/2
∼ N−γYS/2 , (23)

which do not break the locator expansion and the residual term
r̂ small compared to ˆ̃j

rmn =
∑

l j̃ln
N + E0Nγ0/2

∼ N (1−γ̃ )/2

N + E0Nγ0/2
� j̃mn . (24)

In Eq. (23), γYS is given by (12). This derivation confirms our
numerical observation (15) and concludes this section. The
consideration of the mixture of PLRBM and BM models is
addressed in Appendix B.

To sum up, in this section, we have shown that the effective
locator expansion result [19] analogous to (13) is applicable in
the case of the RP-YS mixture to calculate the wave function
in the whole localized phase coinciding with the one of the
uncorrelated model (γ̃ > 2) at any γ0, Fig. 2. To calculate the
wave-function statistics in all phases, including delocalized
ones, in the next section we develop a self-consistent method
sensitive to hopping correlations.

V. SELF-CONSISTENT EIGENSTATE CALCULATION

In this section, we consider the self-consistent method of
the wave-function calculation, generalizing the perturbation
theory. For simplicity, we restrict our consideration to the
mixture of RP and YS ensembles. For more general analysis,
please see Appendix C. Separating hopping terms jmn = j0 +
hmn j̃ (5) in the Hamiltonian (1) into deterministic j0 = j0

Y S =
N−γ0/2 (8) and fluctuating j̃ = j̃RP = N−γ̃ /2 (7) parts in the
eigenproblem

(En − εk )ψEn (k) = j0
∑

l

ψEn (l ) + j̃
∑

l

hklψEn (l ) , (25)

one can formally write its solution

ψEn (k) = ψEn (n)
Jkn

εn − εk + Jnn
, (26a)

Jkn ≡ an + Pkn + j̃hkn . (26b)

in terms of the sums

an = j0
∑

l

ψEn (l )/ψEn (n) , (27a)

Pkn = j̃
∑
l 	=n

hklψEn (l )/ψEn (n) (27b)

and En − εn = Jnn given by (26b), that should be calculated
self-consistently. Here and further we choose the index n in
the energy En in such a way that in absence of off-diagonal
elements j0 = j̃ = 0 the wave function is localized at k =
n, ψEn (k) = δk,n, with the energy En = εn.

Averaging (26) over the hopping elements hmn with fixed
bare energies εn gives the following expression for the wave-
function intensity

〈∣∣ψEn (k)
∣∣2〉

hkn
∼

〈∣∣ψEn (n)Jkn

∣∣2〉
(εn − εk + 	En)2 + 
2

n

. (28)

Here we assume that the sums Pmn and an are self-averaging
and thus they are uncorrelated from each other and from hkl .
For RP model itself this approximation of self-averaging over
hopping terms has been used in several papers [37,38] and
confirmed there by other methods. The fluctuating energy
shift Jnn = En − εn after this averaging leads both to the
energy shift 	En and the level broadening 
n in Eq. (28).
Both 	En and 
n are of the same order as En − εn and
in principle contain contributions from all cumulants of Pnn

and an, however for our analysis it is enough to consider
only mean values and the first-order perturbation theory term
j̃hnn with standard deviation j̃ taken into account (for further
details see Appendix C)


n � 〈an〉 + 〈Pnn〉 + j̃ . (29)

Here, 
n plays a role of the level broadening. This level
broadening determines the size of the miniband of almost
fully correlated eigenfunctions like in RP model [26,44]. The
factor 〈|ψEn (n)Jkn|2〉 in the numerator of Eq. (28) guarantees
the wave-function normalization and not important for the
wave-function statistics.

Focusing on the N scaling of 
n ∼ 	En one can show
that the localized state realizes at 
n smaller than the mean
level spacing δ � W/N of the model without hopping, the
ergodic state corresponds to 
n large compared to the bare
band of the system W ∼ O(1), while the fractal phase appears
at intermediate values:


n � δ ⇔ localized phase
δ � 
n � Nδ ∼ W ⇔ fractal phase

n � Nδ ⇔ ergodic phase . (30)

In order to estimate the scaling of the level broadening
and identify, the corresponding phases one can make use of
the self-consistent equations for Pkn and an which could be
obtained by substituting expressions (26) for ψEn (k) and En to
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(27). The resulting equations read as

an = j0

⎛
⎝1 +

∑
l 	=n

an + j̃hln + Pln

εn − εl + Jnn

⎞
⎠ , (31a)

Pkn =
∑
l 	=n

j̃hkl (an + Pln + j̃hln )

εn − εl + Jnn
. (31b)

The next essential step is to average these equations over
hnm relying on the above-mentioned self-averaging properties
of these sums. As a result, Eqs. (31) take the form

〈Pkn〉 = j̃2S1δk,n , (32a)

〈an〉 = 1

( j0)−1 − S1
∼ min

(
j0, S−1

1

)
, (32b)

with the sum S1 given by

S1 =
∑

l

1

εn − εl + 
n
. (33)

The latter can be calculated, e.g., in two limiting cases of
(i) the completely rigid spectrum εn − εm = (n − m)δ, with
δ being a bare mean level spacing without hopping, and
(ii) the Poisson statistics of εn. Up to prefactors unimportant
for the multifractal analysis S1 takes the form

S1(
n) ∼
{

1/δ 
n � Nδ

N/
n 
n � Nδ
. (34)

Considering cases (30) and substituting (34) into (32) and
(29) one easily obtains the result up to prefactors O(1)


n ∼
⎧⎨
⎩

N− min(γ̃ ,γYS )/2 γ̃ > 2, localized
N1−γ̃ 1 < γ̃ < 2, fractal
N (1−γ̃ )/2 γ̃ < 1, ergodic

, (35)

with γYS = max(γ0, 2) given by (12).
Comparison of the resulting 
n with the one of the RP

model shows the same N scaling with the parameter γ̃ re-
placed by γeff from Eq. (17a). One can also check it by the
direct calculation of the multifractal spectrum. Indeed, the
resulting approximate wave function (28) scales as

〈∣∣ψEn (k)
∣∣2〉

hkn
∼ N−γ̃ + N−γYS

N−p + 
2
n

, (36)

where the scaling of 	En ∼ 
n is given by (35) and we
parameterized (εn − εk ) ∼ N−p/2 with the parameter p. For
a certain distribution of the diagonal terms εn with the width
W ∼ O(1) the scaling of the probability reads as

P(εn − εk )dεn = P(N−p/2)N−p/2d p ∼ N−p/2d p (37)

for positive p > 0 as P(εn → 0) ∼ O(1). For negative p < 0
the probability is at least exponentially small in εn and thus,
for multifractal analysis one should neglect it focusing on
p � 0. As a result the spectrum of fractal dimensions

N f (α)−1dα = P
(∣∣ψEn

∣∣2 ∼ N−α
)
d
(∣∣ψEn (k)

∣∣2)
(38)

can be found from the expression

N f (α)−1dα = dP

(
N−α ∼ N−γ̃ + N−γYS

N−p + 
2
n

)

= max
p>0

N−p/2dα , (39)

where the maximization in right-hand side is taken with
respect to the condition N−α ∼ (N−γ̃ + N−γYS )/(N−p + 
2

n ).
The maximal probability is given by the condition 0 < p <

−2 ln 
n/ ln N leading to p = γeff − α and to the result (11)
with γeff given by (17a). Moreover the boundaries 0 < p <

−2 ln 
n/ ln N provide the correct bounds for α

max(0, 2 − γeff ) < α < γeff . (40)

This analysis confirms numerical results shown in Fig. 3
and concludes this section. Note that the method developed
in this section is powerful and accurate for the multifractal
analysis as one can take into account cumulants of any order
of the sums (31) fluctuating with the hopping terms and
sensitively distinguish models with slightly different hopping
correlations.

VI. CONCLUSION AND DISCUSSIONS

To sum up, in this work we address the effect of soft
constraints on the phase diagram of random matrix models
with long-ranged correlated hopping. We demonstrate unex-
pected robustness of the delocalized phases to partial hop-
ping correlations imposed by soft constraints and determine
wave-function statistics and corresponding phase diagrams of
milestone disordered long-range models, power-law banded
random matrix and Rosenzweig-Porter ensembles. This main
result (17) is confirmed by both numerical calculations and
two analytical approaches. The matrix-inversion trick devel-
oped in Ref. [19] uncovers the effective Hamiltonian (22) and
confirms the wave-function behavior in the localized phase.
The self-consistent method allows to calculate wave-function
statistics in delocalized phases as well and confirm the main
result of the paper.

A parallel drown between constrained random-matrix
models and many-body systems, brings us to the conclu-
sion that in general soft constraints added to the initially
delocalized phase do not break delocalization of any typical
(infinite temperature) state, even if the hard constraint does.
Indeed, the infinite temperature corresponding to the typical
states in the spectral bulk prevail over the finite barrier of
soft constraint between previously disjoint subblocks of the
Hamiltonian and brings the system to the phase where it
was before imposing constraints. However, the relations of
slow-dynamics phenomena [65] to hard and soft constraints
both in many-body systems [6–13,66–69] and in closely re-
lated single-particle disordered models [44,70] is still under
debates and consideration. The question of the dynamics and
relaxation of highly nonlocal operators [71] is also in the focus
of the research in the community.

Another intriguing question is how the interplay between
partial correlations in hopping and interaction amplitudes
could affect localization properties in many-body systems
with either or both hopping and interaction terms being long-
ranged in the coordinate space. Specifically, the limiting fully
correlated case of the interacting version of Burin-Maksimov
model was recently analyzed in Refs. [60,72–76], and the
opposite situation without any constraints was considered in
details in Refs. [77–82]. However, the intermediate regime
represented by both finite means and dispersion in distribution
functions of matrix elements needs deep consideration.
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Finally, in order to more precisely investigate the role of
partial correlations in long-range random matrix models, it
would be insightful to construct the corresponding effective
field-theoretic description with imposed soft constraints. For
instance, this approach may naturally incorporate ergodicity-
breaking phenomena in gauge-invariant lattice models [13].
Although the desirable theory is more technically involved
than usual super-symmetric nonlinear sigma model due to
finite means of hopping and effective nonlocality, several
attempts were made to describe systems with correlations
in off-diagonal terms [53,83]. Moreover, so-called “virial
expansion” for almost diagonal random matrices developed
in Refs. [84,85] seems to be a suitable candidate for an
appropriate representation of constrained models with disjoint
subblocks in Hilbert space.
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APPENDIX A: YUZBASHYAN-SHASTRY MODEL

1. Model

Consider an ensemble of random N × N Hermitian matri-
ces

H0 = diag ε + j0gT g∗ , (A1)

with a random real vector ε = (ε1, . . . , εN ) and determin-
istic complex vector g = (g1, . . . , gN ) with N-independent
elements. εi are statistically independent entries with a zero
mean and a unit variance

〈εk〉 = 0,
〈
ε2

k

〉 = 1, (A2)

while j0 scales with the matrix size N as j0 ∝ N−γ0/2. Note
that the translation-invariant case of g = (1, . . . , 1) corre-
sponds to the finite mean j0 of the hopping elements (plus
additional unimportant shift of energy).

As type-1 Hamiltonian [16,17] H0 provides an exact eigen-
problem solution [16]

ψEn (k) = Cn
g∗

k

En − εk
, (A3)

with the (possibly N-dependent) normalization constant Cn =
j0 ∑

m gmψEn (m),

|Cn|−2 =
∑

k

|gk|2
(En − εk )2

, (A4)

and the secular equation for the spectrum E = En∑
m

|gm|2
E − εm

= 1

j0
∼ Nγ0/2 , (A5)

giving all eigenvalues (except the highest one EN > εN ) lying
between adjacent bare levels

εm < Em < εm+1 . (A6)

Here we assumed εm to be ordered in ascending order εm <

εm+1, m = 1, N − 1. Note that this model includes the limit-
ing case a = 0 of long-range deterministic hoppings consid-
ered in Ref. [18] both for positive (gm = 1) and staggering
(gm = (−1)m) hopping elements.

2. Spectral statistics

To find the spectrum En, one should consider the secular
equation in more details. Let’s assume that all gk are of the
same order gk � g ∼ N0 and consider the variation of En from
its bare value εn as


n = En − εn, 0 � 
n < εn+1 − εn . (A7)

Separating positive and negative summands of the sum
(A5) for E = En, we obtain

1

j0
= |gn|2


n
+

∑
k>0

[ |gn−k|2
εn − εn−k + 
n

− |gn+k|2
εn+k − εn − 
n

]

� |g|2

n

+
∑
k>0

[ |g|2
εn − εn−k + 
n

− |g|2
εn+k − εn − 
n

]
.

(A8)

Now we have to estimate a typical value of the sum taking
into account the inequality (A7). To do so we consider two
limiting cases.

(i) In the limit of a completely rigid spectrum εn = nδ,
with the mean level spacing δ ∼ 1/[ρ(0)N] and the density
of states at the Fermi level ρ(0), the sum (A8) can be taken
explicitly

1

|g|2 j0
= π

δ tan(π
n/δ)
(A9)

giving


n = δ

π
arctan(π |g|2 j0/δ) ∼ N−γYS/2 , (A10)

where

γYS = max(γ0, 2) . (A11)

Analogously the normalization constant governed by (A4)
takes the form

1

|g|2|Cn|2 �
∑

k

1

(
n + εn − εk )2

� 1


2
n

+ π2

δ2 sin2(π
n/δ)
� 1


2
n

. (A12)

In the latter equality we neglect prefactors, focus only on the
N scaling and take into account that 
n � δ.
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(ii) In the opposite limit of uncorrelated eigenstates, one
can calculate (A8) as follows:

1

|g|2 j0
= 1


n
+ N

∫
|ω|>δ

ρ(εn − ω)dω

ω + 
n

� 1


n
+ Nρ(0)

∫ ∞

δ

dω

[
1

ω + 
n
− 1

ω − 
n

]

= 1


n
+ 1

δ
ln

(
δ − 
n

δ + 
n

)
, (A13)

where we take into account (A7) in the lower limits of
integration. Here the density of states is

ρ(ε) = 1

N

∑
k

〈δ(ε − εk )〉 . (A14)

Again considering only N scaling of 
n in (A13), one can
obtain


n ∼ N−γYS/2 . (A15)

Analogously the normalization constant governed by (A4)
takes the form of (A12)

1

|g|2|Cn|2
1


2
n

+ Nρ(0)
∫ ∞

δ

dω

[
1

(ω + 
n)2
− 1

(ω − 
n)2

]

= 1


2
n

+ 1

δ

(
1

δ + 
n
− 1

δ − 
n

)
� 1


2
n

. (A16)

As the scaling [(A10) and (A15)] of the energy deviation

n (A7) and of the normalization constant Cn [(A12) and
(A16)] are the same in both limiting cases, we conclude that
these parameters weakly depends on the statistics of bare
levels εn.

3. Eigenstate statistics

Using the results (A3) and (A12), one can calculate the
spectrum of fractal dimensions f (α) for the wave-function
intensity

∣∣ψEn (k)
∣∣2 = |Cn|2|g|2

(En − εk )2
� 1

[(εn − εk )NγYS/2 − 1]2
≡ N−α .

(A17)
Indeed, as the probability of εn − εk ∼ N−p/2 for p > 0 is

dP(εn − εk ∼ N−p/2) ∼ P(p)d p ∼ N−p/2d p , (A18)

one can easily find

α =
{
γYS − p, p < γYS

0, p > γYS
(A19)

and

N f (α)−1 = dP(p(α)) ∼ N−p(α)/2 = N (α−γYS )/2 (A20)

for p = γYS − α > 0, giving the spectrum of fractal dimen-
sions of the form of [26]

f (α) = 1 + α − γYS

2
, 0 < α < γYS , (A21)

with γYS given by (A11).
As a result, unlike the Rosenzweig-Porter model, the YS

model (A1) shows only localized and critical wave functions

of all eigenstates, except the only top energy state at γ0 < 2
[17]. At γ0 > 2, the wave-function statistics (A21) coincides
with the one of the RP, with γYS = γ0, while at all γ0 < 2
instead of the delocalized phases YS model shows the critical
localization with γYS = 2.

APPENDIX B: MATRIX INVERSION TRICK

In this Appendix, we first give general estimate of the
optimal parameter β, E0 ∼ Nβ and then apply the matrix
inversion trick [19] to the PLRBM model with partial correla-
tions (3)

1. Optimization over E0 in the matrix inversion trick

Let’s focus for simplicity on the case of E ∼ W ∼ N0. The
effective hopping matrix Jm−n = Mm−n(E + E0 − εn)/M0 in
Eq. (20)

[(1 + ĵ0/E0)−1(E − ε̂ + E0) − E0]|ψE 〉 = 0 (B1)

can be estimated as follows:

Ĵ =
∑

p

|p〉〈p| E + E0

M0
(
E0 + j0

p

) ≡
∑

p

Jp|p〉〈p|. (B2)

Here we neglected the term εn for simplicity as E ∼ εn ∼ N0

and divided Eq. (20) by

M0 = 1

N

∑
p

1

E0 + j0
p

� 1

E0 + j0
p,min

(B3)

in order to have diagonal disorder in the standard form of εn.
Here j0

p,min is the typical hopping energy level and E0 is taken
to be in the gap of the hopping spectrum or beyond it (see
Fig. 5).

Each term in the sum (B2) can be minimized over E0 giving

E0 ∼ min
(∣∣ j0

p,min

∣∣, |E |), Jp � E
∣∣ j0

p,min

∣∣
j0
p,min + j0

p

. (B4)

However, one should take into account that E0 has to be
beyond the spectrum |E0| � | j0

p,min|, leading to the final result

E0 � j0
p,min, Jp �

(
E + j0

p,min

)
j0
p,min

j0
p,min + j0

p

. (B5)

In the case of BM or YS deterministic hopping ĵ0, the typical
energy level j0

p,min ∼ N0, thus, the optimal E0 ∼ N0 and this
confirms the statement given in the main text.

2. Matrix inversion for PLRBM model with partial correlations

We start with the model (1), (6) with j̃mn = |m −
n|−ã, j0

mn = |m − n|−a0 and compute matrix elements j̃0
mn +

rmn of the effective Hamiltonian (22)

ˆ̃j0 + ˆ̃j + r̂ = (1 + ĵ0/E0)−1(E − ε̂ + E0 + ˆ̃j) . (B6)

The first terms in the brackets of right-hand side
(1 + ĵ0/E0)

−1
(E − ε̂ + E0) scales as |n|−(2−a) at a < 1

and correspond to (1 − α) ˆ̃j0 with a certain constant α of
order of one. The calculation of it is given in Ref. [19].
Further we consider the rest part

α ˆ̃j0 + ˆ̃j + r̂ ≡ (1 + ĵ0/E0)−1 ˆ̃j . (B7)
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In order to simplify the calculations, we provide the upper
bound of this term by replacing the oscillating amplitudes
hmn of j̃mn = hmn/|m − n|ã by their maximal absolute value
hmn = 1. Within this approximation the result can be easily
derived in the momentum space, since both matrices are diag-
onal in that basis. For purposes of clarity, we reproduce main
steps of similar calculations presented in Ref. [19] specifically
for the case of our interest.

We start by writing down the Fourier-transformed hopping
amplitude j0 (in case of j̃ one needs to replace a0 by ã) in
different asymptotic regimes

j0
p/2 � ζa0 + Aa0

(
N

|p|
)1−a0

, for |p| � N , (B8)

j0
p/2 � j0

min + Ba0

(
2q

N

)2

, for q = |N/2 − p| � N ,

(B9)

where the corresponding constants are given for a0 > 0 by

Aa0 = (2π )a0−1
1−a0 sin
πa0

2
, (B10)

for a0 	= 2m + 1, m ∈ N and

j0
min = 2(21−a0 − 1)ζa0 < 0 , (B11)

Ba0 = 8π2(1 − 23−a0 )ζa0−2 � 2π2a0 > 0 . (B12)

Here, ζa0 is the Riemann zeta function.
The next step is to estimate the long-range asymptotic be-

havior of the effective Hamiltonian (1 − α) ˆ̃j0 + ˆ̃j + r̂ given
by

(1 − α) j̃0
n + j̃n + rn = C0(a0, ã) + 2

N
Re

N/2∑
p=1

j̃p e2π ipn/N

E0 + j0
p

(B13)
with the zero-momentum contribution

C0(a0, ã) = ζã + N1−ã/(1 − ã)

N (E0/2 + ζa0 ) + N2−a0/(1 − a0)
. (B14)

The last term in (B13) can be split into three parts correspond-
ing to different regimes of j̃p and j0

p. However, not all of the
resulting terms are equally important in the limit 1 � n � N .
One can easily show that summation only over sufficiently
small momenta |p| < αN (where 0 < α < 1/2) contributes
to the long-range behavior of matrix elements. The rest of
the summation results in the gives small contribution to the
residue term rn and is unimportant. Thus we focus only on the
following sum:

S(a0, ã) = 2ζã

N
Re

Nα1∑
p=1

e2π ipn/N

E0/2 + ζa0 + Aa0 (p/N )a0−1

+2Aã

N
Re

Nα1∑
p=1

(p/N )ã−1e2π ipn/N

E0/2 + ζa0 + Aa0 (p/N )a0−1
.

(B15)

In the case of our main interest (a0 < 1) an additional
momentum scale pc = N[E0/2Aa0 + ζa0/Aa0 ]−1/(1−a0 ) � N
emerges, and for p < pc the denominator is represented by

the power-law contribution. Contrary, for p > pc, a constant
term is dominant and we get

S(Nα, a0 < 1, ã) ≈ ζãAa0−1

πAa0

1

|n|2−a0
+ AãA1−ã

π
(
E0/2 + ζa0

) 1

|n|ã

+AãAa0−ã

πAa0

1

|n|1−a0+ã
, (B16)

which for a0 < 1 leads to the effective parameter governing
the long-range tails of typical wave functions:

aeff = min(ã, 2 − a0) (B17)

in full agreement with the result (17b) mentioned in the main
text. The last term in (B16) contribute to the residual term as it
is small compared to the second term ∼|n|−ã in the considered
interval a0 < 1.

APPENDIX C: SELF-CONSISTENT METHOD

In this Appendix, we use the formulation of the eigen-
problem in terms of exact Eqs. (26)–(31) in order to derive
expressions for scaling (35) of the broadening factor 
n in the
average wave-function intensity (28).

In the first part we restrict our consideration to the first and
second moments of the parameters an, Pkn, calculate sums
S1 (34) and S2 (see below) in two limiting cases of (i) the
completely rigid spectrum εn − εm = (n − m)δ and (ii) the
Poisson statistics of εn, derive the mean expressions (32)
for the RP model with partial correlations and the effective
expression (35) for the broadening parameter 
n depending
solely on S1. Next, we explicitly calculate N scaling (35)
of 
n.

1. Decoupling of correlations

In order to solve Eqs. (31), we assume that Pkn and an are
uncorrelated from each other and from hlm and calculate the
mean and the variance for each of them averaging over off-
diagonal matrix elements hkn = hnk assumed to be real and
taking into account 〈hlm〉 = 0, 〈h2

lm〉 = 1. As a result for k 	=
n,

〈Pkn〉 =
∑
l 	=n

j̃〈hkl〉 〈an + Pln + j̃hln〉
ωnl + 
n

= 0 ,

〈Pnn〉 =
∑
l 	=n

j̃〈hnl〉〈an + Pln〉 + j̃2
〈
h2

ln

〉
ωnl + 
n

≡ j̃2S1 ,

〈an〉
j0

= 1 +
∑
l 	=n

〈an〉 + j̃〈hln〉 + 〈Pln〉
ωnl + 
n

≡ 1 + 〈an〉S1 ,

〈
P2

kn

〉
= j̃2

∑
l,l ′ 	=n

〈hkl hkl ′ 〉 〈(an + Pln + j̃hln )(an + Pl ′n + j̃hl ′n)〉
(ωnl + 
n)(ωnl ′ + 
n)
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= j̃2
∑
l 	=n

〈
a2

n

〉 + 〈
P2

ln

〉 + j̃2
〈
h2

ln

〉
(ωnl + 
n)2

≡ j̃2S2
(〈an〉2 + σ 2

a + 〈
P2

ln

〉 + j̃2) ,

σ 2
P = 〈

P2
nn

〉 − 〈Pnn〉2

= j̃2
∑

l,l ′ 	=n

〈
hnlhnl ′

(an + Pln + j̃hln )(an + Pl ′n + j̃hl ′n)

(ωnl + 
n)(ωnl ′ + 
n)

〉

− j̃4S2
1

= j̃2
∑
l 	=n

〈
a2

n

〉 + 〈
P2

ln

〉 + 3 j̃2

(ωnl + 
n)2
+

∑
l 	=l ′ 	=n

j̃4

(ωnl + 
n)(ωnl ′ + 
n)

− j̃4S2
1

= j̃2S2
(〈an〉2 + σ 2

a + 〈
P2

ln

〉 + 2 j̃2) ,

σa

( j0)2
=

〈
a2

n

〉 − 〈an〉2

( j0)2

=
∑

l,l ′ 	=n

〈
(an + Pln + j̃hln )(an + Pl ′n + j̃hl ′n)

(ωnl + 
n)(ωnl ′ + 
n)

〉

−〈an − j0〉2

=
∑
l 	=n

〈
P2

ln

〉 + j̃2

(ωnl + 
n)2
+

∑
l,l ′ 	=n

〈
a2

n

〉 − 〈an〉2

(ωnl + 
n)(ωnl ′ + 
n)

= (〈
P2

ln

〉 + j̃2)S2 + σ 2
a S2

1 .

Here and further we use the notation ωnl = εn − εl for brevity.
This gives the following self-consistency equations:

〈Pkn〉 = j̃2S1δkn , (C1a)

〈an〉 = 1

( j0)−1 − S1
∼ min

(
j0, S−1

1

)
, (C1b)

〈
P2

kn

〉 = 〈an〉2 + σ 2
a + j̃2

1 − ( j̃2S2)−1

∼ (〈an〉2 + σ 2
a + j̃2

)
min(1, j̃2S2) , (C1c)

σ 2
P = 〈

P2
kn

〉 + j̃4S2 , (C1d)

σ 2
a =

(〈
P2

ln

〉 + j̃2
)
S2

( j0)−2 − S2
1

∼ S2

S2
1

(〈
P2

ln

〉 + j̃2
)

min(1, ( j0S1)2) , (C1e)

with the sums

S1 =
∑
l 	=n

1

ωnl + 
n
, S2 =

∑
l 	=n

1

(ωnl + 
n)2
.

While averaging the denominators ωnl + 
n we estimate
only N scaling of the broadening parameter as follows:


n ∼ j̃ + 〈an〉 + 〈Pnn〉 + σa + σP (C2)

and we consider the typical energy position εn to lie a bit
asymmetrically in the middle of the spectrum, thus the sum-
mation would be in the limits W1 < ωnl < W2, with |W1 −
W2| ∼ O(1) and W1 + W2 = W .

To estimate a typical value of the sums (33), we consider
two limiting cases.

(i) In the limit of the completely rigid spectrum εn = nδ,
with the mean bare level spacing δ ∼ 1/[ρ(0)N] ∼ W/N and
the density of states at the Fermi level ρ(0), the sums can be
taken explicitly

S1 =
{

ln(W2/W1 )
δ

+ π
δ tan(π
n/δ) − 1


n
, 
n � W

N

n

, 
n � W
;

S2 =
{

π2

δ2 + π2

δ2 sin2(π
n/δ)
− 1


2
n
, 
n � W

N

2

n
, 
n � W

and provide the following asymptotics:

S1 ∼
{

1
δ
, 
n � W

N

n

, 
n � W
; (C3a)

S2 ∼
{

1
δ2 , 
n � W
N

2

n
, 
n � W

. (C3b)

(ii) In the opposite limit of uncorrelated eigenstates, one
can calculate (33) as follows:

S1 = N

2

[∫ −δ

−W1

ρ(εn − ω)dω

ω + 
n
+

∫ W2

δ

ρ(εn − ω)dω

ω + 
n

]

� Nρ(0)

2

[∫ W1

δ

dω

ω + 
n
−

∫ W2

δ

dω

ω − 
n

]

= 1

2δ

[
ln

∣∣∣∣W1 + 
n

W2 − 
n

∣∣∣∣ − ln

∣∣∣∣δ − 
n

δ + 
n

∣∣∣∣
]

,

S2 = N

2

[∫ −δ

−W1

ρ(εn − ω)dω

(ω + 
n)2
+

∫ W2

δ

ρ(εn − ω)dω

(ω + 
n)2

]

� Nρ(0)

2

[∫ W1

δ

dω

(ω + 
n)2
+

∫ W2

δ

dω

(ω − 
n)2

]

= N

(
n − W1)(
n − W2)
− 1


2
n − δ2

.

Unlike YS model (A13) here the broadening parameter can be
both smaller and larger than bare mean level spacing δ, thus,
during the calculation we just take into account the fact that
En − εk = ω + 
n is off-resonant. Here the density of states
is ρ(ε) = ∑

k 〈δ(ε − εk )〉/N .

In this case, asymptotics read as follows:

S1 ∼
{

1
δ
, 
n � W

N

n

, 
n � W
; (C4a)

S2 ∼

⎧⎪⎨
⎪⎩

1
δ2 , 
n � δ
1

2

n
+ 1

δ
, δ � 
n � W

N

2

n
, 
n � W

. (C4b)
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Note that the expressions for sum S1 are the same in both
cases, while S2 are different only in the nonergodic extended
phase. Let’s show that this difference do not affect the result
(35) for the broadening parameter 
n. In order to prove it we
consider the expression (C2) in more details substituting the
expressions (C1) one by one.

First, let’s substitute σP


n ∼ j̃ + 〈an〉 + 〈Pnn〉 + σa + j̃2√S2

+ (〈an〉 + σa + j̃) min(1, j̃
√

S2) .

As min (1, j̃
√

S2) � 1 one can neglect the whole last sum-

mand corresponding to
√

〈P2
kn〉 which not larger than 〈an〉 +

σa + j̃. Next, we substitute σa


n ∼ j̃ + 〈an〉 + 〈Pnn〉

+
√

S2

S1

(√〈
P2

kn

〉 + j̃
)

min(1, j0S1) + j̃2√S2 .

As S2
1 � S2 in all phases of both limiting cases, one can

neglect j̃2
√

S2 comparing to 〈Pnn〉 ∼ j̃2S1 and the whole σa

term comparing to 〈an〉 + j̃ as (
√

S2/S1) min (1, j0S1) � 1.
As a result we come to the expression (35)


n ∼ j̃ + 〈an〉 + 〈Pnn〉 ∼ j̃ + min
(

j0, S−1
1

) + j̃2S1 , (C5)

depending solely on S1. This confirms the statement given in
the main text and concludes this section.

2. Calculation of N scaling (35) of �n

Using Eq. (C5) and expressions (C3) and (C4) for S1, in
this section we calculate the scaling (35) of 
n in all three
phases:

(1) 
n � W . In this case, S1 = N/
n and Eq. (C5) takes
the form


n ∼ N−γ̃ /2 + min

(
N−γ0/2,


n

N

)
+ N1−γ̃


n
. (C6)

The second term does not play any role as it is less than

n/N � 
n, while the third term dominates over the first one
and gives 
n ∼ N (1−γ̃ )/2 and thus γ̃ < 1.

(2) δ � 
n � W . In this case, S1 = 1/δ ∼ N leading to


n ∼ N−γ̃ /2 + min(N−γ0/2, δ) + N1−γ̃ . (C7)

As in the previous case, the second term does not play any
role as it is less than δ � 
n, while the third term dominates
over the first one and gives 
n ∼ N1−γ̃ and thus 1 < γ̃ < 2.

(3) 
n � δ. Here, S1 ∼ 1/δ leading to γ̃ > 2 and


n ∼ N−γ̃ /2 + min(N−γ0/2, δ) + N1−γ̃ . (C8)

In this case, the first term dominates over the third one and
the concurrence of the first two terms gives the desired result

n ∼ N−γ̃ /2 + N−γYS/2 ∼ N−γeff /2, with γeff given by (17a).
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