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There has been a revival of interest in localization phenomena in quasiperiodic systems with a view to
examining how they differ fundamentally from such phenomena in random systems. Motivated by this, we study
transport in the quasiperiodic, one-dimensional Aubry-Andre model and its generalizations to two and three
dimensions. We study the conductance of open systems, connected to leads, as well as the Thouless conductance,
which measures the response of a closed system to boundary perturbations. We find that these conductances show
signatures of a metal-insulator transition from an insulator, with localized states, to a metal, with extended states
having (a) ballistic transport (one dimension), (b) superdiffusive transport (two dimensions), or (c) diffusive
transport (three dimensions); precisely at the transition, the system displays subdiffusive critical states. We
calculate the β function β(g) = d ln(g)/d ln(L) and show that, in one and two dimensions, single-parameter
scaling is unable to describe the transition. Furthermore, the conductances show strong nonmonotonic variations
with L and an intricate structure of resonant peaks and subpeaks. In one dimension the positions of these peaks
can be related precisely to the properties of the number that characterizes the quasiperiodicity of the potential;
and the L dependence of the Thouless conductance is multifractal. We find that, as dimension increases, this
nonmonotonic dependence of g on L decreases and, in three dimensions, our results for β(g) are reasonably well
approximated by single-parameter scaling.
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I. INTRODUCTION

The single-parameter scaling theory of Abrahams et al. [1]
has played an important part in our understanding of Ander-
son localization and metal-insulator transitions in disordered
systems, e.g., noninteracting electrons in a random potential
[2]. Localization phenomena are, however, not only restricted
to random systems, but also occur in other systems, the
most prominent examples being systems with quasiperiodic
potentials [3–11]. Recently such quasiperiodic systems have
attracted a lot of attention because of the experimental ob-
servation of many-body localization (MBL) in quasiperiodic
lattices of cold atoms [12]. These have brought back into focus
the need to examine the essential similarities and differences
between random and quasiperiodic systems at the level of
eigenstates [3–11], dynamics [13–15], and universality classes
of localization-delocalization transitions [16]. It has also been
argued [16] that quasiperiodic systems provide more robust
realizations of many-body localization (MBL) than their ran-
dom counterparts because the former do not have rare regions,
which are locally thermal. Therefore, we may find a stable
MBL phase in dimension d > 1 in a quasiperiodic system,
but not in a random system, where the MBL phase may be
destabilized because of such rare regions [17,18].

Noninteracting quasiperiodic systems exhibit
delocalization-localization transitions even in one dimension,
unlike random systems in which all states are localized
in dimensions d = 1 and 2 for orthogonal and unitary
symmetry classes [19]. The simplest rationale for the
absence of a metallic (delocalized) state in low-dimensional

random systems and the continuous nature of the
localization-delocalization transition in three dimensions
is provided by the single-parameter-scaling theory [1],
which has been proposed originally for random systems.
This theory relies on only a few general premises: (a)
there is a length(L)-dependent, dimensionless conductance,
g(L) = G(L)/(e2/h); (b) there is a single relevant scaling
variable such that dln(g)/dln(L) = β(g) depends only on g;
(c) there is a continuous and monotonic variation of β(g),
with well-known asymptotic behaviors for small and large
conductances. Even though the conductance g(L) of a finite
system (a) fluctuates strongly and (b) is a non-self-averaging
quantity [20–22], a large number of numerical studies [23–25]
have provided the justification for the single-parameter
scaling theory, at least in a weak sense [26] for typical
or average conductances [24–26]. Hence, to distinguish
quasiperiodic systems from random ones, it is natural to
ask whether there is a single-parameter-scaling description
of the delocalization-localization transition in quasiperiodic
systems or whether quasiperiodic systems do not satisfy
one or more of the assumptions of the scaling theory. This
question is particularly relevant now because a recent study
[27] suggests that the delocalization-localization transition in
a three-dimensional (3D), self-dual, quasiperiodic model is in
the same universality class as the conventional 3D Anderson
transition in a random system. Hence, we might expect,
naïvely, that single-parameter scaling holds, at least, for this
class of 3D quasiperiodic systems. We examine this naïve
expectation in detail.
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Some recent works [13–15] have examined open-
system transport and closed-system wave-packet dynam-
ics in quasiperiodic chains, described by the Aubry-Andre
model [3] and its variants [28,29], and have shown that the
delocalization-localization critical point exhibits anomalous
behavior: An initially localized wave packet spreads diffu-
sively or superdiffusively with time in an isolated system,
whereas the conductance, at high or infinite temperature,
shows subdiffusive scaling with system size, i.e., g ∼ Lα

with α < −1, for open chains connected, at its ends, to two
infinite leads [13,14]. These results indicate that quasiperiodic
systems have much richer transport properties, at this critical
point, than random systems.

Motivated by the above, we ask the following questions: (a)
How similar are the transport properties of quasiperiodic and
random systems, especially at the metal-insulator transition?
(b) Is there a simple scaling theory for this transition in
quasiperiodic systems along the lines of the seminal, single-
parameter-scaling theory for random systems [1]? (c) What
is the dimension dependence of such transport properties at
the metal-insulator transition in quasiperiodic systems? (d)
Are the Thouless and Landauer conductances the same in
quasiperiodic systems?

To answer this questions, we carry out a systematic char-
acterization of electronic transport in the quasiperiodic, 1D
Aubry-Andre model and in its 2D and 3D generalizations. We
study the (Landauer) conductance of open systems connected
to leads as well as the Thouless conductance, which is a
property of a closed system. Our main results, which address
all the above questions, are the following:

(1) We show that, depending on the dimension d , the
Thouless and Landauer conductances show signatures of the
insulator-metal transition from an Anderson insulator to (a) a
ballistic metal in one dimension, (b) a superdiffusive metal in
two dimensions, or (c) a metal with diffusive transport in three
dimensions. Precisely at the transition, the system displays
subdiffusive critical states.

(2) We calculate the β function β(g) = d ln(g)/d ln(L)
and show that, in one and two dimensions, the β function is
discontinuous at the transition and hence the single-parameter
scaling is unable to describe the transition.

(3) We find that the conductances show strong nonmono-
tonic variations with L and a subtle structure of resonant peaks
and subpeaks. In one dimension, we find that (a) the positions
of these peaks can be related to the properties of the irrational
number that characterizes the quasiperiodicity of the potential
and (b) the L dependence of the Thouless conductance is
multifractal.

(4) We show clearly that the Thouless and Landauer
conductances are not the same in quasiperiodic systems, in
contrast to what is observed in random systems.

(5) We find that, as d increases, this nonmonotonic depen-
dence of g on L weakens and, in three dimensions, our results
for β(g) are reasonably well described by single-parameter
scaling.

Thus our results demonstrate that there is a complete viola-
tion of single-parameter-scaling theory at the metal-insulator
transition in one- and two-dimensional quasiperiodic systems,
but a remarkable (approximate) restoration of this theory in
three-dimensional quasiperiodic systems.

The remainder of this paper is organized as follows. In
Sec. II we describe the models we study and give an overview
of our main results. Section III is devoted to the description
of our results for Thouless and Landauer conductances and β

function. In Sec. IV we discuss the implications and signifi-
cance of our results.

II. MODEL AND OVERVIEW OF RESULTS

We study the scaling of the conductance g with the system
size L across the localization-delocalization (insulator-metal)
transition in the well-known 1D quasiperiodic Aubry-Andre
Hamiltonian [3],

H =
∑

r

(eiφc†
r cr+1 + H.c.) + 2V

∑
r

cos(2πbr + φ)c†
r cr,

(1)

and its d-dimensional generalizations [27] (see Appendix A).
We set to unity the nearest-neighbor hopping amplitude of
electrons, which are created by c†

r on the site r, and we
characterize the on-site quasiperiodic potential by its strength
V and an irrational number b, which we choose to be a
quadratic irrational, e.g., the golden ratio conjugate b = � =
(
√

5 − 1)/2. The phase φ ∈ [0, 2π ) induces a shift of the
potential, so we use it to generate a statistical ensemble for
a fixed b. This model (1) and its generalizations to two and
three dimensions (Appendix A) are all self-dual at V = 1.
In one dimension, this self-dual point coincides with the
delocalization-localization transition between a localized in-
sulator (V > 1) and a ballistic metal (V < 1) [3]; by contrast,
in three dimensions, the self-dual point lies within a diffusive-
metal phase, which separates localized and ballistic phases.
These two phases are connected by a real- and momentum-
space duality, akin to that in the 1D model [27]; so, in three
dimensions, we expect the localized-to-diffusive metal and
ballistic-to-diffusive metal transitions to be dual to each other
[27]. We carry out detailed studies of electrical transport in all
these phases and across the transitions between them in the 1D
Aubry-Andre model and its generalizations to two and three
dimensions. We summarize our principal results below.

We compute the Thouless, gT(E , L), and Landauer,
gL(E , L), conductances, at a given energy E , for a hypercube
of volume Ld (d = 1, 2, and 3), as a function of the length
L and at zero temperature; we obtain the averages of these
conductances by varying φ. We find that even the typical
conductances, g(L) (either g = gT or gL) are strongly non-
monotonic functions of L; this implies that a strict application
of single-parameter-scaling theory is untenable, especially in
one and two dimensions. This nonmonotonicity is present in
three dimensions too, but it is weaker than in two and one
dimensions. The average L dependence of these conductances,
in one and two dimensions, for the localized, critical, and
delocalized states, can be characterized by average, smooth
curves [denoted generically by g̃(L)]; from these smooth
curves we can obtain the associated β functions [β(g̃)] for
large system sizes.

In one dimension, these β functions show discontinuous
jumps as we go from localized [β(g̃) ∼ ln(g̃)] to ballistic
metallic states across the transition at V = Vc = 1; the critical
state exhibits subdiffusive power-law scaling, g̃ ∼ Lα , such
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that β(g̃) = α < d − 2 = −1. This subdiffusive scaling is
less clear in two dimensions than in one dimension because
the onset of the scaling regime occurs only above a large,
microscopic length scale �; nevertheless, our calculation of
the open-system conductance in two dimensions suggests a
similar jump in the β function via a subdiffusive critical
state at Vc = 1. Furthermore, instead of ballistic scaling for
the conductance in the metallic phase, we find superdiffusive
behavior, with a constant β(g̃) that lies between d − 2 and
d − 1.

Our results in three dimensions are consistent with a con-
tinuous metal-insulator transition at Vc � 2.2. We obtain scal-
ing collapse for gL(L) near the transition, with a correlation-
length exponent ν � 1.6, a value that is close to the value of
this exponent for the Anderson-localization transition in three
dimensions (as found in the recent study of Ref. [27], which
used moments of the wave function). Moreover, we obtain a
continuous β function from this scaling collapse; this suggests
that the single-parameter-scaling theory is a reasonably good
approximation for the 3D quasiperiodic system we consider.
However, a weak, nonmonotonic L dependence of the con-
ductance remains and indicates deviations from strict, single-
parameter scaling. We do not find a sharp transport signa-
ture of the diffusive-metal-to-ballistic transition at V � 1/Vc,
which we expect from duality [27]. Given the system sizes we
have been able to use in our study in three dimensions, we find
that the metallic phase, for V <∼ 1/Vc, exhibits superdiffusive
scaling for g̃L(L), with a V -dependent exponent 1 < α < 2
that approaches the ballistic limit (α = 2) asymptotically for
V → 0.

The nonmonotonic variation of the conductance with L
is most prominent in one dimensions, especially for gT(L),
which exhibits resonant transport peaks for sequences of L
that depend on the particular quadratic irrational number we
use; e.g., for b = �, different sequences of peaks occur at the
Hemachandra-Fibonacci numbers and their combinations. At
the critical point, each one of these sequences exhibits power-
law scaling, i.e., gT(L) ∼ Lα with the exponent α ranging
from the almost-diffusive (α � −1) to the subdiffusive (α <

−1) values for different sequences. We carry out a fractal anal-
ysis [30] of the gT vs L plot to obtain multifractal scaling; we
quantify this multifractality of the nonmonotonic variations of
gT with L via the singularity spectrum f (α) [30]. (We use the
standard notation α for the crowding index [31]; this should
not be confused with the exponent α for the power-law scaling
of the conductances). At the critical point, we find a broad
singularity spectrum f (α); this narrows in the metallic phase.
Such multifractal scaling of the conductances, as a function
of L, is a fundamental difference between quasiperiodic and
random systems. Our multifractal analysis shows clearly that
the conventional assumption about the conductance scaling as
a simple power of L is invalid here.

We show that gL(L) also fluctuates with L; however, it does
not exhibit prominent resonant peaks at distinct sequences of
lengths, even in one dimension. Hence, our results indicate
a clear distinction between isolated and open-system con-
ductances, as measured through Thouless and Landauer con-
ductances, respectively. Our results reveal very rich transport
properties for finite-size quasiperiodic systems; especially in

one and two dimensions, these properties are significantly
different from their counterparts for random systems.

In the next section we discuss our results in detail. We
give some additional aspects of our calculations and numerical
computations in the Supplemental Material [32].

III. RESULTS

A. Thouless conductance

We first characterize the response of our isolated, finite sys-
tem to boundary perturbation through the Thouless conduc-
tance, gT = δE/
E , where δE is the shift of the energy levels,
around energy E , when we change the boundary conditions
from periodic, ψ (rμ + L) = ψ (rμ), to antiperiodic, ψ (rμ +
L) = −ψ (rμ) [33,34], in a particular direction μ = 1, . . . , d;

E is the level spacing at energy E . In a diffusive metal, gT

can be argued to be the same as the usual Landauer gL [33–35]
and, in the insulating state, it is expected that ln(gL) ∝ ln(gT)
[36]. However, it should be noted that gT is a property of
a closed, finite system with discrete energy eigenvalues; by
contrast, in the usual transport setup, the system is connected
to infinite leads and hence it has a continuous spectrum. As
we show below for the quasiperiodic system we consider, this
makes gT(L) significantly different from gL(L).

We note that there is always some ambiguity in the defini-
tion of gT [33], e.g., whether we should use the geometric or
the arithmetic mean for δE and 
E . We employ the geometric
mean to estimate δE . For most of our results, we use the
arithmetic mean for the energy-level spacing 
E , around E , to
obtain gT. We have also calculated the Thouless conductance
gtyp

T , by using the typical level spacing 

typ
E , obtained from

the geometric mean (see the Supplemental Material [32],
Sec. S1 1). As discussed below, we find most of the qualitative
features of gT and gtyp

T to be same; e.g., both decay exponen-
tially with L in the insulating phase, show the hierarchical
structure of peaks, and multifractal scaling. At the critical
point in one dimension, gtyp

T , and not of gT, compares better
with the Landauer conductance gL(L), in terms of the overall
scaling with L. However, gtyp

T shows unphysical superballistic
behavior in the metallic side in one dimension: gtyp

T increases
with increasing L, in contrast to ballistic scaling of gL(L).
Hence, we discuss, principally, our results for gT, which we
obtain by using the mean level spacing 
E .

We obtain the mean 〈gT〉(E , L) or typical conductance
exp [〈ln gT(E , L)〉] at an energy E by computing single-
particle energy eigenvalues, for both periodic and antiperiodic
boundary conditions, via numerical diagonalization of the
Hamiltonian in Eq. (1) or its d-dimensional generalizations
[Eq. (A1), see the Methods section], without the phase factor
φ in the hopping term. The typical and mean Thouless con-
ductances give similar results in one dimension. The latter, gT

at E = 0, is plotted versus L for b = � in Fig. 1, for insulating
and metallic phases [Fig. 1(a)] and also at the critical point
V = 1 [Fig. 1(b)]. We find strong nonmonotonicity of gT(L).
We first characterize its overall L dependence by a smooth
least-square-fitting curve g̃T(L), which shows ballistic behav-
ior in the metallic phase, i.e., g̃T independent of L; in contrast,
the conductance in the localized phase is well described by
g̃T(L) � g0(V )e−L/ξ even very close to the transition, V >∼ Vc;
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FIG. 1. Length-dependent conductances and multifractality in the Auby-Andre model in one dimension and its 2D and 3D generalizations.
(a) Semilog plots vs L of the conductances gT (Thouless) and gL (Landauer) at illustrative values of V in the metallic (V = 0.95) and insulating
(V = 1.05) regimes in one dimension. On the metallic side, both gT and gL show nonmonotonic (roughly speaking, small-wavelength)
fluctuations about an L-independent mean value. On the insulating side, g2

T ∝ gL; both gL and gT decay exponentially with L, the latter only on
average because gT still displays nonmonotonic fluctuations (enlarged view in the inset). (b) Log-log plots vs L of the Thouless conductance
gT, at the 1d critical point V = 1, showing an average decay (dashed red line) with gT ∝ Lα and α � −1.8, with hierarchically organized
peaks, whose heights also decay as a power of L but with different exponents (for notational simplicity denoted generically by α), which
depend on SL1,L2 , the set of peaks at the lengths Li+1 = Li + Li−1, with the seed lengths L1 and L2; for the illustrative sets S1,1 (green filled
circles) and S2,2 (blue filled circles) we obtain the decay exponents � −0.95 and � −1.22, respectively. (c) Log-log plots vs L of the Landauer
conductance gL, at the 1D critical point V = 1, showing an average decay gL ∝ Lα(E ), with energy-dependent exponents α(E ), shown for the
representative energies E1 = 0 [α(E1) � −1.01], E2 = 1.984 96 [α(E2) � −1.0], and E3 = 0.189 060 32 [α(E3) � −2.2; see text]; note the
nonmonotonic fluctuations about these mean-decay lines. The grey curve shows the Thouless conductance (gtyp

T ) obtained by using the typical
level spacing (see text) at E1 = 0; its overall slope is close to that of the gL; gtyp

T has been scaled to fall on top of gL. (d) This nonmonotonicity
in log-log plots of gT(L) vs L persists in two and three dimensions (inset), as we show by illustrative data at the the metal-insulator critical
points; in two dimensions, the critical gT(L) ∼ L−0.21 exhibits an overall subdiffusive scaling. (e) A fractal analysis of the L dependence of the
energy-averaged gT, i.e., g∞

T (see the Supplemental Material [32] Sec. S1 2 and the main text) reveals multifractal scaling of the nonmonotonic
variations of gT(L) at the critical point. (f) A plot of the singularity spectrum f (α) vs α corroborates this multifractality (see main text); note
that the singularity spectrum narrows on the metallic side V < 1.

g0 denotes conductance at a microscopic length scale � ≈ 1
and it depends on V . However, the critical state exhibits an
overall power-law dependence on L, g̃T ∼ Lα [the dashed red
line in Fig. 1(b)] with α � −1.8, up to the maximum system
size we have studied (L = 3000).

The nonmonotonicity of the Thouless conductance is
clearly manifested in the peak and subpeak structure of gT(L),
in both the metallic and insulating phases [Fig. 1(a)]. These
peaks are most striking at the critical point [Fig. 1(b)], where
we find hierarchically organized peaks, whose heights decay
as a power of L but with different exponents (for notational
simplicity denoted generically by α), which depend on SL1,L2 ,
the set of peaks at the lengths Li+1 = Li + Li−1, with the seed
lengths L1 and L2; for the illustrative sets S1,1 (green filled
circles and Li = Fi, the Fibonacci numbers) and S2,2 (blue
filled circles and Li = 2Fi) we obtain the decay exponents

� −0.95 and � −1.22, respectively. We can also identify
similar sequences of peaks in the metallic and insulating
phases [Fig. 1(a)]. The development of a quantitative theory
of these peaks and their decay exponents αS is an important
challenge. At the critical point gtyp

T shows the same qualitative
behavior as gT(L), in terms of the peak structure related with
SL1,L2 ; but the former scales with a different overall exponent,
which is much closer to that of the open system conductance
as shown in Fig. 1(c).

Similar resonance peaks have been seen at high- or infinite-
temperature open-system transport [13–15]; however, this
resonance effect is much more striking in the gT that we
calculate. We find similar resonant peaks for the energy-
averaged or infinite-temperature Thouless conductance g∞

T as
well (see the Supplemental Material [32]). The existence of
sharp resonant peaks in gT(L), up to arbitrarily large lengths,
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is a special feature of one dimension and points to markedly
distinct transport characteristic of the quasiperiodic system
compared to random systems in one dimension. We find the
resonant peaks to be present in two and three dimensions,
albeit much less prominently than in one dimension, as we
show in Fig. 1(d) at the metal-insulator transition V = Vc.

Conductance multifractality

We next ask whether the strong, nonmonotonic variations
of gT with L in one dimension [Figs. 1(a) and 1(b)] can
be quantified by fractal analysis methods. Motivated by the
multiple power laws in Fig. 1(b) for different sequences of L,
we carry out a fluctuation analysis [30] of gT, as function of
L, by using methods that are used to treat fractal time series
(see the Supplemental Material [32]). We find the intriguing
result that gT(L) exhibits multifractal scaling of different
moments, as we show for a few moments in Fig. 1(e). We also
calculate the singularity spectrum [30,31,37] of gT(L) (see the
Supplemental Material [32]). As we show in Fig. 1(f), this
singularity spectrum f (α) indicates substantial multifractality
at the critical point; it narrows in the metallic phase, but
multifractality still persists there. A meaningful multifractal
analysis cannot be performed in the insulating phase because
the values of the conductance become exponentially small
with L. We have verified that the same kind of multifractality
is also present in gtyp

T (L). We emphasize that the multifrac-
tality of conductance reported here is distinct from the usual
multifractality of wave functions or two-point conductances
[19] at the 3D Anderson transition for random systems. In the
latter, typical and mean conductances are monotonic functions
of L, and, as a result, the particular multifractality of gT(L),
which we find here for the 1D quasiperiodic system, would
be absent. To this end, we show in the Supplemental Material
[32] that the usual multifractality of the critical wave function,
as measured in the 3D Anderson transition [19], is also present
for quasiperiodic systems in one dimension [38–41].

We have not been able to carry out a detailed multifractal
analysis of gT(L) in d = 2, 3 because of the limitations of the
system sizes in the calculation of the Thouless conductance
which requires the numerical diagonalization of large matri-
ces. Moreover, the scales of the nonmonotonic variations are
much weaker in two and three dimensions, compared to those
in one dimension, as is evident from Figs. 1(b) and 1(d).

B. Open-system conductance

We next study the conductance of open systems, start-
ing with Aubry-Andre chain connected to two semi-infinite
leads at both ends. In this case, we compute the Landauer
or Economou-Soukoulis conductance gL(E ) = T (E ) [42,43],
where

T (E ) = 4 sin2 k/|e−ikψ (L) − ψ (L − 1)|2

is the transmission coefficient at energy E = 2t cos k, t being
the hopping amplitude in the tight-binding leads, and where
the wave-function amplitudes ψ (L), ψ (L − 1) are obtained
by using a standard transfer-matrix method (see the Sup-
plemental Material [32]). For dimensions d = 2, 3, we cal-
culate the open-system conductance gK by using the Kubo
formula for the system connected with leads and the recursive

Green-function method [23,25] (see the Supplemental Mate-
rial [32]). The open-system Kubo conductance gives results
identical to those for the Landauer conductance [44], as
we have verified for one dimension by calculating both gL

and gK.

1. One dimension

Our results for φ-averaged typical conductance
exp 〈ln gL(E = 0, L)〉, denoted by gL for brevity, are plotted
in Figs. 1(a) and 1(c) across metal-insulator transition
in one dimension. The overall length dependence in the
metallic and insulating phases are the same as that of gT(L),
namely, ballistic and localized behaviors with L, respectively.
The transport at the critical point is almost diffusive, with
gL ∼ L−1.01 for E = 0, similar to that obtained from the
overall L dependence of gtyp

T . Because the 1D Aubry-Andre
chain has a fractal energy spectra dominated by gaps [4,7–10],
it is hard to track the L dependence for an arbitrary energy,
as it can move into a gap as L is varied. As a result, gL(E )
can cease to show the power-law scaling and instead exhibits
an exponential decay with L. However, we have been able
to track the nearly diffusive power law up until the largest
system size we have used (L = 5 × 104) studied for E = 0
and also for a few other values of E , different power laws
are observed till sufficiently large L as shown in Fig. 1(c).
This conductance, at one of the energies (E � 0.189), shows
strongly subdiffusive behavior with α � −2.22. Because
conductances at different energies show a range of scaling,
from diffusive to subdiffusive, it is possible to obtain a overall
subdiffusive conductance scaling at high temperature that
averages over a large energy window, as in earlier studies
[13–15]. To summarize, both gL and gT indicate the presence
of multiple power-law exponents that depend on the energy
and/or the sequence S .

As is evident from Figs. 1(a) and 1(c) [see also
Figs. S3 (a)–(d), Supplemental Material [32]], the Landauer
conductance in one dimension also shows strong nonmono-
tonic dependence on L, both in the metallic and critical states,
even after averaging over sufficiently large numbers of φ’s
(see the Methods section) and there are peaks and subpeaks
as in gT, e.g., the dominant peaks appear at some of the
Fibonacci numbers. However, peaks are much weaker and do
not appear at all Fn’s. The weakening, and the absence in some
cases, of the conductance peaks in open-system conductance,
as opposed to that in gT, indicate that the leads affect conduc-
tances significantly by broadening and even washing out the
resonances.

2. Two dimensions

The open-system Kubo conductance gK(L) for E = 0 in
two dimensions is shown in Fig. 2(a). Our results for sys-
tem sizes up to 10002 are consistent with a metal-insulator
transition at V = Vc = 1, the self-dual point. The conduc-
tance in the localized phase, as in one dimension, follows
gK(L) � g0(V ) exp(−L/ξ ) for V > Vc. The metallic phase for
V < Vc is superdiffusive, with gK(L) ∼ Lα and d − 2 < α �
0.35 < d − 1, lying between diffusive and ballistic limits.
Here, g0(V ) is the conductance at a microscopic length scale
�. We find the asymptotic scaling behaviors set in only for
L � �, where the microscopic length �(V ) is substantially
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FIG. 2. Open-system conductance in two and three dimensions. (a) gK(E = 0, L) for insulating (V = 1.05), critical (V = 1), and metallic
(V = 1) states in two dimensions. The solid black lines are fits of the data for the asymptotic L dependence, exponential decay for the insulating
state and power-law scalings for critical and metallic states. The nonmonotonicity of gK(L) is shown in the inset. (b) gK(L) across localized
to diffusive metal transition in three dimensions. A weak nonmonotonic variations, larger than the error bars, can be seen. The solid lines are
fit to the data obtained via scaling collapse, shown in (c). The inset in (c) clearly indicates the critical point at Vc = 2.22 ± 0.01 in terms of a
crossing of gK vs V curves for different L. (d) Conductance near V = 1/Vc � 0.45 follows superdiffusive scaling, gK ∼ Lα with 1 < α < 2, as
shown by the fits (solid lines) to the data points and it asymptotically approaches to the ballistic scaling deep in the metallic side, e.g., α = 1.73
for V = 0.1 as shown.

large, varying between L = 50 and 500 depending on V . Ir-
respective of V , gK(L) shows an initial ballistic increase [not
shown in Fig. 2(a)], followed by an intermediate regime of
length, only after which the scaling regimes ensue. The critical
point at V = Vc exhibits a subdiffusive length scaling of the
conductance with α � −0.52. Again, strong nonmonotonic
variations of gK(L) are observed in all the phases, as demon-
strated, e.g., in the inset of Fig. 2(a) for the critical state.

3. Three dimensions

Our results for the 3D conductances gK(L) are shown
in Fig. 2(b) up to L = 30 near V = 2.2. As evident, non-
monotonic variations of gK(L), though present, are drastically
reduced for three dimensions, in contrast to those in one and
two dimensions [Figs. 1(a), 1(c) and 2(a)]. A critical point
at V = Vc � 2.2 can be clearly detected from the crossing of
curves as function of V for different system sizes, as shown
in the inset of Fig. 2(c). The crossing also indicates a scale
invariant conductance at the critical point. A reasonably good
scaling collapse of the data using a single-parameter finite-
size scaling form ln [gK(L)] = F[(Vc − V )L1/ν] could be ob-
tained near the critical point, as shown in Fig. 2(c). The finite-
size scaling yields ν = 1.60 ± 0.04 and Vc = 2.22 ± 0.01,
consistent with earlier study in Ref. [27] using multifractal
finite-size scaling analysis of wave function of closed system.
The universal scaling curve describes the gK(L,V ) data quite

well as shown by the solid lines in Figs. 2(b) and 2(c) (inset).
This is in tune with a continuous β(g) and single-parameter
scaling law, β(g) = d ln g/d ln L, at the metal-insulator tran-
sition in the 3D quasiperiodic system, unlike those in the
1D and 2D quasiperiodic systems. However, the persistence
of weak nonmonotonic system-size variations in the typical
conductance still violates the assumption of monotonicity of
β(g) in the scaling theory [1]. The weak nonmonotonicity,
though, could be due to limited system sizes accessed in three
dimensions and one might recover strict single-parameter
scaling at larger lengths.

From the real-space-momentum space duality of the model
[(A1)], we expect another transition around V ∼ 1/Vc ≈ 0.45
from a diffusive to a ballistic phase [27]. Our results do not
show any transport signature of this transition. As shown in
Fig. 2(d), gK(L) around V = 0.45 can be well described by
superdiffusive length scaling with an exponent α > 1. This
could be due to the fact that the duality is not strictly valid
for such a finite system connected to leads and due to the
dichotomy between open and closed system properties, as
seen in the 1D quasiperiodic system [13,14].

C. β function

As we have remarked already, the strong nonmonotonicity
of even the typical g(L), in one and two dimensions, inval-
idates the application of single-parameter scaling. However,
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FIG. 3. β functions in one, two, and three dimensions. (a) β(g̃) in one dimension extracted from g̃T across metal-insulator transition for
various sequences SL1,L2 , obtained by fitting with exponential decay and power law for V > 1 and V � 1, respectively. Same color with
different symbols represents β(g̃T) calculated for different S and the same V . The red curve at the critical point corresponds to the β function
extracted from the overall behavior of gtyp

T (L). On the insulating side to make all the curves fall on the same line we choose different microscopic
conductance (g0

T) for different sequence (inset). β(g̃) extracted in similar manner for (b) g̃L in one dimension, (c) g̃K in two dimensions, and
(d) g̃K in three dimensions (solid lines) for values of V indicated in the figure panels. In (b) and (c) the straight lines for β(g̃L ) in the insulating
side (V > 1) have been collapsed to a single curve by choosing an appropriate g0

L(V ), as shown for one dimension in the inset of (b). In (d) the
black dashed line is the β function calculated from the scaling collapse of Fig. 2(b).

we construct a β(g̃), where g̃(L) is extracted from fitting
a smooth curve to our data for gT(L) and gL(L), e.g., the
ones shown for several values of V in Figs. 3(a) and 3(b).
This is an unambiguous procedure in one dimension, where
the overall L dependencies of the conductances in the local-
ized, critical, and metallic states are very well described by
exponentially localized, subdiffusive, and ballistic behaviors,
respectively, over several decades of L [Figs. 1(a) and 1(c)].
The results for the respective β functions β(g̃) in one di-
mension are shown in Figs. 3(a) and 3(b) across the metal-
insulator transition. In Fig. 3(a), β(g̃T) has separate curves
for individual phases and the critical point, as well as for
different sequences. For example, the multiple straight lines
at the critical value V = 1 arise because of distinct power
laws for different sequences shown in Fig. 1(b). These, and
the jump of β functions across the critical point, clearly
violate the assumption of continuity in the single-parameter-
scaling theory. Similar features are seen in β(g̃L) [Fig. 3(b)].
We find that g̃L(V, L) = g0(V ) exp[−L/ξ (V )] describes quite
accurately the conductance in the localized phase, even very
close to the transition. However, the coefficient g0, a measure
of conductance at the microscopic scale �, varies substantially
with V [see inset of Fig. 3(b)]. This is unlike, e.g., that in the
1D Anderson model where g0 ≈ 1 irrespective of the disorder
strength. As a result, we can only obtain a universal β(g̃)
curve for the localized phase in one dimension as a function
of ln[g̃L/g0(V )], i.e., after dividing gL with the appropriate
g0.

To contrast the above results for the β function for our 1D
quasiperiodic system with that of a random system, we show,
in the Supplemental Material [32], that even a small amount
of randomness, introduced, e.g., by elevating the phase φ to a
random variable at each site, makes gL(L) decay exponentially
with L, but with small nonmonotonicity, and hence leads to a
continuous β function for the overall conductance.

We also note that the violation of single-parameter finite-
size scaling and the multifractality of the typical Thouless
conductance (Sec. III A), which we find in 1D transport, are
distinct from the nonpower law criticality and multifractality
of the energy spectrum found in a recent work [45] on
quasiperiodic potentials characterized by irrational numbers
without a periodic-continued-fraction representation. This is
unlike that in our model with b = (

√
5 − 1)/2, which can be

represented by a periodic continued fraction.
As shown in Fig. 3(c), we find a very similar result for β(g̃)

in two dimensions, which we extract from the fitting curves in
Fig. 2(a). Here the β function also jumps from a localized
behavior, β(g̃) ∝ ln(g̃/g0), to a constant superdiffusive value
β(g̃) � 0.3 in the metallic phase, across a subdiffusive critical
state with β(g̃) � −0.52. However, as we have commented
earlier, the asymptotic scaling behaviors in two dimensions
can only be extracted for L above a substantially large micro-
scopic length scale � and hence the β functions are extracted
from only a limited ranges of system sizes.

Our results in both one and two dimensions indicate a
strong violation of the assumption of continuity of β(g) in
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the single-parameter-scaling theory, even when we disregard
the nonmonotonicity of g(L), by extracting an overall, smooth
g̃(L) from the asymptotic behaviors at L. The above procedure
cannot be carried out in three dimensions, close to the critical
point, because our system sizes are limited to much smaller
values of L � 30. However, given that the nonmonotonicity
of g(L) is much weaker in three dimensions, we can obtain
a reasonable scaling collapse of our data near the metal-
insulator transition. We extract β(g) in Fig. 3(d) (dashed black
line) near the transition from the scaling fit of gK(L), shown
in Figs. 2(b) and 2(c). The fit describes the data well over
a reasonably large range of V and L and hence suggests
the restoration of continuity of β(g) for the 3D quasiperi-
odic system, provided we neglect the weak nonmonotonic
variations of g(L). In Fig. 3(d), we also show that the β

function, extracted from exponential fits deep in the insulating
phase and from power-law fits deep in the metallic phase, is
consistent with that obtained from the scaling collapse near
the transition.

IV. CONCLUSIONS

In summary, we have studied transport properties in a par-
ticular class of self-dual quasiperiodic models in one, two, and
three dimensions. We have focussed on the system-size de-
pendencies of the Thouless and open-system Landauer/Kubo
conductances. Our results uncover the intricate nature of
transport in quasiperiodic systems, which is manifested in
the nonmonotonic system-size dependence of typical conduc-
tances, e.g., because of transport resonances, and a variety of
subdiffusive power laws for critical transport; these depend on
the dimension, energy, and the sequences of length we have
described above.

Our results reveal the absence of a single-parameter-
scaling description in low dimensions and an approximate
recovery of single-parameter scaling in three dimensions;
this has direct implications for universality classes of metal-
insulator transition in quasiperiodic systems. In ongoing work
we are computing the multifractal spectrum of the wave
function and the Thouless conductance at the critical point
in the 3D quasiperiodic model and comparing it with those
at the 3D Anderson transition to verify whether they truly
belong to the same universality class. It is also worthwhile
to look into generalizations of quasiperiodic systems to other
symmetry classes [27] from this perspective. Moreover, it
would also be interesting to to study the implications of
subdiffusive critical states of noninteracting models, specially
in one dimension, on the Griffith-like effect seen experimen-
tally near the MBL transition in the interacting quasiperiodic
system [46] and to incorporate these critical states into a
real-space renormalization-group framework [47–49] for the
MBL transition in quasiperiodic systems.
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APPENDIX: d-DIMENSIONAL GENERALIZATION
OF AUBRY-ANDRE MODEL

We study the model proposed in Ref. [27] as a generaliza-
tion of the self-dual 1D Aubry-Andre model to d dimensions,
namely,

H = t
∑
r,μ

(eiφμc†
r+μ̂cr + H.c.) +

∑
r

εrc†
rcr, (A1a)

εr = 2V
d∑

μ=1

cos

(
2π

d∑
ν=1

Bμνrν + φμ

)
, (A1b)

where cr is the fermion operator at site r of a d-dimensional
hypercubic lattice and μ = 1, . . . , d denotes Cartesian com-
ponents. We choose t = 1, the matrix B = bR, with b = �,
and an orthonormal matrix R [27]. In one dimension, R = 1,
and

R =
[

c −s
s c

]
in d = 2, (A2a)

R =
⎡
⎣ c2 + s3 cs cs2 − cs

cs −s c2

cs2 − cs c2 c2s + s2

⎤
⎦ in d = 3, (A2b)

where c = cos θ and s = sin θ . We choose θ = π/7 for all
our calculations. For the calculations of the conductance of an
open system connected with leads, we use the free boundary
condition in transverse directions, and hence the phase factor
in the hopping term of Eq. (A1) can be gauged away. To
compare the open-system conductance with that of the closed
one, we consider the Hamiltonian again without the phase
factor in the hopping to calculate the Thouless conductance.
We note that, for the above transport setup, and for a finite
system, the real-space-momentum space duality of the model
Eq. (A1) [27] is lost. For each finite system with linear dimen-
sion L under periodic boundary conditions we can generate
a self-dual approximation [27]. This recipe is not applicable,
however, for the transport setup. All the data points for the
quasiperiodic system, shown here and in the Supplemental
Material [32], are results of averaging over 300–400 values of
φ ∈ [0, 2π ), and we checked the convergence of our data for
several parameter values with a larger number (∼1000–2000)
of φ averages.
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nonequilibrium steady states of quasiperiodic systems, Phys.
Rev. E 96, 032130 (2017).

[16] V. Khemani, D. N. Sheng, and D. A. Huse, Two Universality
Classes for the Many-Body Localization Transition, Phys. Rev.
Lett. 119, 075702 (2017).

[17] W. De Roeck and F. Huveneers, Stability and instability towards
delocalization in many-body localization systems, Phys. Rev. B
95, 155129 (2017).

[18] I.-D. Potirniche, S. Banerjee, and E. Altman, Exploration of the
stability of many-body localization in d > 1, Phys. Rev. B 99,
205149 (2019).

[19] F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod.
Phys. 80, 1355 (2008).

[20] P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher,
New method for a scaling theory of localization, Phys. Rev. B
22, 3519 (1980).

[21] B. L. Al’tshuler, Fluctuations in the extrinsic conductivity of
disordered conductors, Pis’ma Zh. Eksp. Teor. Fiz. 41, 530
(1985) [JETP Lett. 41, 648 (1985)].

[22] P. A. Lee and A. D. Stone, Universal Conductance Fluctuations
in Metals, Phys. Rev. Lett. 55, 1622 (1985).

[23] P. A. Lee and D. S. Fisher, Anderson Localization in Two
Dimensions, Phys. Rev. Lett. 47, 882 (1981).

[24] J. L. Pichard and G. Sarma, Finite-size scaling approach to
anderson localisation. ii. quantitative analysis and new results,
J. Phys. C 14, L617 (1981).

[25] A. MacKinnon and B. Kramer, The scaling theory of electrons
in disordered solids: Additional numerical results, Z. Phys. B
53, 1 (1983).

[26] K. Slevin, P. Markoš, and T. Ohtsuki, Reconciling Conductance
Fluctuations and the Scaling Theory of Localization, Phys. Rev.
Lett. 86, 3594 (2001).

[27] T. Devakul and D. A. Huse, Anderson localization transitions
with and without random potentials, Phys. Rev. B 96, 214201
(2017).

[28] D.-L. Deng, S. Ganeshan, X. Li, R. Modak, S. Mukerjee,
and J. H. Pixley, Many-body localization in incommensurate
models with a mobility edge, Ann. Phys. 529, 1600399 (2017).

[29] S. Ganeshan, J. H. Pixley, and S. Das Sarma, Nearest Neighbor
Tight Binding Models with an Exact Mobility Edge in One
Dimension, Phys. Rev. Lett. 114, 146601 (2015).

[30] J. W. Kantelhardt, in Mathematics of Complexity and Dynamical
Systems, Fractal and Multifractal Time Series, edited by R. A.
Meyers (Springer, New York, 2011).

[31] T. Tél, Fractals, multifractals, and thermodynamics, Z.
Naturforsch. A 43, 1154 (2014).

[32] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.99.224204 for the details of the calculations
of conductances and the multifractal analysis. The Supplemen-
tal Material includes Refs. [50–53].

[33] J. T. Edwards and D. J. Thouless, Numerical studies of localiza-
tion in disordered systems, J. Phys. C 5, 807 (1972).

[34] D. J. Thouless, Electrons in disordered systems and the theory
of localization, Phys. Rep. 13, 93 (1974).

[35] P. W. Anderson and P. A. Lee, The thouless conjecture for a one-
dimensional chain, Prog. Theor. Phys. Suppl. 69, 212 (1980).

[36] D. Braun, E. Hofstetter, A. MacKinnon, and G. Montambaux,
Level curvatures and conductances: A numerical study of the
thouless relation, Phys. Rev. B 55, 7557 (1997).

[37] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff,
P. Ch. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K.
Peng, and H. E. Stanley, PhysioBank, PhysioToolkit, and Phy-
sioNet: Components of a new research resource for complex
physiologic signals, Circulation 101, e215 (2000).

[38] D. Dominguez, C. Wiecko, and J. V. Jose, Wave-function and
resistance scaling for quadratic irrationals in Harper’s equation,
Phys. Rev. B 45, 13919 (1992).

[39] N. Macé, A. Jagannathan, and F. Piéchon, Fractal dimensions
of wave functions and local spectral measures on the fibonacci
chain, Phys. Rev. B 93, 205153 (2016).

[40] N. Macé, A. Jagannathan, P. Kalugin, R. Mosseri, and F.
Piéchon, Critical eigenstates and their properties in one-
and two-dimensional quasicrystals, Phys. Rev. B 96, 045138
(2017).

[41] A. Jagannathan, P. Jeena, and M. Tarzia, Nonmonotonic
crossover and scaling behaviors in a disordered 1D quasicrystal,
Phys. Rev. B 99, 054203 (2019).

[42] R. Landauer, Electrical resistance of disordered
one-dimensional lattices, Philos. Mag. 21, 863 (1970).

[43] E. N. Economou and C. M. Soukoulis, Static Conductance and
Scaling Theory of Localization in One Dimension, Phys. Rev.
Lett. 46, 618 (1981).

[44] D. S. Fisher and P. A. Lee, Relation between conductivity and
transmission matrix, Phys. Rev. B 23, 6851 (1981).

[45] A. Szabó and U. Schneider, Non-power-law universality
in one-dimensional quasicrystals, Phys. Rev. B 98, 134201
(2018).

[46] H. P. Lüschen, P. Bordia, S. Scherg, F. Alet, E. Altman, U.
Schneider, and I. Bloch, Observation of Slow Dynamics Near

224204-9

https://doi.org/10.1103/PhysRevLett.49.334
https://doi.org/10.1103/PhysRevLett.49.334
https://doi.org/10.1103/PhysRevLett.49.334
https://doi.org/10.1103/PhysRevLett.49.334
https://doi.org/10.1088/0305-4470/16/9/015
https://doi.org/10.1088/0305-4470/16/9/015
https://doi.org/10.1088/0305-4470/16/9/015
https://doi.org/10.1088/0305-4470/16/9/015
https://doi.org/10.1103/PhysRevLett.50.1870
https://doi.org/10.1103/PhysRevLett.50.1870
https://doi.org/10.1103/PhysRevLett.50.1870
https://doi.org/10.1103/PhysRevLett.50.1870
https://doi.org/10.1103/PhysRevLett.51.1198
https://doi.org/10.1103/PhysRevLett.51.1198
https://doi.org/10.1103/PhysRevLett.51.1198
https://doi.org/10.1103/PhysRevLett.51.1198
https://doi.org/10.1103/PhysRevLett.50.1873
https://doi.org/10.1103/PhysRevLett.50.1873
https://doi.org/10.1103/PhysRevLett.50.1873
https://doi.org/10.1103/PhysRevLett.50.1873
https://doi.org/10.1103/PhysRevB.29.1394
https://doi.org/10.1103/PhysRevB.29.1394
https://doi.org/10.1103/PhysRevB.29.1394
https://doi.org/10.1103/PhysRevB.29.1394
https://doi.org/10.1016/0370-1573(85)90088-2
https://doi.org/10.1016/0370-1573(85)90088-2
https://doi.org/10.1016/0370-1573(85)90088-2
https://doi.org/10.1016/0370-1573(85)90088-2
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1103/PhysRevB.96.180204
https://doi.org/10.1103/PhysRevB.96.180204
https://doi.org/10.1103/PhysRevB.96.180204
https://doi.org/10.1103/PhysRevB.96.180204
https://doi.org/10.1103/PhysRevB.97.174206
https://doi.org/10.1103/PhysRevB.97.174206
https://doi.org/10.1103/PhysRevB.97.174206
https://doi.org/10.1103/PhysRevB.97.174206
https://doi.org/10.1103/PhysRevE.96.032130
https://doi.org/10.1103/PhysRevE.96.032130
https://doi.org/10.1103/PhysRevE.96.032130
https://doi.org/10.1103/PhysRevE.96.032130
https://doi.org/10.1103/PhysRevLett.119.075702
https://doi.org/10.1103/PhysRevLett.119.075702
https://doi.org/10.1103/PhysRevLett.119.075702
https://doi.org/10.1103/PhysRevLett.119.075702
https://doi.org/10.1103/PhysRevB.95.155129
https://doi.org/10.1103/PhysRevB.95.155129
https://doi.org/10.1103/PhysRevB.95.155129
https://doi.org/10.1103/PhysRevB.95.155129
https://doi.org/10.1103/PhysRevB.99.205149
https://doi.org/10.1103/PhysRevB.99.205149
https://doi.org/10.1103/PhysRevB.99.205149
https://doi.org/10.1103/PhysRevB.99.205149
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/PhysRevB.22.3519
https://doi.org/10.1103/PhysRevB.22.3519
https://doi.org/10.1103/PhysRevB.22.3519
https://doi.org/10.1103/PhysRevB.22.3519
http://www.jetpletters.ac.ru/ps/1470/article_22425.shtml
https://doi.org/10.1103/PhysRevLett.55.1622
https://doi.org/10.1103/PhysRevLett.55.1622
https://doi.org/10.1103/PhysRevLett.55.1622
https://doi.org/10.1103/PhysRevLett.55.1622
https://doi.org/10.1103/PhysRevLett.47.882
https://doi.org/10.1103/PhysRevLett.47.882
https://doi.org/10.1103/PhysRevLett.47.882
https://doi.org/10.1103/PhysRevLett.47.882
https://doi.org/10.1088/0022-3719/14/21/004
https://doi.org/10.1088/0022-3719/14/21/004
https://doi.org/10.1088/0022-3719/14/21/004
https://doi.org/10.1088/0022-3719/14/21/004
https://doi.org/10.1007/BF01578242
https://doi.org/10.1007/BF01578242
https://doi.org/10.1007/BF01578242
https://doi.org/10.1007/BF01578242
https://doi.org/10.1103/PhysRevLett.86.3594
https://doi.org/10.1103/PhysRevLett.86.3594
https://doi.org/10.1103/PhysRevLett.86.3594
https://doi.org/10.1103/PhysRevLett.86.3594
https://doi.org/10.1103/PhysRevB.96.214201
https://doi.org/10.1103/PhysRevB.96.214201
https://doi.org/10.1103/PhysRevB.96.214201
https://doi.org/10.1103/PhysRevB.96.214201
https://doi.org/10.1002/andp.201600399
https://doi.org/10.1002/andp.201600399
https://doi.org/10.1002/andp.201600399
https://doi.org/10.1002/andp.201600399
https://doi.org/10.1103/PhysRevLett.114.146601
https://doi.org/10.1103/PhysRevLett.114.146601
https://doi.org/10.1103/PhysRevLett.114.146601
https://doi.org/10.1103/PhysRevLett.114.146601
https://doi.org/10.1515/zna-1988-1221
https://doi.org/10.1515/zna-1988-1221
https://doi.org/10.1515/zna-1988-1221
https://doi.org/10.1515/zna-1988-1221
http://link.aps.org/supplemental/10.1103/PhysRevB.99.224204
https://doi.org/10.1088/0022-3719/5/8/007
https://doi.org/10.1088/0022-3719/5/8/007
https://doi.org/10.1088/0022-3719/5/8/007
https://doi.org/10.1088/0022-3719/5/8/007
https://doi.org/10.1016/0370-1573(74)90029-5
https://doi.org/10.1016/0370-1573(74)90029-5
https://doi.org/10.1016/0370-1573(74)90029-5
https://doi.org/10.1016/0370-1573(74)90029-5
https://doi.org/10.1143/PTPS.69.212
https://doi.org/10.1143/PTPS.69.212
https://doi.org/10.1143/PTPS.69.212
https://doi.org/10.1143/PTPS.69.212
https://doi.org/10.1103/PhysRevB.55.7557
https://doi.org/10.1103/PhysRevB.55.7557
https://doi.org/10.1103/PhysRevB.55.7557
https://doi.org/10.1103/PhysRevB.55.7557
https://www.ncbi.nlm.nih.gov/pubmed/10851218
https://doi.org/10.1103/PhysRevB.45.13919
https://doi.org/10.1103/PhysRevB.45.13919
https://doi.org/10.1103/PhysRevB.45.13919
https://doi.org/10.1103/PhysRevB.45.13919
https://doi.org/10.1103/PhysRevB.93.205153
https://doi.org/10.1103/PhysRevB.93.205153
https://doi.org/10.1103/PhysRevB.93.205153
https://doi.org/10.1103/PhysRevB.93.205153
https://doi.org/10.1103/PhysRevB.96.045138
https://doi.org/10.1103/PhysRevB.96.045138
https://doi.org/10.1103/PhysRevB.96.045138
https://doi.org/10.1103/PhysRevB.96.045138
https://doi.org/10.1103/PhysRevB.99.054203
https://doi.org/10.1103/PhysRevB.99.054203
https://doi.org/10.1103/PhysRevB.99.054203
https://doi.org/10.1103/PhysRevB.99.054203
https://doi.org/10.1080/14786437008238472
https://doi.org/10.1080/14786437008238472
https://doi.org/10.1080/14786437008238472
https://doi.org/10.1080/14786437008238472
https://doi.org/10.1103/PhysRevLett.46.618
https://doi.org/10.1103/PhysRevLett.46.618
https://doi.org/10.1103/PhysRevLett.46.618
https://doi.org/10.1103/PhysRevLett.46.618
https://doi.org/10.1103/PhysRevB.23.6851
https://doi.org/10.1103/PhysRevB.23.6851
https://doi.org/10.1103/PhysRevB.23.6851
https://doi.org/10.1103/PhysRevB.23.6851
https://doi.org/10.1103/PhysRevB.98.134201
https://doi.org/10.1103/PhysRevB.98.134201
https://doi.org/10.1103/PhysRevB.98.134201
https://doi.org/10.1103/PhysRevB.98.134201


SUTRADHAR, MUKERJEE, PANDIT, AND BANERJEE PHYSICAL REVIEW B 99, 224204 (2019)

the Many-Body Localization Transition in One-Dimensional
Quasiperiodic Systems, Phys. Rev. Lett. 119, 260401 (2017).

[47] R. Vosk, D. A. Huse, and E. Altman, Theory of the Many-Body
Localization Transition in One-Dimensional Systems, Phys.
Rev. X 5, 031032 (2015).

[48] A. C. Potter, R. Vasseur, and S. A. Parameswaran, Univer-
sal Properties of Many-Body Delocalization Transitions, Phys.
Rev. X 5, 031033 (2015).

[49] S.-X. Zhang and H. Yao, Universal Properties of Many-Body
Localization Transitions in Quasiperiodic Systems, Phys. Rev.
Lett. 121, 206601 (2018).

[50] E. Akkermans, Twisted boundary conditions and transport in
disordered systems, J. Math. Phys. 38, 1781 (1997).

[51] W. Zhou, Y. Dang, and R. Gu, Efficiency and multifractality
analysis of CSI 300 based on multifractal detrending moving
average algorithm, Physica A 392, 1429 (2013).

[52] P. Markoš, Numerical analysis of the anderson localization,
Acta Phys. Slov. 56, 561 (2006).

[53] J. A. Verges, Computational implementation of the Kubo
formula for the static conductance: Application to two-
dimensional quantum dots, Comput. Phys. Commun. 118, 71
(1999).

224204-10

https://doi.org/10.1103/PhysRevLett.119.260401
https://doi.org/10.1103/PhysRevLett.119.260401
https://doi.org/10.1103/PhysRevLett.119.260401
https://doi.org/10.1103/PhysRevLett.119.260401
https://doi.org/10.1103/PhysRevX.5.031032
https://doi.org/10.1103/PhysRevX.5.031032
https://doi.org/10.1103/PhysRevX.5.031032
https://doi.org/10.1103/PhysRevX.5.031032
https://doi.org/10.1103/PhysRevX.5.031033
https://doi.org/10.1103/PhysRevX.5.031033
https://doi.org/10.1103/PhysRevX.5.031033
https://doi.org/10.1103/PhysRevX.5.031033
https://doi.org/10.1103/PhysRevLett.121.206601
https://doi.org/10.1103/PhysRevLett.121.206601
https://doi.org/10.1103/PhysRevLett.121.206601
https://doi.org/10.1103/PhysRevLett.121.206601
https://doi.org/10.1063/1.531913
https://doi.org/10.1063/1.531913
https://doi.org/10.1063/1.531913
https://doi.org/10.1063/1.531913
https://doi.org/10.1016/j.physa.2012.11.044
https://doi.org/10.1016/j.physa.2012.11.044
https://doi.org/10.1016/j.physa.2012.11.044
https://doi.org/10.1016/j.physa.2012.11.044
http://www.physics.sk/aps/pub.php?y=2006&pub=aps-06-05 
https://doi.org/10.1016/S0010-4655(99)00206-4
https://doi.org/10.1016/S0010-4655(99)00206-4
https://doi.org/10.1016/S0010-4655(99)00206-4
https://doi.org/10.1016/S0010-4655(99)00206-4

