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Acoustic analogies of topological insulators reside at the frontier of ongoing metamaterials research. Of
particular interest are the topological interface states that are determined by the Zak phase, which is the
geometric phase characterizing the topological property of the bands in one-dimensional systems. Here we
design double-channel Mie resonators based on the so-called labyrinth acoustic metamaterials, which can be
considered equivalent to a ultraslow medium of large refractive index, inevitably containing structural features
on a subwavelength scale. The metamolecule containing two cells is engineered to host the degenerated
states through a zone-folding mechanism, whereupon the Zak phase transition takes place when the interval
between two cells changes from shrunk to expanded. Furthermore, the topological interface state displays strong
robustness against randomly introduced perturbations whose acoustic intensity is enhanced by nearly a factor
1600 in comparison to an ordinary waveguide.
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I. INTRODUCTION

The hallmark of topological insulators is wave propagation
and guiding in the absence of back-scattering by means of
exotic surface and edge-state excitation [1,2]. Therefore it was
no surprise that this line of research took the realm of classical
physics such as optics [3–7], acoustics [8–20] and mechanics
[21–25] by storm. A celebrated and simple implementation
is the one in one-dimensional (1D) periodic system whose
topological properties are determined by the Zak phase [26],
which has been explored in a palette of exciting classical re-
alizations [27–33]. Specifically, in acoustics, such Zak system
was proposed for the first time in a cylindrical waveguide with
periodically alternating cross sections hosting topological in-
terface states and has ever since been extended for further
studies [29–31].

On the other hand, acoustic metamaterials [34] are arti-
ficially designed to control and manipulate sound waves to
obtain unprecedented wave phenomena such as negative re-
fraction [35], sound collimation [36], and holography [37,38].
Specifically, artificial Mie resonators, which can be equiva-
lently constructed out of an ultraslow medium, have been re-
alized with the aim to tailor extraordinary sound transmission
and absorption [39–41].

In this work, we present a 1D phononic crystal (PnC) con-
taining Mie resonators to facilitate a subwavelength topolog-
ical system [42] within an ordinary straight acoustic waveg-
uide, which differs substantially from previous designs that
are based on geometrical modulations of the waveguide itself
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[29–31]. Quantitatively we are able to calculate the Zak phase
to define the topological characteristics of band structures,
which are induced by the multipolar Mie resonances. Hence,
as opposed to the conventional geometrical phase modulations
of the basic waveguide geometry, topological band inversion
is readily possible by displacing the resonators, i.e., changing
the interval among neighboring unit cells. This flexible mech-
anism to tune Zak phases also appears to be highly robust
against different kind of perturbations such as displacement
of the resonator chain. The existence of the interface states in
each band gap is verified through calculated eigenfrequency
and detected pressure spectra. Also, the intensity enhance-
ment and the spatial confinement are discussed in detail.
Furthermore, the proposed 1D PnC structures promise good
flexibility in real applications because of its strong durability
against variations of the Mie resonator sites and against the
deformation of the acoustic waveguide.

II. RESULTS AND DISCUSSION

A. Structure of Mie resonator

We design a double-channel Mie resonator (DMR) based
on the cylindrical labyrinthine acoustic metamaterials, whose
cross-sectional view is shown in Fig. 1(a). The single DMR is
composed of two identical semicircular parts and each part
consists of a meander channel with a rigid wall thickness
t = 1 mm and a slit width w = 2.5 mm. The inner radius
of the DMR is Ri = 4 mm and the outer radius is defined
by Ro = Ri + N (t + w) + t , with N the curling number that
is chosen as N = 8 in this work. The propagation length of
sound waves into DMR is thus multiplied after introducing the
aforementioned meander channel. As a result, the size of the
unit cell can be designed on the subwavelength scale [39,41].
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(a)

FIG. 1. Schematic of (a) the structural model and (b) the effective
medium of a DMR. (c) Resonant frequencies of the multiorder
monopole and dipole states. Red dashed and blue dotted lines rep-
resent the monopole and dipole states with the effective medium,
respectively. Red circles and blue triangles represent the results with
structural model. (d) Distributions of the absolute pressure fields and
(e) the far-field patterns of the second-order monopole state. (f)–(g)
Same as (d)–(e) but of the second-order dipole state.

Additionally, we demonstrate that the DMR is equivalent to
an effective medium as shown in Fig. 1(b), which consists of
a perforated rigid cylinder connecting two straight channels
of ultraslow medium. The velocity and mass density of air
are c0 = 343 m/s and ρ0 = 1.21 kg/m3, respectively. The
effective refractive index of the ultraslow medium can be
defined as nr = Lp/[2(Ro − Ri )] with Lp the total propagation
lengths in the DMR, which can be calculated as

Lp =
N∑

ni=1

2π [Ri + ni(t + w) − w] − 2Nw. (1)

Consequently, the effective refractive index here is nr = 14.3.
To verify the designed model, the calculated eigenfrequencies
of the multiorder monopolar and dipolar states in the structural
model and the effective medium are illustrated in Fig. 1(c),
from which the good agreement between these two models

FIG. 2. (a) Schematic of the one-dimensional phononic crystal
based on a DMR chain in a 1D acoustic waveguide. (b) Schematic of
the metamolecules containing two DMRs with the lattice constant
a. The distance between two subcells in the metamolecule and
the width of the waveguide are labeled as D and W , respectively.
(c) Band diagram of the PnC with D/a = 0.5, from which the doubly
degenerated points can be obtained at the boundary of the first
Brillouin zone (BZ) due to the zone folding effect.

can be inferred. The finite-element software COMSOL MULTI-
PHYSICS is utilized in the simulations. Note that there only
exist monopolar and dipolar states due to the designed double-
channel structure. To clearly demonstrate the resonant nature,
the absolute pressure distributions, and the corresponding far-
field patterns of the second-order monopolar states and dipolar
states in structural DMR are illustrated in Figs. 1(d)–1(e) and
Figs. 1(f)–1(g), respectively. The corresponding eigenmodes
of the effective medium are discussed in Appendix A.

B. Topological phase transition

As shown in Fig. 2(a), the 1D PnC composed of DMR
chain is embedded in a 1D acoustic waveguide. Figure 2(b)
illustrates the detailed geometric parameters of the meta-
molecule containing two DMRs. The band diagram of the un-
perturbed PnC with resonator ratio D/a = 0.5 is illustrated in
Fig. 2(c), which agrees well with the band diagram of the PnC
composed of effective medium cylinders (see Appendix B). In
the simulations, the Floquet boundary conditions are used at
the periodic interfaces between the metamolecules, which are
indicated by black dashed lines in Fig. 2(b). Several doubly
degenerated states near the eigenfrequencies of the multiorder
resonances of DMR can be observed at the boundary of the
first BZ, which result from folding the band diagram of the
primitive unit cell containing one DMR [11].

Next, the perturbation is introduced to lift the double
degeneracies at the folding point by changing the interval
between two DMRs in the metamolecule. First, we compute
the band diagram for a PnC of shrunken metamolecules
with D/a = 0.45 and also present the expanded system with
D/a = 0.55, which are presented in Fig. 3(a) and Fig. 3(d),
respectively. We demonstrate that all the degeneracies are
lifted in both situations, however, it appears that only the
branches between the seventh and the twelfth bands, reopen
wide enough to be clearly observable. Therefore, we present
an expanded view of the dispersion relations of these bands as
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FIG. 3. (a) Band diagram of the PnC composed of the shrunken
metamolecule with D/a = 0.45. (b) Enlarged view of the dispersion
relations in the frequency range indicated in (a). The magenta dashed
curves represent the corresponding band diagram of the unperturbed
PnC (D/a = 0.5). The Zak phase of each band has been labeled.
(c) Corresponding eigenmodes of the seventh ∼ twelfth bands at the
1st BZ boundary from bottom to top. (d)–(f) Same as (a)–(c), but
for the expanded metamolecule with D/a = 0.55. The cyan/yellow
regions in (b) and (e) represent band gaps with negative/positive sign
of ζ .

shown in Figs. 3(b) and 3(e), respectively. The corresponding
pressure distributions of the eigenmodes at the boundary
of the first BZ with kx = π/a, are accordingly mapped in
Fig. 3(c) and Fig. 3(f). Similarly, we present the eigenmodes
at the BZ center in the Appendix C. Note that the red dotted
eigenmodes have an odd parity (−), while the blue dotted
ones have an even parity (+). The odd/even parities at high
symmetry points are denoted by the red/blue colored “−/+”
in Figs. 3(b) and 3(e). The Zak phase θ of each band is
connected with the parities of the eigenmodes according to
[26,27,43]

θ

π
= 1

2

[
η(kx = 0) − η

(
kx = π

a

)]
: modulo 2, (2)

where η is the parity at different symmetry point. Note that
the value of the Zak phase depends on the choice of the
integral origin [26,27]. Here Eq. (2) can be utilized to obtain
the quantized Zak phase 0 or π when the origin is chosen to be
the center of the metamolecule as marked by a yellow dot in
Fig. 3(c). As seen in the bands of Fig. 3(b) and Fig. 3(e), the
calculated Zak phase from Eq. (2) has been labeled on each
band. Although the band diagrams of the shrunk and expanded
configurations share the same shape around the three reopened
gaps, both the parities of the band-edge eigenmodes and the

Zak phases are inverted, which corresponds to a topological
phase transition. It has been demonstrated [27] that the topo-
logical properties of the bulk dispersion are related to ζ (n).
The sign of ζ (n) for the nth band gap can be defined by the
following relation comprising the discrete Zak phases [27,28]

sgn[ζ (n)] = (−1)n+1exp

(
i

n∑
m=1

θm

)
. (3)

Besides the definition in Eq. (3) there is another method to
obtain the sign of ζ (n), which is determined by the parities
of the band-edge eigenmodes [27,28]. Interestingly, the band-
edge states with odd parity possess zero pressure field at the
center of the metamolecule, while those states with even parity
contain a pressure maximum. As a result, the sign of ζ (n) will
be negative if the lower edge of the band gap has odd parity
and the upper edge has even parity. Otherwise, the sign will
be positive. As can be seen in Fig. 3(b), those three band gaps
(cyan) of the shrunken metamolecule with D/a = 0.45, all
have negative signs ζ < 0. On contrary, when the perturbation
is introduced by expanding the distance to D/a = 0.55, these
band gaps (yellow) have a positive sign ζ > 0, as shown in
Fig. 3(e).

C. Topological interface state and its robustness

The existence of topological interface states is guaran-
teed by the condition [27] ζ+ + ζ− = 0, which means the
topological phases of the overlapped band gaps of jointed
PnCs must be inverted. Based on the above condition, a one-
dimensional topological insulator with a interface between
two PnCs is designed as shown in Fig. 4(a), which consists of
ten metamolecules with D/a = 0.45 and ten metamolecules
with D/a = 0.55 on either side. Figure 4(b) illustrates the cal-
culated eigenfrequencies of the sample described in Fig. 4(a).
In the simulations, top and bottom boundaries are set as rigid
walls whereas the remaining other two boundaries are set to
radiate. As predicted, there exists a single interface state in
each band gap. In addition, the values of the absolute pressure
are detected at the interface between two PnCs as shown in
Fig. 4(c). A source with the amplitude 1 Pa radiates plane
waves from left to right side. As can be observed, in each gap,
the localized interface state gives rise to a peak (red dots),
of which the frequency is identical to the eigenfrequency of
the topological interface state in Fig. 4(b). The distributions
of pressure fields at frequency f = 824.3 Hz, which is in
the band gap, is illustrated on the top panel of Fig. 4(c). For
comparison, a contrast sample with the trivial band gaps not
supporting the interface states is also discussed in Appendix
D. We emphasize on two key findings: (i) The sound intensity
of the topological state at the interface is enhanced dramat-
ically. As shown in Fig. 4(d), we compute β = Itopo./Iord. to
quantify the enhancement factor of the sound intensity of the
topological interface state Itopo. as compared to the intensity
of an empty ordinary waveguide Iord. when probed at the
same position. An impressive enhancement factor of nearly
1600 has been predicted in Fig. 4(d). The frequency range is
chosen as the second band gap from 791.2 Hz ∼ 863.9 Hz. (ii)
Figure 4(e) shows the normalized sound intensity distributions
in close proximity to the rigid upper wall in Fig. 4(c), which
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FIG. 4. (a) Schematic of a ribbon-shaped PnC composed of
ten metamolecules with D/a = 0.45 and ten metamolecules with
D/a = 0.55 on either side, of which the interface is labeled as green
dashed line. (b) Eigenfrequency spectra of the ribbon-shaped PnC.
Gray circles and red dots denote the bulk and topological interface
states, respectively. Shadowed regions indicate the band gaps in
Fig. 3. (c) Absolute pressure detected at the interface between two
PnCs. (d) Ratio (β) of the probed sound intensity in the topological
interface state (Itopo.) to which in the ordinary waveguide without
PnC (Iord.). (e) Normalized spatial profile of the sound intensity
field for the interface state along the top wall of the waveguide at
f = 824.3 Hz.

illustrates that the sound energy is concentrated tightly at the
interface (x = 0) from which it exponentially decays along
the x direction. We also demonstrate that considering the
acoustic-solid interaction in air instead of the prefect rigid
walls, the topological interface states in the proposed structure
still exist (see Appendix E). The influence of the thermovis-
cous losses on the material performance is also discussed in
Appendix F. This topologically induced and highly localized
acoustic state could, thanks to its prominent acoustic enhance-
ment factor find use in biomedical sound focusing and particle
manipulation.

The robustness against defects is the hallmark physical
property of the topological states. In order to confirm the ro-
bustness of the topological interface states in the 1D PnC, we
deliberately introduce disorder through changing the positions
of the DMRs as shown in Fig. 5(a). In the left-side sample, the

FIG. 5. (a) Topological states in the presence of randomly intro-
duced vertical displacements of the DMRs. As indicated above, we
have introduced both an upward- (red) and a downward-going (blue)
displacement of distance h = 0.02a. (b) Eigenfrequency spectra of
the ribbon-shaped PnC with the aforementioned defects. (c)–(e)
Acoustic eigenmodes profiles of the interface states after introducing
defects as marked by red dots in (b).

randomly chosen DMRs are moved h upwards as compared
to their original positions, whereas in the right-side structure
we randomly displace the DMRs to the opposite direction,
i.e., downwards. At both sides of the topological insulators,
although random, the displacements are of uniform value,
h = 0.02a. We emphasize that the topological interface states
still exist in the band gaps even when disorder is introduced,
which can be observed from the calculated eigenfrequency
spectrum shown in Fig. 5(b). The eigenmodes profiles of the
interface states in each band gap are illustrated in Figs. 5(c)–
5(e), respectively, depicting how these topological states de-
spite disorder remain entirely localized at the interface. The
absolute interface pressure is enhanced with a factor 40,
underlining that disorder also has zero influence on the level
of confinement strength (see Appendix G). Furthermore, we
demonstrate that the DMR crystal is also resilient to any
influence of the shape of the waveguide (see Appendix H),
which should make such system highly flexible for real world
applications.

III. SUMMARY

In conclusion, we have demonstrated multipole topological
interface states in a 1D phononic crystal composed of sub-
wavelength DMRs based on labyrinthine acoustic metamateri-
als. By merging metamaterials and topological insulators into
one unit, we have been able to fully characterize the topo-
logical band gaps as induced by multipolar Mie resonances
via the Zak phase. Beyond unprecedented field enhancements
and strong localization we illustratively depict how deep
subwavlength resonances, via their topology can constitute
highly flexible and robust acoustic guides for the future.
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FIG. 6. (a) Distributions of the absolute pressure fields and
(b) the far-field patterns of the second-order monopolar state. (c)–
(d) Same as (a)–(b) but of the second-order dipolar state.
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APPENDIX A: SECOND-ORDER MONOPOLAR AND
DIPOLAR EIGENMODES OF THE EFFECTIVE MEDIUM

As demonstrated in the main text, a DMR can be treated
equivalent to the effective medium. To further verify the good
agreement between the effective medium and the DMR, the
absolute pressure distributions and the corresponding far-field
patterns of the second-order monopolar and dipolar states are
illustrated in Fig. 6. Sound energy of the monopole is con-
centrated at the center of the structure, and radiates equally in
all directions, which can be seen in Figs. 6(a)–6(b). However,
in the acoustic dipole mode shown in Figs. 6(c)–6(d), sound
energy in the structural center is zero and sound radiates along
the horizontal plane, i.e., the dipolar axis.

APPENDIX B: BAND DIAGRAM OF THE PnC COMPOSED
OF THE EFFECTIVE MEDIUM

Figure 7(a) illustrates the metamolecule of 1D PnC com-
posed of the effective medium with D/a = 0.5 and the corre-
sponding band diagram is shown in Fig. 7(b). The doubly de-
generated states at the BZ boundary can be achieved through
zone folding. It should be noted that the eigenfrequencies of
the degenerated states are almost identical to those calculated
from the 1D PnC composed of DMRs in the main text, which
further verifies the good agreement between the two models.

FIG. 7. (a) Schematic of the metamolecule containing two effec-
tive medium resonators. (b) Corresponding band diagram of the 1D
PnC with D/a = 0.5.

APPENDIX C: CORRESPONDING EIGENMODES
AT THE BZ CENTER

We demonstrate that the Zak phase θ of each band can
be calculated with the parities of the eigenmodes at different
points η(kx = 0) and η(kx = π/a) according to Eq. (2) in the
main text. The eigenmodes at the BZ boundary have been
computed in the main text. Here, Fig. 8 shows the correspond-
ing pressure distributions of the eigenmodes at the BZ center
where kx = 0, from which the parities can be obtained.

APPENDIX D: A CONTRAST SAMPLE
WITH TRIVIAL BAND GAPS

For comparison, a contrast sample composed of ten meta-
molecules with D/a = 0.45 and ten metamolecules with
D/a = 0.44 on either side is constructed as shown in Fig. 9(a),
whose band gaps all have negative values of ζ . As a result, all
the band gaps are topological trivial. Figure 9(b) illustrates the
eigenfrequency spectra of the sample without interface states
to be found in the band gaps. As verified by the detected
pressure spectra shown in Fig. 9(c), the flat response in the
shaded regions indicates the absence of topological interface
states in these trivial band gaps.

APPENDIX E: CONSIDERING THE
ACOUSTIC-SOLID INTERACTION

Considering the acoustic-solid interaction in air, the sim-
ulations are recalculated in the acoustic-structure interaction
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FIG. 8. (a) Dispersion relations of the 1D PnC with D/a = 0.45. (b) Corresponding eigenmodes at the BZ center from bottom to top.
(c)–(d) Same as (a)–(b), but for the expanded metamolecule with D/a = 0.55.

section of the finite-element software COMSOL MULTIPHYSICS.
In the simulations, the rigid material is replaced by the steel, of
which the mass density, Poisson’s ratio and the Young’s mod-
ulus are ρ = 7800 kg/m3, ν = 0.3 and E = 2.1 × 1011 Pa,
respectively. As shown in Fig. 10(a), the degeneracy at the BZ
boundary is still lifted after expanding/shrinking the distance
between two DMRs in the unit cell. The existence of the
topological interface state is also verified by the detected
pressure amplitude at the interface between two PnCs as
shown in Fig. 10(b), which also reaches about 40 similar to
the situation with the rigid materials in Fig. 4(c). From the
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FIG. 9. (a) Schematic of a ribbon-shaped PnC composed of ten
metamolecules with D/a = 0.45 and ten metamolecules with D/a =
0.44 on either side. (b) Eigenfrequency spectra of this ribbon-shaped
PnC. (c) Absolute pressure detected at the interface of two PnCs
described in (a).

distributions of the pressure fields at the frequency of the
interface state, which is illustrated in Fig. 10(c), the energy
is confined at the interface. To conclude, the existence of the
topological interface states based on the proposed labyrinthine
acoustic metamaterials in air will not be influenced if the
perfectly rigid material is interchanged with steel. However,
it must have serious impact on the physics in the proposed
labyrinthine acoustic metamaterials if the background media

FIG. 10. (a) Partial band diagram of the PnC calculated in the
acoustic-structure interaction section. The structure of the PnC is
identical as that in FIG. 4(a). (b) Absolute pressure detected at the
interface between two PnCs. (c) Distributions of the total pressure
fields at the frequency of the topological interface state labeled as
red dot in (b).
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FIG. 11. (a) Schematic of a ribbon-shaped PnC composed of four metamolecules with D/a = 0.45 and four metamolecules with D/a =
0.55 on either side. (b) Transmission spectra, which are calculated as the ratio between the output and input amplitude, for the situations with the
loss coefficient α = 0 (black solid curve), α = 0.005 (red dashed curve), and α = 0.0093 (blue dotted curve), respectively. Shadowed region
represents the topological band gap and the orange dashed line marks the corresponding eigenfrequency of the interface state. (c) Corresponding
distributions of the sound pressure level at the point labeled as a red dot in (b) with α = 0.005. (d)–(f) Same as (a)–(c), but the ribbon-shaped
PnC is composed of five metamolecules with D/a = 0.45 and five metamolecules with D/a = 0.55 on either side.

is the heavy fluid, such as water. Because the incoming wave
in water can deform the walls and induce vibrations into the
systems, the overall physical picture will inevitably get much
more complex. The applications of the labyrinthine acoustic
metamaterials in water thus is highly important in future
studies not addressed in our paper.

APPENDIX F: INFLUENCE OF THE
THERMOVISCOUS LOSSES

The viscous and thermal losses induced by near-wall
viscosity and thermal conduction effect should be signif-
icant when acoustic waves propagate through channels in
the labyrinthine acoustic metamaterials [39]. Considering the
influence of the thermal conduction effect, the loss is added
into the wave number as

k0 = 2π f (1 − iα)

cair
, (F1)

where α is the attenuation coefficient. In Ref. [39], the attenu-
ation coefficient α = 0.0093 is considered in the simulations,
which showed good agreement with experiments. Note that
the attenuation coefficient depends on the different experi-
mental environment and the materials used in the experiments.
The attenuation coefficient can be reduced to a smaller value,
such as 0.005, if the experimental environment is optimized.

Figure 11 illustrate the influence of the thermoviscous losses
in the proposed systems. Figure 11(a) shows the structure of
the 1D PnC composed of eight metamolecules and the calcu-
lated transmission is illustrated in Fig. 11(b). We demonstrate
that the topological interface state still exists although the
thermoviscous losses reduce the transmissions of the interface
state and bulk states at the same time. The sound pressure
level at the frequency of f = 824.1 Hz with α = 0.005 shown
in Fig. 11(c) further verifies the presence of the interface
state even when the thermoviscous losses are considered.
Figures 11(d)–11(f) illustrate the situation in the 1D PnC
composed of two more metamolecules compared with the for-
mer situation. Calculated transmission spectrum in Fig. 11(e)

Frequency [kHz]
0.6 0.7 0.8 0.9 1.0

0

20

40

 erusserP
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FIG. 12. Absolute pressure detected at the interface between two
PnCs with the randomly introduced disorders.
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FIG. 13. (a) Rotating one-half of the PnC by 10◦. (b) Eigenfre-
quency spectra of the 10◦-bent PnC. (c) Absolute pressure detected
at the interface. Top: distributions of the pressure fields with the
frequency f = 831.5 Hz as labeled by the red dashed line.

demonstrates that the transmitted energy is reduced as a result
of the increased transport paths for the sound waves in the
DMRs. However, the topological interface state still can be
clearly observed. Here we demonstrate that there is a tradeoff
between the subwavelength properties and the thermoviscous
losses induced by the labyrinthine acoustic metamaterials.

APPENDIX G: DETECTED PRESSURE AT THE
INTERFACE IN THE SYSTEM WITH DISORDER

In the system with the randomly introduced disorder, the
absolute pressure is detected at the interface as shown in
Fig. 12. Note that the interface states still exist as indicated by
red dotted peaks with the negligible frequency shift compared
to ordered resonators. Moreover, the enhancement factor of
the topological interface state also reaches about 40, which
is identical to the unperturbed system. As a result, the con-
vincing robustness of the proposed topological interface states
against defects in the form of disorder is further verified.

FIG. 14. (a) Rotating one-half of the PnC by 60◦. (b) Eigenfre-
quency spectra of the 60◦-bent PnC. (c)–(d) Same as (a)–(b), but
arranging DMRs into a zigzagged waveguide.

APPENDIX H: ROBUSTNESS AGAINST THE SHAPE
VARIATIONS OF THE WAVEGUIDE

In this section, we demonstrate that the designed topologi-
cal interface state not only is robust against disordered DMRs
but also remain resilient to perturbations of the waveguide. As
shown in Fig. 13(a), a 10◦ bend has been introduced, leaving
the topological interface states and the pressure as seen in
Fig. 13(b) and Fig. 13(c), respectively, virtually unchanged.

Next, we increase the bend up to 60◦ as illustrated in
Fig. 14(a) and do also reshape the waveguide into a zigzagged
form as seen in Fig. 14(c). Surprisingly, apart from some
marginal frequency shifts, the interface states as seen in
Fig. 14(b) and Fig. 14(d) prevail rather identically.
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