
PHYSICAL REVIEW B 99, 224202 (2019)

Energy level dynamics across the many-body localization transition
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The level dynamics across the many-body localization transition is examined for XXZ spin model with
a random magnetic field. We compare different scenarios of parameter-dependent motion in the system and
consider measures such as level velocities, curvatures, as well as their fidelity susceptibilities. Studying the
ergodic phase of the model we find that the level dynamics does not reveal the commonly believed universal
behavior after rescaling the curvatures by the level velocity variance. At the same time, distributions of level
curvatures and fidelity susceptibilities coincide with properly rescaled distributions for Gaussian orthogonal
ensemble of random matrices. Profound differences exist depending on way the level dynamics is imposed in
the many-body localized phase of the model in which the level dynamics can be understood with the help of
local integrals of motion.
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I. INTRODUCTION

Random matrix theory (RMT) based tools proved very ef-
fective in statistical analysis of quantum systems chaotic in the
classical limit [1,2]. One of the simplest measures is provided
by level spacing statistics, Poissonian for integrable systems
while revealing similarity with RMT predictions for chaotic
models [3]: notably, for time-reversal-invariant systems solely
addressed below, leading to an approximate Wigner surmise
for the level spacing distribution.

The same measures proved fruitful for disordered systems.
The spectrum of single-particle, Anderson localized system
has Poissonian character. In three dimensions, in the presence
of disorder, systems may become delocalized with extended
states and Wigner-type level statistics. The Anderson localiza-
tion transition attracted attention a long time ago, leading to
first propositions of “intermediate statistics” [4] being again
parallel to similar attempts to describe dynamical systems
with mixed dynamics [5].

With the development of many-body localization (MBL)
the statistical description of localized and ergodic systems
reached a new level. Already in the early days of MBL,
Oganesyan and Huse [6] introduced a new statistical measure,
the so-called gap ratio, which became a prime tool in a
statistical analysis of many-body spectra. It is defined as
rn = min{δn, δn−1}/ max{δn, δn−1} where δn = En+1 − En is
an energy difference between two consecutive levels. Being
the ratio of two nearest spacings it is a dimensionless quantity,
thus it may be determined without finding a local mean
density of states and “unfolding” the spectra. As the unfolding
procedure is not uniquely defined, the introduction of gap
ratio was a major step simplifying statistical description of
MBL related systems. The mean r̄ appeared as a simple and
decisive measure of the statistical properties of many-body
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system with r̄ ≈ 0.53 corresponding to Gaussian orthogonal
ensemble (GOE) representing ergodic systems while r̄ ≈ 0.39
corresponding to MBL situation with Poissonian level statis-
tics [7]. Calculation of the average gap ratio r̄ allowed to
localize the transition between ergodic and MBL phases in
several models [6,8–13]. The analysis of the transition with
the more traditional level spacing distribution and related
measures was performed in [14–16].

Level statistics provide, however, only information about
N eigenvalues of the Hamiltonian matrix which contains
N (N + 1)/2 independent matrix elements. Thus, an additional
insight into the considered system may be gained by in-
vestigation of eigenstates. Their statistical description, e.g.,
via participation ratios, suffers, however, from the choice of
the basis used for the analysis [17]. Here, as pointed out
in a recent analysis of multifractality across MBL transition
[18], much less is known and open questions exist such as,
e.g., a possible existence of nonergodic yet delocalized phase
[19–22] or the question of wave-function properties in MBL
regime [23]. These issues may be addressed by an analysis of
generalized participation ratios [18]; an alternative approach
is presented in this work via the so-called “level response
statistics” which characterizes the sensitivity of individual
energy levels with respect to a change in the control param-
eter. Edwards and Thouless suggested that the conductance
of a disordered system may be related to the sensitivity of
the spectrum to changes of boundary conditions [24]. This
led to level dynamics studies, and the early works [25–27]
established a link with appropriate Gaussian random matrix
theory (RMT) models. In level dynamics the role of time is
taken by the parameter which is varied. Thus, e.g., energy
level slopes vn = dEn/dλ may be considered as velocities.
The RMT leads then to Gaussian distribution of veloci-
ties (slopes). The velocity distribution ceases to be Gaus-
sian when Anderson localization sets in (see [28,29] where
distribution of velocities in the localized regime has been
proposed).
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In the same spirit, level curvatures defined as the second
derivative of energy levels with respect to the parameter Kn =
d2En/dλ2 were considered (we shall not call them accelera-
tions despite the motion analogy). One of the earliest attempts
to describe the curvature statistics for chaotic spectra was
made by Gaspard in [30]. The analytical expressions for large
curvature limits were found for all three Gaussian ensembles:
Gaussian unitary (GUE), orthogonal (GOE), and symplectic
(GSE) ensembles and compared with numerics coming from
model quantum chaos studies. The analytical expressions for
curvature distributions were provided for all three ensembles
on the basis of numerical studies [31]:

P(k) = Nβ

(1 + k2)(β+2)/2
(1)

with β = 1, 2, 4 for GOE, GUE, and GSE, respectively, where
Nβ is normalization constant and k the so-called scaled cur-
vature. It has been argued [32] that the scaling is universal
with k = K/γ with γ = πρσv in terms of the mean density of
states ρ and the variance of the velocity distribution σv . The
astonishingly simple formula (1) was proven by von Oppen
[33,34]; for a simple and instructive alternative derivation, see
also [35].

Interestingly, the same formula (for GOE) was found to be
applicable in the case of infinitesimal Aharonov-Bohm flux
breaking the time-reversal symmetry. The numerical findings
[36] were confirmed analytically [37].

The expression (1) describes the typical behavior of cur-
vatures of quantally chaotic systems but already there one
may observe deviations from universality as, e.g., for sta-
dium billiard or a paradigmatic model of quantum chaos,
a hydrogen atom in a magnetic field. The nonuniversal-
ity features were related to eigenfunction scarring phe-
nomenon [31] that modifies the small curvatures behavior.
Curvature distributions in the Anderson localized case and
in the transition between extended and localized regimes
have been addressed in a number of works [35,38–44]. For
many-body system with infinitesimal Aharonov-Bohm flux
the curvature distribution in the MBL regime was studied
in [45].

Another related measure of sensitivity of a system to a
change of a parameter is the fidelity F , defined as F (λ) =
|〈ψ (λ)|ψ (λ + δλ)〉| [note that often the square modulus is
used for a definition (see discussion in [46])]. For small
enough λ one may expand the fidelity into Taylor series
F = 1 − 1/2χ2δ2 + · · · defining the fidelity susceptibility χ

(the linear term in the expansion vanishes due to the wave-
function normalization). In a standard approach fidelity and
fidelity susceptibility are evaluated for a small change of
parameter for the ground-state wave function. The latter un-
dergoes dramatic changes at quantum phase transitions (QPT)
reflected by a maximum of fidelity susceptibility at the critical
point (or its divergence in the thermodynamic limit [47,48]).
Fidelity susceptibility is directly proportional to the Bures
distance between density matrices corresponding to |ψ (λ)〉
and |ψ (λ + δλ)〉 [49,50]; this property can be extended to
thermal states [51–53]. Let us note that universal information
can be extracted from fidelity susceptibility in the vicinity of
the critical points [54–62].

For MBL all states are important so one can introduce fi-
delity (and fidelity susceptibility) of excited states as well (not
being limited to thermal states). In an interesting approach
[63] it was shown that fidelity of a specially prepared state
(the so-called diagonal ensemble) may signal MBL transition.
We shall consider an entire fidelity susceptibility distribu-
tion for all quantum states of the system, also for generic
random matrix representations of Hamiltonians. Recently,
analytic predictions for fidelity susceptibility distribution for
GOE/GUE dynamics have been derived analytically [64]. We
shall consider how this distribution is affected when entering
then MBL regime.

For completeness, let us mention yet another measure of
level dynamics, the distribution of avoided crossing sizes
relevant for situations when a change of parameter is aimed
at being adiabatic. It has been studied in a number of works
for chaotic systems also in the spirit of RMT [65–67].

As mentioned above, level dynamics provides a complete
(via the formalism of [25–27]) access to properties of not
only eigenvalues, but also matrix elements in the eigenstate
basis of different physical operators. This paves a way to a
more comprehensive understanding of MBL which, despite
years of studies, remains a controversial phenomenon [68].
The present contribution makes the first step in this, hitherto
practically unexplored, direction.

The paper is organized as follows. First, we provide a brief
review of level dynamics as typically considered in quantum
chaos studies. Then, we discuss velocities, curvatures, and
fidelity susceptibility distributions first in the delocalized then
in the localized regime. Most surprisingly, we find that in the
delocalized regime the level dynamics indicates signatures of
nonuniversal behavior. In the localized phase we show that the
system sensitivity to perturbation is strongly dependent on the
perturbation itself, indicating a connection with description of
MBL system in terms of the so-called local integrals of motion
(LIOMs) [69,70]. Finally, we discuss the results and provide
future perspectives.

II. LEVEL DYNAMICS REVISITED

Let us revisit a simple picture of level dynamics. Consider
a general Hamiltonian Ĥ = Ĥ (λ). The particular form often
assumed is Ĥ (λ) = Ĥ0 + λV̂ , but we do not limit ourselves to
this particular choice. The Schrödinger equation reads as

Ĥ |ψn〉 = En|ψn〉. (2)

Differentiating this equation sidewise with respect to λ, and
taking the left product with 〈ψn|, we obtain (where the ẋ is a
substitution for dx/dλ)

Ėn = 〈ψn|Ḣ |ψn〉, (3)

where Ḣ ≡ dH/dλ (hereafter the hat is omitted for conve-
nience). In a particular case of H (λ) = H0 + λV dynamics
suppose that H0 belongs to GOE (GUE). Then, for generic
V from the same ensemble its diagonal elements in the basis
of H0 eigenvectors are Gaussian distributed giving trivially the
Gaussian level “velocity distribution” for GOE (GUE).
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The situation is more complicated for curvatures
d2En/dλ2. Differentiating (3) we get

Ën = 〈ψn|Ḧ |ψn〉 + 〈ψ̇n|Ḣ |ψn〉 + 〈ψn|Ḣ |ψ̇n〉
= 〈ψn|Ḧ |ψn〉 +

∑
k

〈ψ̇n|ψk〉〈ψk|V |ψn〉

+ 〈ψn|V |ψk〉〈ψk|ψ̇n〉, (4)

where we used the resolution of unity. Again differentiating
(2) but now taking the left product with 〈ψk| for k �= n we get

〈ψk|ψ̇n〉 = 〈ψk|V |ψn〉
En − Ek

, (5)

which placed in (4) gives the standard expression for the level
curvature

Kn ≡ Ën = 〈ψn|Ḧ |ψn〉 + 2
∑
k �=n

|〈ψk|V |ψn〉|2
En − Ek

. (6)

The first term vanishes for H (λ) = H0 + λV scenario. In
particular, for H0 and V belonging to GOE (GUE) ensembles
one may easily derive a relation between large curvature tail
of curvature distributio, P(K ) and the spacing distribution
P(s). For generic V the matrix elements in the numerator of
(6) are independent of the denominator. Large K corresponds
to small En − Ek = s, thus, for large K ∝ 1/s. If P(s) for
small s behaves as sβ (β = 1, 2 for GOE, GUE, respectively),
then P(K ) ∝ K−(β+2) for K large [30]. As mentioned in the
Introduction after appropriate rescaling k = K/γ an exact ex-
pression for curvature distribution (1) is available [31,33,35].

Similarly, the fidelity susceptibility may be expressed as

χn =
∑
k �=n

|〈ψk|V |ψn〉|2
(En − Ek )2

. (7)

The analogous argument to that for curvatures [71] gives
the large χ tails of the fidelity susceptibility distribution as
χ−(β+3)/2.

Let us note that the similar arguments give large curvature
and fidelity susceptibility tails for integrable (e.g., localized)
case where P(s) is Poissonian. One may expect 1/K2 and
1/χ3/2 tails of the corresponding distributions assuming that
the spacings are independent from matrix elements of the
perturbation V [71]. For curvatures it is in apparent contradic-
tion with the log-normal distribution postulated in the deeply
localized regime [40].

III. MODEL

We consider the XXZ model Hamiltonian, the paradig-
matic model of MBL transition [9],

H = J
L−1∑
i=1

(
Sx

i Sx
i+1 + Sy

i Sy
i+1

) + Jz

L−1∑
i=1

Sz
i Sz

i+1 +
L∑

i=1

hiS
z
i ,

(8)
where Sα=x,y,z

i are spin- 1
2 degrees of freedom at site i, J and

Jz are the coupling strengths for XY and Z components,
respectively, and hi is the random magnetic field drawn from
an appropriate distribution. Typically, one considers a ran-
dom uniform distribution in [−W ;W ] interval where W is

FIG. 1. Exemplary level dynamics of spin- 1
2 Heisenberg model

for a given single realization of disorder. Both the disorder strength
W and the energy are expressed in units of J . The transition from
quantally chaotic behavior at low-W values to a regular motion
corresponding to many-body localization of the system at large W
is shown. In the former case, a number of large avoided crossings
appear as opposed to the large-W regime where level crossings are
a characteristic signature of the presence of constants of motion:
LIOMs [69,70].

the disorder strength. The Hamiltonian (8) maps directly to
interacting spinless fermion model:

Hf = −J

2

L−1∑
i=1

( f †
i fi+1 + f †

i+1 fi ) + Jz

L−1∑
i=1

nz
i ni+1 +

L∑
i=1

hini,

(9)
where fi ( f †

i ) are fermion annihilation (creation) operators at
site i with ni = f †

i fi being the occupation at site i. In this
picture, J corresponds to the tunneling and Jz is the interaction
strength.

There are several ways how one can introduce the param-
eter change in the problem. One may vary the tunneling J
affecting XY coupling in the spin Hamiltonian. Alternatively,
one may modify Jz, the interaction strength in the fermion
picture. It is also possible to modify random onsite couplings.
The example of such a change is shown in Fig. 1. Finally,
Thouless suggested [24,72] that the average conductance is
proportional to the width of the curvature distribution (where
the parameter change φ is a small twist of the boundary
conditions). Explicitly, the tunneling term of (9) takes then
the form

L−1∑
i=1

( f †
i fi+1 exp(−iφ) + f †

i+1 fi exp(iφ)). (10)

Such an approach was applied in the early study of local-
ization in banded random matrices [38] and was frequently
used for different systems approaching Anderson localization
[35,37,39–44]. For 1D disordered systems the log-normal
distribution of curvatures is postulated in the localized regime
[40,43] although the deviations from it are indicated in some
works [38]. Observe that the twist of boundary conditions
(passing to the moving frame) explicitly breaks time-reversal
invariance in the system, so such an approach may exhibit
different features than changing of J and Jz which keeps the
system within the same universality class.

224202-3



MAKSYMOV, SIERANT, AND ZAKRZEWSKI PHYSICAL REVIEW B 99, 224202 (2019)

The qualitative picture of the system behavior at different
values of the disorder amplitude W is shown in Fig. 1. Here
and in the following, all parameters of the problem with the
dimension of energy are expressed in units of the tunneling
J (thus J = 1, when we study level dynamics changing J ,
small changes of J will be considered around this value).
The spectrum of a small (for clarity) exemplary system is
plotted for a single random realization of disorder. Enlarged
areas depict two characteristic regions. Small W values cor-
respond to delocalized, ergodic regime with a characteristic
large number of avoided crossings (with their sizes being
Gaussian distributed for the appropriate GOE universality
class [67]). For larger W , a transition to a different localized
regime occurs [where integrability is assured by the existence
of local integrals of motion (LIOMs) [69,70]]. There, the
avoided crossings are replaced by crossings of levels that are
an apparent manifestation of the existence of LIOMs.

For our system we shall introduce the following level
dynamics:

(a) The perturbation V is given by H1 =
δJz

∑L−1
i=1 nini+1 = δJz

∑L−1
i=1 Sz

i Sz
i+1 (the second expression in

the spin language) thus interaction strength Jz is modified.
(b) The perturbation V is given by H2 =

δJ
2

∑L−1
i=1 ( f †

i fi+1 + f †
i+1 fi ), thus the tunneling term is affected.

(c) Twisted boundary conditions in the form of (10) are
assumed.

IV. DELOCALIZED, ALMOST GOE REGIME

A. Velocities and curvatures

MBL transition occurs in the studied XXZ spin chain at
WC ≈ 3.7 [8]. As a representative value of disorder strength
in the ergodic regime we choose W = 0.5 for which r ≈
0.53, staying away from the crossover regime which starts at
W ≈ 2.0 for system size L = 16 and also from the integrable
point at W = 0. To see how the predictions of universal level
dynamics [32] are fulfilled, let us review its basic findings.
In essence, the level dynamics should depend on a single
parameter, the variance of the level velocities defined as
σ 2 = 〈(dE/dλ)2〉 − 〈(dE/dλ)〉2 where 〈. . . 〉 denotes average
over disorder realizations. This implies, in particular, that the
curvature distributions, regardless of the perturbation, should
be described by (1) if rescaled appropriately by the velocity
variance.

Figure 2 reveals that it is not the case. The top panel shows
that unscaled curvatures K = d2E/dλ2 for both H1 and H2

perturbation, whereas the bottom panel shows the respective
velocity distributions P(v). First, the velocity distributions
are not Gaussian as one would expect for GOE but rather
are visibly asymmetric. Moreover, the number of velocities
n taken from each disorder realization (from the center of
energy spectrum) plays an unexpectedly important role. The
number n of energy levels for which the average gap ratio
remains r ≈ 0.53 is way above 10% of the total Hilbert space
that corresponds to n = 1200 eigenvalues from the middle of
the spectrum. We observe, however, that the velocity distribu-
tion P(v) approximates well a distribution for a single level
at the band center only for n ≈ 50. Shifting the position of
the interval from which velocities are taken by 2% of the

FIG. 2. Top panel: curvature distributions P(K ) for both types of
perturbation assumed (see text) coincide. Both are well fitted with
the universal curvature distribution (1). Bottom panel: the velocity
distributions P(v) for the two perturbations are vastly different. Shift-
ing the interval from which n = 50 velocities are taken significantly
affects the distribution (as shown for perturbation A); taking n = 800
(dashed line) significantly affects the variance of the distribution.

dimension of Hilbert space does not affect r but results in a
significant shift of the P(v) as demonstrated on example of
B perturbation in Fig. 2. Taking n = 800 velocities from the
middle of the spectrum results in P(v) drawn by the dashed
line, with a significantly larger variance σ 2. It is thus crucial
to consider P(v) for n not larger than 50 for L = 16. This,
however, leads us to an unexpected result.

Since the velocity distributions corresponding to perturba-
tions A and B are vastly different with significantly different
variances and since distributions P(K ) overlap for the two
cases, the scaled curvature distributions differ. This is a clear
indication of a nonuniversal behavior of XXZ Hamiltonian as
far as level dynamics is concerned in the ergodic regime. The
unscaled curvature distribution agreement must be interpreted
as accidental. Suppose we reshape the perturbation λV as
λ1V1 with V1 = aV and λ1 = λ/a. Then, unscaled curvatures
calculated with respect to λ1 are a2 smaller than the original
ones. As the same scaling occurs for the velocity variance, the
scaled curvatures are not affected by such a transformation.

Still, in both considered cases, after rescaling properly
curvatures K by the factor suggested by RMT, i.e., γ = πρσ 2,
the distribution obtained does not coincide with (1); simply, γ

does not yield a proper width. Let us note, however, that the
distribution is very well reproduced by (1) provided a width
of the distribution is fitted, instead of being defined by the
velocity variance (compare Fig. 2).

The surprising, nonuniversal behavior is robust in the
sense that it occurs also for systems with different disorder
amplitude W (sufficiently small to be far from the transition
to the localized regime). Similarly, it is robust to changes of
Hamiltonian. For instance, we have added the next-neighbor
tunnelings ensuring that the system remains nonintegrable
(quantum chaotic) at W = 0 (following [6]). This leads to
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a similar, nonuniversal behavior. On the other hand, con-
sistently, we find that the curvature distribution is faithfully
represented by (1), provided the width of the distribution is
determined by a fit and not by the velocity variance.

The same distribution works well also for the twisted
boundary conditions; case C as shown already in [45]. In that
case, all velocities vanish identically due to the symmetry of
the Hamiltonian, so the width of the distribution remains a
sole parameter of the fit.

B. Fidelity

The fidelity susceptibility distribution has not been studied
before for any physical system. It seems, therefore, even more
interesting to inspect the numerical data for this measure
for different perturbation schemes. Let us recall that there
exists an analytic prediction for the fidelity susceptibility χ

distribution, P(χ ) as a function of x = χ/N for GOE and
GUE [64] with N being the matrix rank. Fidelity susceptibility
distribution for GOE matrices in the N → ∞ limit reads as

P(x) = 1

6x2

(
1 + 1

x

)
exp

(
− 1

2x

)
. (11)

Let us consider the rescaling of the perturbation parameter
λ in the form λ1 = λ/a corresponding to the perturbation
change λ1V1 with V1 = aV . The very definition of the fidelity
susceptibility, via a Taylor expansion F = 1 − 1

2λ2χ2, shows
that a transformation to λ1 rescales fidelity susceptibility by
a factor of a. The analytic prediction derived in [64] assumes
the same density of states both for the original Hamiltonian
H0 and its perturbation V . Since we do not intend to estimate
the energy scale of the perturbation, we add a scaling factor
(playing the role of an effective width) defining y = xγ with

Pγ (y) = γ

6y2

(
1 + γ

y

)
exp

(
− γ

2y

)
. (12)

As an example, consider first the perturbation of tunnelings,
i.e., the B case. The corresponding data are shown in Fig. 3
and compared with the GOE prediction [64]. The GOE pre-
diction (11) seems to be a bad choice at the first glance but
after rescaling the universal prediction, (12) represents well
the numerical data for the largest considered system size L =
16. A significant discrepancy at small fidelity susceptibilities
χ is visible between formula (12) and data for L = 12, 14.
To resolve this issue, we use the exact formula for fidelity
susceptibility distribution for GOE matrix of size N [64]:

PO
N (χ ) = CO

N√
χ

(
χ

1 + χ

) N−2
2

(
1

1 + 2χ

) 1
2

×
[

1

1 + 2χ
+ 1

2

(
1

1 + χ

)2

N
N − 2

N − 1/2

]
, (13)

where CO
N is a normalization constant, N is assumed to be

even. Defining appropriately rescaled y = xγ , we find that the
data for L = 12 are very accurately reproduced if one assumes
N = 50 in (13). This result indicates that B (tunnelings) per-
turbation of the XXZ spin chain Hamiltonian (8) on L = 12
sites (with Hilbert space dimension 924) generates the same
fidelity susceptibility distribution as level dynamics within
GOE ensemble of matrices with N = 50, much smaller than
the dimension of the Hilbert space.

FIG. 3. Fidelity susceptibility distribution for perturbation of
tunnelings, scheme B, as a function of the system size in the delocal-
ized regime W = 0.5. The large susceptibility tails for different sys-
tem sizes approximately coincide giving x = χ/N ∝ 1/x2 in agree-
ment with (11). Small susceptibilities show significant size effects
which can be accounted for by considering fidelity susceptibility
distribution for GOE matrices of finite size (13). The prediction (11)
(blue line) satisfactorily reproduces L = 16 data only after rescaling
the width, i.e., fitting (12) distribution.

Figure 4(a) compares the fidelity susceptibility distribu-
tions obtained for all three perturbations for L = 16 sys-
tem. Types A and B perturbations practically coincide; both
perturbations preserve time-reversal-invariant symmetry and
apparently the width γ reflecting the effective energy scale of
perturbation is similar. On the other hand, the green curve in
Fig. 4 (left panel) shows the fidelity susceptibility distribution
for the twisted case C. The scaling is remarkably different, but
this is not surprising as the perturbation is vastly different. A
clear deviation from (12) is observed for small fidelities that
can be taken into account by considering (13) with N = 40.
Note that in this case, the ratio of dimension of Hilbert space
(12 870) and of size of matrices from GOE which reproduce
the fidelity susceptibility distribution is much larger than for
L = 12 and B perturbation. The perturbation C breaks the
time-reversal invariance so it is not obvious to what extent
(12) and (13) distributions are applicable.

While P(y) has a rather complicated form (12) a much
simpler distribution is obtained looking at the inverse variable
z = 1/y. Explicitly,

P(z) = γ

6
(1 + γ z) exp(−γ z/2) (14)

revealing an exponential tail for large z (i.e., small fidelities).
The suppression of small fidelity susceptibilities in GOE
dynamics is expected due to strong level interactions. Fig-
ure 4(b) shows P(z) for all three perturbations considered.
The corresponding widths are adjusted and deviations from
GOE-like P(z) behavior (14) are observed in the tails of
the distributions. The differences between resulting fidelity
susceptibility distributions for the three perturbations are an
another manifestation of nonuniversality of level dynamics in
the ergodic regime.
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FIG. 4. (a) Fidelity susceptibility distributions for three types of
perturbation assumed in the text. While for perturbations of types A
and B the distributions coincide, and the perturbation corresponding
to twisted boundary conditions C reveals deviations from GOE
prediction for small χ . The distributions of the inverse fidelity
susceptibility (b) differ mainly in the tail at large N/χ and are
dependent on the type of perturbation assumed.

C. Partial summary: Delocalized regime

Before investigating the transition toward MBL, it is worth-
while to summarize the quite surprising findings we uncov-
ered in the delocalized regime. Contrary to claims [18] that
this regime is purely ergodic as indicated by the appropriate
fractal dimension obtained from the participation ratio, we
have observed a clear breakdown of the universality of level
dynamics as expected for systems faithful to random matrix
theory predictions. Matrix elements of different operators,
appropriate for level velocities for different perturbations,
lead apparently to nonuniversal behavior of level dynam-
ics. Thus, apparently, the considered exemplary system is
quite sensitive to the way in which it is perturbed despite
showing eigenvalue statistics that is in a full accord with
GOE.

V. TRANSITION TOWARD MANY-BODY
LOCALIZED REGIME

With increasing disorder strength W , the system undergoes
a transition to MBL regime. The transition is expected to
occur at WC ≈ 3.7 [8] in a thermodynamically large system. A

crossover between the ergodic and MBL behaviors is observed
at finite system size L. For relatively small system sizes
amenable to exact diagonalization, a characteristic value of
disorder strength for which intersample randomness in the
system is maximal [16] is WL ≈ 2.7 for L = 16 (and WL →
WC in the thermodynamic limit).

It is interesting to investigate how different measures of
level dynamics change across this ergodic-MBL crossover.
We shall consider here separately velocities, curvatures,
and fidelities that will allow, we hope, to elucidate on the
character of the transition as well as on the MBL phase
properties.

A. Velocities

Here, we may compare only velocities for an “interaction”
perturbation A with those for a “tunneling” perturbation B
as velocities for C case vanish identically due to symmetry
considerations. In the deeply delocalized regime for small
disorder W = 0.5 we have seen that both velocity distribu-
tions were almost Gaussian (with, however, non-negligible
skewness, see the bottom panel in Fig. 2). Figure 5 shows nu-
merically obtained distributions of velocities v for both types
of perturbation. On the delocalized side and across the MBL
transition, both perturbations result in almost Gaussian distri-
butions with widths increasing with the disorder strength W .
In the MBL phase, the velocity distributions become markedly
different. In particular, for “interaction” perturbation a mul-
tipeak structure appears [compare Fig. 5(a)]. While quite
suspicious at first glance (with peaks localized approximately
at integer values of velocities), this surprising structure may
be quite easily understood taking into account the character of
the perturbation which reads as, recall, H1 = δJz

∑L−1
i=1 nini+1.

Thus, velocities are nothing other than the mean values of
V = ∑L−1

i=1 nini+1 = ∑L−1
i=1 Sz

i Sz
i+1. In the MBL phase, there

exists a set of LIOMs localized on different sites; those are
just “dressed” Sz

i operators. Thus, Sz
i are almost diagonal

in the eigenbasis of H , each element of the sum giving
approximately ± 1

4 . Within the
∑

Sz
i = 0 subspace for L = 16

we have eight pairs, thus dominantly yielding −2,−1, 0, 1, 2
as velocities. For slightly smaller system L = 14 we would
have then − 3

2 ,− 1
2 , 1

2 , 3
2 as dominant contributions, and indeed

this is the result (not shown).
Figure 5(b) shows the velocity distribution for “tunneling”

perturbation B. As in the previous case, we observe that in the
ergodic regime with an increase of W we observe broadening
of the velocity distribution which is quite well represented
by the Gaussian shape. For this perturbation the Gaussian
shape persists at W = 8, but going deeper into the localized
regime we observe first narrowing of the distribution and then
strong deviations from the Gaussian shape. The distribution
for deeply localized regime W = 64 attains quite complicated
shape. Interestingly, the central, dominating peak may be
quite well reproduced (see red dashed line) by the velocity
distribution analytically derived [28] in the framework of
a nonlinear sigma model for a disordered 1D wire in the
localized regime and given by

P(v) ∝ av
[av coth(av) − 1]

sinh2(av)
. (15)
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FIG. 5. Velocity distributions for interaction perturbation A (a) and the tunneling perturbation B (b). For intermediate W values (as
indicated in the figure), relatively narrow distributions for W = 0.5 are broadened and are well approximated by Gaussians. For perturbation
A in the localized regime, the distribution develops, surprisingly, a multipeak shape: this is a manifestation of LIOMs as discussed in the text.
For “tunneling” perturbation B, the Gaussian behavior persists even deep in the MBL phase (W = 8). Strong deviations occur in a very deeply
localized regime.

B. Curvature distribution

Let us consider now curvature distributions. Immediately, we
face the problem of an appropriate scaling of curvatures. We
shall apply here the idea introduced in [45], where instead of
curvature distribution its cumulative distribution is concerned.
It is defined as

F (K ) =
∫ |K|

−|K|
dK ′P(K ′), (16)

where P(x) is the distribution of unscaled curvatures for a
given set. The width of the distribution γ is defined as a
value of K such that F (K ) = 1/

√
2. It has been found in

[45] that it is important, in the localized regime, to find the
appropriate width for each realization of the disorder, find
rescaled curvatures k = K/γ , and then combine distributions
from different disorder realizations. This reduces the errors
[45] as compared to calculating the width of whole sets
corresponding to all realizations. Indeed, we have confirmed
that the difference may be significant in the localized regime
also for our data, so the results presented are obtained with
the former approach as in [45]. For this reason we do not
present data for Aharonov-Bohm flux case discussed in [45],
commenting only that our results are fully consistent with
that work. Instead, we concentrate on perturbations A and B
corresponding to level dynamics in a time-reversal-invariant
system.

Figure 6 shows the integrated curvature distributions ob-
tained for the “tunneling” perturbation B. The left panel
presents the data in the transition between ergodic and MBL
regimes. The curvature distribution [and its integral F (K ),
depicted in the figure] retains the algebraic tail for large curva-
tures |k|−α with, however, α smoothly changing with increase
of W . In this regime the data for “interaction” perturbation A
exactly match those for perturbation B despite the fact that
velocity distributions differ.

The situation changes in deeply localized regime as shown
in the right panel again for perturbation B only. The obtained
distributions seem to correspond to two types of levels. Levels
in the first group are characterized by small curvatures; large
curvatures are exponentially avoided. On the other hand, there

remains a fraction of levels with large curvatures and algebraic
tail of the integrated distribution. The corresponding power
(see dashed lines in the figure) changes smoothly between
0.66 ± 0.03 and 1 at very large k. Note that with increasing W ,
the first group grows while the second group of levels shrink.
For W = 64, the algebraic behavior corresponds to at most a
“permille” of all curvatures collected.

On the other hand, the distribution of rescaled curvatures
in the localized regime for A perturbation shows strange
irregularities. Inspection of single realizations reveals that few
distinct values of curvatures appear, most notably vanishing
curvatures are abundant. This suggests that energy levels form
straight lines as a function of the parameter. Moreover, we
have seen already in Fig. 2 that velocities for the type A pertur-
bations are peaked at distinct values. In effect, the statistics of
curvatures for A perturbation does not bring other interesting
information except the fact that levels are organized in groups
of very similar velocities (compare the inset in Fig. 7). Levels
within the group have predominantly very small curvatures
as exemplified in the main panel of Fig. 7. Only when levels
corresponding to different velocity groups cross, the resulting
narrow avoided crossings lead to the appearance of large
curvatures as visible in Fig. 7 as sidebands in the blue curve.
This peculiar behavior is due to the fact that the “direction” of
A perturbation is along the conserved LIOMs structure. For
other more generic perturbation, for instance of B type, we
observe smooth distributions of velocities and curvatures (red
lines in Fig. 7).

C. Distribution of curvature ratio

We have seen above that the analysis of curvature distribu-
tions requires scaling of curvatures. Following [45] we have
consistently used rescaling of each realization by its width
(defined on the basis of cumulative curvature distribution).
While this procedure is well defined, it is by no means unique.
Rescaling, e.g., by the typical width obtained averaging over
all disorder realizations yields different results. Therefore, it
is desirable to define a measure independent of the rescaling.
The situation is somewhat similar to that for level spacings.
There, the gap ratio which avoids unfolding is commonly

224202-7



MAKSYMOV, SIERANT, AND ZAKRZEWSKI PHYSICAL REVIEW B 99, 224202 (2019)

FIG. 6. (a) The integrated curvature distribution (16) [or rather 1 − F (|k|)] in the transition from extended to localized regime for different
disorder strengths. Black dashed line corresponds to integrated GOE distribution (1). With increasing W , the asymptotic power behavior k−α

at large k changes smoothly with α ranging from 2 to 1 (as shown by fitted dashed lines). The orange dashed-dotted line gives the log-normal
distribution for comparison: it does not fit the data for any W value. (b) The same distributions in deeply localized regime (larger W ). The
distribution splits in two components, one which exponentially avoids large-|k| values revealing approximately Gaussian tails ∝exp(−gk2)
and the second with the algebraic tail with α varying smoothly from 0.66 ± 0.03 to −1 at very large |k|. Data are obtained for L = 16 and
“tunneling” perturbation of B type.

used (see the Introduction). Here we introduce, therefore, the
curvature ratio, whose distribution, as we shall see, provides
additional information about the system studied.

The curvature ratio is defined as a ratio of two curvatures
for consecutive levels, Dn = Kn/Kn+1. The intuition suggests
that Dn may behave interestingly in the isolated avoided cross-
ing region where one expects Dn ≈ −1. For ergodic systems
one expects relatively large avoided crossings [66,67], levels
are affected by many neighbors, and in effect there are smaller
direct correlations between consecutive levels.

The distribution of curvature ratio for the values of disor-
der that corresponds to delocalized phase [Fig. 8(a)] and to
localized system [Fig. 8(b)] is shown in Fig. 8. For small
disorder values, the distribution of curvature ratio is similar to
the GOE one, however with increase of the disorder strength

FIG. 7. Unscaled curvature distributions in a deeply localized
regime W = 64 for “interaction” perturbation A: blue line as com-
pared to “tunneling” perturbation B (red line). The unexpected shape
of the former with the excess peak at K = 0, corresponding to levels
with a fixed constant slope correlates with the velocity distribution
shown in the inset.

W , one can observe the appearance of pronounced peaks at the
value of −1 and 0. The former suggest increasing abundance
of curvatures with equal absolute values but opposite sign;
that is clearly related to the importance of avoided crossing
of energy levels. This can be seen from results in Fig. 8(a)
where black line is for GOE, for which the peak at Dn = −1
is barely visible. It becomes more important for the transition
region W values. Interestingly, deep at the localized phase the
peak diminishes, indicating less abundant avoided crossings.

It is worth to note that even more significant seems the
peak at Dn ≈ 0. This corresponds to events where a level
with small curvature (constant slope) becomes close to other
curved levels. Levels of constant slope are natural candidates
for the indicator of LIOMs. Why does this peak become also
less pronounced for large W ? This may be due to the fact that
close levels with similar slope and small curvatures dominate
the spectrum, and then the ratio of curvatures becomes less
sensitive to extreme values.

D. Fidelity susceptibility distributions

Last, but not least, let us inspect the fidelity susceptibility
distributions in the transition to MBL and in the deeply
localized regime. We consider all three different perturbation
schemes.

Let us first discuss the transition to MBL, this time in the
“tunneling” parametric level dynamics, i.e., model B. Figure 9
shows the change in the fidelity susceptibility distribution with
increasing W , i.e., entering the localization regime. While for
pure ergodic behavior [black line for W = 0.5 with dashed
line reproducing analytic expression (12)] small suscepti-
bilities are strongly avoided, this is not the case for large
disorder W . Upon entering the crossover regime (remember
we consider L = 16 case), very small susceptibilities become
abundant, at the same time a slope for large susceptibilities
changes. In the localized regime, as depicted in Fig. 9(b),
the large fidelity susceptibility tail can be locally described
as a power law with exponent α changing smoothly from
−1.33 ± 0.04 to − 3

2 for tiny fraction of χ � 106. This tail
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FIG. 8. The distribution of curvatures ratio for delocalized (a) and localized (b) phases for the “tunneling” perturbation B.

behavior is relevant for a very small fraction of levels, most
of them characterized by low susceptibilities. Note that these
data correlate quite well with those for curvatures in Fig. 6(b).
A quite similar picture is obtained for the perturbation A.
In the transition regime, distributions for both A and B
perturbations seem very similar. This picture changes in the
localized regime as observed for W = 4 in Figs. 9(a) and
10(a) as well as in the right-hand panels in both figures. While
for perturbation B “perpendicular” to LIOMs the smallest
fidelity susceptibilities are avoided, this is not the case for
perturbation A “parallel” to LIOMs; here small fidelities are
most abundant. On the other hand, largest fidelity susceptibil-
ities again show (compare Fig. 10) the power-law decay with
the slope changing from about − 4

3 to − 3
2 (here fluctuations

related to the particular value of W are slightly bigger than
for the “tunneling” perturbation B). Finally, let us consider
the case of Aharonov-Bohm flux perturbation C (compare
Fig. 11). The main difference with other perturbations that
preserve time-reversal invariance lies for small fidelity suscep-
tibilities. Those are strongly avoided, although the maximum
of the distribution moves to smaller χ the stronger the disorder
W is. More importantly, in the MBL regime, the distribution
of fidelity susceptibility does not seem to follow a power law
for large susceptibilities. The decay is much faster. Only for
the largest χ ’s (for a given W ) one may observe the remnants
of the algebraic tail. Interestingly, its slope is again, to a good
accuracy χ−2, as in the delocalized regime. Thus, it seems

that this tail is due to some rare delocalized events (Griffiths
regions) due, most presumably, to the size effects.

VI. DISCUSSION

The numerical results presented above call for the summa-
rizing discussion. First, both in the delocalized and in MBL
regimes the level dynamics is not universal in the system
studied, the XXZ Hamiltonian, a paradigmatic system for
MBL studies. It is particularly surprising that this nonuniver-
sality appears also in the ergodic regime where predictions
of RMT should hold. We believe that this is not a finite-size
effect. While we have limited our study to system of size
L = 16 and smaller, we have checked that, e.g., velocities for
L = 18 behave similarly to L = 16. Let us stress again that
the observed nonuniversality in the delocalized regime is to
some extent in contradiction with purely ergodic behavior in
this parameter regime reported on the basis of participation
ratio studies [18]. Additional studies, in particular of the
distribution of participation ratios not just their mean value,
may be needed to clarify fully this issue.

We have confirmed that, in the delocalized regime, curva-
ture distribution faithfully obeys (1) provided the curvatures
are scaled by the width extracted from the integrated distribu-
tion in a way proposed by [45]. Then, the same distribution
holds both for perturbations within time-reversal-invariant
system class as well as for an infinitesimal Aharonov-Bohm

FIG. 9. Fidelity susceptibility distribution for “tunneling” perturbation B in the transition to localized (a) and deeply in the localized regime
(b). The primary feature is the appearance of very small fidelity susceptibilities, characteristic for localized levels. The large fidelity tail is χ−2

in the delocalized regime. In the deeply localized regime, a power law-decay with exponent varying between − 4
3 and − 3

2 for extremely large
χ , is visible being there only weakly dependent on the disorder strength W . For deeply localized regime, observe a kink at χ ≈ 0.2.
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FIG. 10. Same as Fig. 9 but for the “interaction” perturbation A. (a) Shows data for L = 16 in the transition regime, and (b) in the deeply
localized region. As before, observe a kink at χ ≈ 0.2 in (b).

flux breaking that symmetry. In a similar way, the fidelity
susceptibility distribution in the ergodic regime is faithfully
reproduced by the recently found analytic prediction for GOE
[64] with small deviations observed for the Aharonov-Bohm
flux case.

The lack of universality in level dynamics can be intuitively
understood in the following way. The expression (6) for
level curvature Kn contains the sum of terms, each of them
proportional to the appropriate off-diagonal matrix element of
the perturbation matrix |〈ψk|V |ψn〉|2. To see the universality
one rescales the Kn by variance of the velocity distribution.
Velocities, in turn, are diagonal matrix elements 〈ψn|V |ψn〉.
Therefore, if, in a quantum chaotic system the ratio of off-
diagonal to diagonal matrix elements of perturbation is the
same as for GOE, then one obtains the universality of level
dynamics. If, on the other hand, the ratio is different than
for GOE, the universality is broken. This is the case for the
studied XXZ spin chain, the paradigmatic model of MBL.

At the other extreme, deeply in the localized regime we
find that the shape of distributions for velocities, curvatures,

FIG. 11. Fidelity susceptibility distribution for infinitesimal
Aharonov-Bohm flux case. In the delocalized regime, the distribution
is different from the standard GOE case for small values of suscep-
tibility. For bigger disorder strength, in the MBL regime, a definite
lack of large susceptibilities (as compared to other perturbations) is
observed.

and fidelities strongly depend on the perturbation assumed.
The “interaction” perturbation A is quite peculiar as it is
almost diagonal in the basis of LIOMs leading to unusual
velocity distributions; the level slopes become approximately
quantized. Due to the simplicity of XXZ model and its
structure of LIOMs being almost diagonal in eigenbasis of
Sz

i operators, such a clear difference between perturbations
A and B appears. This suggests that velocity distributions
studied for different perturbations may turn out to be quite
useful for identifying the structure and properties of LIOMs
for more complicated geometries and systems with lack of
strong localization on physical sites.

Surprisingly, curvature distributions seem less sensitive
to direction of perturbation, at least across the transition to
MBL regime. For moderate W , even on localized side, the
curvature distribution for perturbation A is very similar to
that for a “generic” tunneling perturbation B. The latter yields
Gaussian distribution of velocities and curvature distributions
that smoothly evolve into the MBL regime. The power-law
tail of curvature (fidelity susceptibility) distribution agrees
with the predictions of [71] which are k−2 (χ−3/2) only
for extremely large curvatures (fidelities). This shows that
the assumption inherent in [71] that the matrix elements
of the perturbation operator in the numerator of (6) or (7),
|〈ψk|V |ψn〉|2, are independent from powers of level spacing
En − Ek in the denominator is fulfilled only in very rare,
extremal cases, being at the same time a plausible assumption
for Gaussian random matrices.

A similar situation occurs already for noninteracting par-
ticles in the Anderson regime. The contributions to large
curvature (fidelity) tail correspond necessarily to almost de-
generate levels En and Ek in the sums in (6) or (7). Such levels
must be decorrelated (remember Poisson level spacings) with
wave functions localized (exponentially) in different regions
in space. Thus, the matrix element of the local operator in the
numerator should also generically decay exponentially. This
leads to, e.g., log-normal prediction for curvature distribution
in deeply localized regime [40]. Apparently, the situation is
more subtle in the MBL case, and the power-law tails are
preserved.

The observed features of level dynamics vary continu-
ously in ergodic-MBL crossover regime; unexpectedly, some
changes are visible even deep in the MBL phase where
the level statistics is purely Poissonian. While close to the
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transition region the most prominent feature of the curvature
distribution, the large curvature tail changes smoothly with
the disorder amplitude, for large disorder a clear difference
occurs. The majority of levels strongly avoid large curvatures;
the algebraic tail is visible for a tiny fraction of levels (cf.
Fig. 6). Again, only in this deeply localized regime different
perturbations affect strongly the curvature distribution due to
the geometry of LIOMs.

VII. CONCLUSIONS

We have analyzed, mostly numerically, the level dynamics
for a system undergoing ergodic to MBL phase transition.
Most surprisingly, we have found that the level dynamics
does not obey commonly believed universality as expressed
in the seminal paper of Simons and Altschuler [32]. At the
same time, we have found that a simple rescaling allows to
fit RMT-based well-known expression for the curvatures [31]
as well as the recently found large-size limit of the fidelity
susceptibility distribution [64]. Moreover, our results show
deviations between GOE level dynamics and level dynamics
of an ergodic system, indicating to what extent an ergodic
system can be modeled by a GOE matrix.

Upon transition to MBL and in the MBL regime we have
found that level dynamics is dependent on the character of
the perturbation. For “interaction” perturbation almost diag-
onal in LIOMs basis the velocities become effectively quan-
tized. More generic “tunneling” perturbation yields Gaussian
distribution of slopes of energy levels with corresponding
fidelity susceptibilities as well as curvatures decaying alge-
braically in the large value limit. This is not the case for the

infinitesimal Aharonov-Bohm flux perturbation which, while
breaking time-reversal invariance of the system, suppresses
large curvatures and fidelities.

This work paves the way to more complete and detailed
analysis of level dynamics. On one hand, one may compare
the effects due to uniform random disorder considered in this
work with those obtained with quasiperiodic disorder as real-
ized in experiments [73]. On the other hand, one may consider
different perturbations of the system. While we considered
“global” perturbations in the form of sum over sites of local
observables, one may consider purely local cases [14]. Last
but not least, this study was necessarily limited to a single sys-
tem, the XXZ model. A similar analysis for the Ising models
or schemes beyond nearest-neighbor tunnelings/interactions
may verify, for example, the extent to which the universality
of level dynamics is destroyed in many-body systems. The
possible differences may help us to understand the intricacies
of many-body localization phenomenon.
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