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First-principles calculations show that electric fields applied to ferromagnets generate spin currents flowing
perpendicularly to the electric field. Reduced symmetry in these ferromagnets enables a wide variety of such
spin currents. However, the total spin current is approximately the sum of a magnetization-independent spin
Hall current and an anisotropic spin anomalous Hall current. Intrinsic spin currents are not subject to dephasing,

enabling their spin polarizations to be misaligned with the magnetization and allowing for the magnetization-
independent spin Hall effect. The spin Hall conductivity and spin anomalous Hall conductivities of transition-
metal ferromagnets are comparable to those found in heavy metals, opening different avenues for efficient spin

current generation in spintronic devices.
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Introduction. Over the past few decades, the study of
electrical spin current generation has focused on two systems:
ferromagnets without spin-orbit coupling and nonmagnets
with spin-orbit coupling. In ferromagnets without spin-orbit
coupling, real space and spin space are decoupled. As a result,
spin currents are simple products of particle flow and spin
direction, each of which independently satisfies the system’s
symmetries. Thus, carriers must flow parallel to the electric
field and carrier spins must align with the magnetization.
In nonmagnets with spin-orbit coupling, real space and spin
space are coupled. Because of this coupling, the net spin
current is no longer the simple product of particle flow and
spin direction. Any spin current that satisfies the system’s
symmetries is allowed. Isotropic symmetry allows for spin
currents in which the charge flow, spin flow, and spin direction
are mutually orthogonal. The generation of such spin currents
satisfying these constraints is known as the spin Hall effect
[1-7].

Interest has now turned to spin currents generated in ferro-
magnets with spin-orbit coupling [8—15]. In these materials,
the combination of spin-orbit coupling and the symmetries
broken by the magnetization enable a wider array of spin cur-
rents than in nonmagnets. Indeed, all symmetries are broken
for a magnetization with arbitrary orientation with respect
to the applied electric field. As a result, ferromagnets with
spin-orbit coupling exhibit richer spin current generation and
are inevitably subject to greater confusion when interpreting
experiments.

In this Rapid Communication we present a calculation of
the full spin current conductivity tensor of transition-metal
ferromagnets. Our central result is that the dependence of
the spin current on the magnetization direction is described
by two terms with familiar symmetry properties. The spin
current is a tensor Qf with two spatial indices: The subscript
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«a specifies the flow direction and superscript 8 specifies the
spin direction. The spin current flowing in the X direction is
a vector in spin space denoted by Q,. Our findings can be
conveniently expressed by taking the electric field along the §
direction and considering the spin current flowing along the X
direction. The spin direction Q, of this spin current depends
on the magnetization direction 1 as

Q: ~ [osHEZ + osape(h - Z2)M]E. (D

The two terms in Eq. (1) have the symmetries of the spin Hall
effect and the spin anomalous Hall effect, respectively. For the
coordinate-independent form of Eq. (1), see Ref. [16]. Despite
its simplicity, Eq. (1) reveals counterintuitive features of spin
currents in ferromagnets, as we discuss next.

The first term in Eq. (1) can be interpreted as a
magnetization-independent spin Hall effect. A counter-
intuitive feature of this spin current is that its spin direction
may be misaligned with the magnetization (Fig. 1). Such
spin currents violate the common assumption that spins mis-
aligned with the magnetization rapidly precess in the magnetic
exchange field and quickly dephase. Thus, the presence of
the first term in Eq. (1) suggests that the spin of eigenstates
can be substantially misaligned with the magnetization in the
presence of spin-orbit coupling [17].

The second term in Eq. (1) is related to the anomalous
Hall effect. The anomalous Hall effect describes the current
response perpendicular to an applied electric field E in ferro-
magnets [18-21]. The anomalous Hall current flows along the
m x E direction. Since charge flow in ferromagnets is spin
polarized, the anomalous Hall current should be accompanied
by a spin current with spin direction along m. The generation
of such a spin current, called the spin anomalous Hall effect,
was recently investigated theoretically [22]. The second term
in Eq. (1) describes a spin current with the same magnetization
dependence as the spin anomalous Hall current.

Both the anomalous and spin Hall effects have extrinsic
and intrinsic contributions. Extrinsic contributions result from
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FIG. 1. Spin currents in ferromagnets with spin direction perpen-
dicular to the flow and the electric field. (a) When the magnetization
and spin direction are aligned, this spin current has contributions
from both the spin Hall effect (SHE) and the spin anomalous Hall
effect (SAHE). (b) When the magnetization and spin direction are
perpendicular, the allowed spin current arises from the spin Hall
effect alone.

disorder scattering while intrinsic effects arise from the per-
turbation of electronic wave functions induced by the applied
electric field. It is now accepted that the intrinsic mechanism
dominates the anomalous Hall response of typical transition-
metal ferromagnets [21]. We therefore focus on this intrinsic
regime.

Here, we use first-principles calculations to compute the
intrinsic spin current conductivities for transition-metal ferro-
magnets and show that Eq. (1) describes the response. The
magnitude of the total spin current conductivity is substantial,
suggesting that ferromagnets could be efficient and flexible
generators of spin current. We find that the spin direction of in-
trinsic spin currents is not subject to dephasing, which enables
spin directions that are misaligned with the magnetization. A
simple tight-binding model is presented that captures the rel-
evant physics which demonstrates why intrinsic spin currents
are not subject to dephasing. Our results also indicate that the
predominant source of spin current in experiments with heavy
metal-ferromagnet bilayers may need to be reconsidered.

First-principles calculations. Following earlier calcula-
tions of the anomalous Hall charge current in ferromagnets
[23] and the spin Hall current in nonmagnets [24,25], we use
the Kubo formalism to compute the spin current induced by
an applied electric field. For an electric field E, in the y
direction, the spin current conductivity tensor o yields the spin
current according to Qf = o E, . The expression for o in the
clean limit for zero temperature is
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where v, = dH/dk, is the velocity operator along the y
direction. The spin current operator is given by Qg = (Vosg +
SV )/2, where sg is the B component of the Pauli spin
matrices.

Equation (2) is evaluated within density functional theory.
The ground state is computed with the QUANTUM ESPRESSO
package [26], where we use the experimental lattice constants
of (0.286, 0.352, 0.251) nm for Fe, Ni, and Co (hcp), re-
spectively. In each case, the plane-wave cutoff energy is set
to 60E},, and a 12 x 12 x 12 uniform k-point grid is used.

z -y -z -X z-X -y X
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FIG. 2. Magnetization dependence of the x-flowing intrinsic cur-
rents generated by an applied electric field along § for bcc Fe. The
horizontal axis gives the magnetization direction, which is swept in
the z/y, z/x, and x/y planes. Blue, green, and orange curves give spin
currents with spin direction along x, y, and z, respectively. Symbols
denote values computed with density functional theory. Solid curves
show Eq. (1), where the parameters osyp and osapg are extracted
from the first-principles results as described in the text.

We use ultrasoft, fully relativistic pseudopotentials with a
generalized gradient approximation (GGA) functional. For
Ni, Ref. [27] shows that the calculated anomalous Hall
conductivity is closer to the experimental value using the
GGA + U method. We therefore adopt a similar approach
for Ni, presenting results for U =1.9eV and J = 1.2 eV.
We do not consider current vertex corrections to Eq. (2),
which, as discussed in Refs. [24,25], should be unimportant
for transition-metal ferromagnets.

To evaluate Eq. (1) on a fine k-point mesh, we performed
Wannier interpolation using WANNIER90 [28]. The Wannier
projection is performed on the system with magnetization
along the Z direction. To vary the magnetization direction,
we decompose the Hamiltonian into components that are
even and odd under time reversal, and perform a spin-space
rotation of the odd component to the desired orientation.
The integral in Eq. (2) is initially evaluated using a uniform
mesh of 200°k points. We use an adaptive mesh procedure in
which k-dependent conductivity values exceeding 0.28 nm?
are sampled on a refined mesh. We continue mesh refinement
until calculated values are converged to 1%.

Figure 2 shows the magnetization dependence of the in-
trinsic spin currents computed for Fe. We again restrict our
attention to spin currents flowing in the X direction generated
by an electric field in the § direction. The phenomenological
parameters osagg and osyg are extracted from the values of
o}, for the magnetization along Z and y. The magnetization
dependence predicted in Eq. (1) is shown in solid lines while
the numerically computed values are shown as symbols. We
find the full angular dependence is well described by Eq. (1)
[29].

The values for oang, osyg, and osage obtained for Fe,
Co, and Ni are shown in Table I. The magnitude of the spin
Hall conductivity is substantial and indicates the potential
for ferromagnets to be flexible and effective sources of spin
current. The response of the cubic crystals Fe and Ni coincides
well with Eq. (1), while hcp Co exhibits substantially more
anisotropy arising from the crystal anisotropy.
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TABLE I. Computed conductivity components (units of
Q~'em™!). For Co, results are shown for the electric field E along a
and c to show the crystal-induced anisotropy.

OAHE OSHE OSAHE
Fe 720 519 —419
Ni —1326 1688 —728
Co (E||a) 454 —130 -8
Co (E||c) 159 1074 —1004

To analyze the microscopic origin of our results, it is
useful to write the spin current of Eq. (1) in terms of spin
components parallel and perpendicular to the magnetization.
For an electric field in the § direction and flow in the X
direction, the appropriate form is given below,

Q. =[oymm + o, 1h x (1 x 2)|E, 3)

where we refer to oy (o1 ) as the longitudinal (transverse) spin
Hall conductivity. Note that o = osang + osue and o) =
OSHE-

In Fig. 3, we show the band structure and the k-resolved
conductivities for Fe with magnetization along m = (¥ +
2)/+/2. As expected, contributions to conductivities exhibit
peaks at avoided band crossings near the Fermi energy. Peaks
in the anomalous Hall conductivity oayg and the longitudinal
spin Hall conductivity oy (denoted by “maj” and “min”) can
be associated with interband coupling between states with the
same spin. The magnetization-aligned spin current for these
states is approximately equal to the charge current up to a sign
determined by the spin direction.

We also observe a peak in o, (denoted by “opp”) that
arises from coupling between bands with opposite spin, sug-
gesting that different components of the conductivity can be
associated with different types of band pairs. To quantify this
association, we partition the sum over bands » and m in Eq. (2)
into two parts according to the sign of P = (s, - S,), 1.€., pairs
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FIG. 3. Band structure near the Fermi energy €y (top) and k-
dependent intrinsic conductivities (bottom) for bcc Fe, where m =
F+2)/ /2. Band color gives the value of s-m, with blue (red)
bands corresponding to majority (minority) carriers. Avoided cross-
ings between like (opposite) spin bands contribute strongest to o
(01), which describes the spin current with spin direction parallel
(perpendicular) to r.
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FIG. 4. (a) Schematic of the tight-binding model, which de-
scribes electrons occupying p orbitals on a 2D square lattice with
nearest- (¢) and next-nearest- (') neighbor hopping (i = X). (b) Plot
of the avoided band crossing along the k, axis. The spin density van-
ishes at the avoided crossing between majority and minority bands.
However, the spin current with flow and spin direction transverse to
the magnetization (Q7F) does not vanish at the avoided crossing.
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of like-spin bands (P > 0) versus pairs of opposite-spin bands
(P < 0). We find that 95% of the magnitude of oapg comes
from spinlike band pairs [30] while 96% of the magnitude of
o, comes from spin-opposite band pairs. As we discuss in the
next section, a wave function which carries a spin current with
spin direction transverse to the magnetization requires a super-
position of majority and minority spin states. It is therefore
not surprising that o, arises from spin-opposite band pairs.
The longitudinal spin Hall conductivity o} has contributions
from both band-pair types: 63% arise from spinlike pairs and
36% arise from spin-opposite pairs.

Toy model for intrinsic spin Hall conductivity. We use a
simple tight-binding model to demonstrate an intrinsic spin
current with spin direction transverse to the magnetization.
The model consists of a two-dimensional (2D) square lattice
in the x/y plane with p, and p, orbitals. We include nearest-
neighbor hopping ¢ and next-nearest-neighbor hopping ¢’ [see
Fig. 4(a)]. The magnetization direction is along X and leads
to a spin-dependent exchange splitting A. We express the
Hamiltonian H in terms of the outer product of orbital space
(px, py) and spin space (1, | ). We can concisely write H with
the Bloch factor e’*" absorbed as

H ks I, + Al AL 4
- l‘/kxky tkg QL+ Al, ® sy + AL, ® 57, 4)

where I; and I, are identity operators in spin and orbital space,
respectively. The first term of Eq. (4) describes hopping in the
(px, py) basis. The hopping is spin independent, so the first
term consists of two copies of the orbital-dependent hopping
matrix along the spin diagonal. Note that the Bloch wave vec-
tor k is dimensionless (scaled by the inverse lattice constant
1/a) and we take the small k limit. The second term gives the
orbital-independent magnetic exchange splitting for the mag-
netization direction along X. The third term captures atomic
spin-orbit coupling. The full form of spin-orbit coupling is
L - s, however, Ref. [25] shows that the s.L, term contributes
most substantially to the spin Hall conductivity. We therefore
include only this term for simplicity. The results do not change
appreciably if we use the full spin-orbit coupling form LL - s.
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To develop the simplest demonstration of a spin Hall cur-
rent with spins transverse to the magnetization, we begin by
considering the wave functions for k, = 0 with no spin-orbit
coupling (A = 0). The eigenstates are pure p, or p, orbitals
with spins along the x direction. The addition of spin-orbit
coupling modifies the eigenstates, and its effect is strongest
near degeneracies. For the degenerate point ki shown in
Fig. 4(b), spin-orbit coupling splits the states according to
their total angular momentum. Recall that the total angular
momentum eigenstates are given by

x12) = (Ipx) £ilpy) @ 11 (1)), &)

xs2) = (Ipo) £ilpy) @ 11 (D), (6)

where the arrow in parentheses of the spin ket is paired with
the lower sign. The two eigenstates near the avoided crossing
for the spin-orbit coupled system at kj are

(V1) = Vr12) — U-1y2), @)

[W2) = [Ji3/2) — [J-3/2). (®)

The spin expectation values for |¥;) and |\W;) vanish due to
mixing of the majority and minority states. Similar behavior
is also observed in the band structure for Fe at crossings of
spin-opposite bands (see Fig. 3).

The application of an electric field E along § induces in-
terband coupling with amplitude igEa(W|0H /dk,| W) /(€] —
€,)?, where ¢ is the magnitude of electron charge and € 5 is
the energy of |, ,). The perturbed wave function for |W)
therefore reads

*

o i
WD) = W) +igEa—7 W), ©)

where A is the energy splitting induced by spin-orbit coupling.
Evaluating the expectation value of the transverse spin current
Q7 with the perturbed wave function leads to the following
result (to lowest order in E),

qEatt'(k})? _ gEar'A

Oy = =
(W07 1) P i FERE

(10)

Note that the (k )> factor implies that contributions from
+ky and —k; do not cancel. The second equality in Eq. (10)
follows from the expression for k{ given in Fig. 4. Although
the value of the Hall current at k' diverges as A — 0, the total
Hall current conductivity integrated over k goes continuously
to zero as A — 0.

It is instructive to rewrite the wave function of Eq. (9) in
the (py. py) ® (1, |) basis,

[¥1) = [lpx) = (= EDIp,)1 ® [1)
—lps) + G = EDNIp) 1@ ), (11

where E' = 2gEakt /A2, It is straightforward to show that,
to linear order in E, this wave function has vanishing spin
density while carrying a spin current given by Eq. (10). This
example illustrates that spin currents cannot be treated in

general as direct products of a flow direction and a spin
direction.

Discussion and conclusion. Intrinsic spin currents with
spin direction transverse to the magnetization do not dephase.
These spin currents are protected from dephasing because
they are carried by perturbed eigenstates that superimpose
different spin states with the same Bloch wave vector. As these
perturbed eigenstates propagate in space, the two spin compo-
nents do not accumulate any relative phase, and hence do not
precess and subsequently dephase. However, dephasing could
occur via spin-dependent scattering at the interfaces, resulting
in spin torques. This suggests that spin-orbit torque must
be reexamined in magnetic heterostructures to account for
spin currents generated by ferromagnetic layers. For extrinsic
mechanisms, where the scattering site breaks crystal transla-
tion symmetry, the scattered wave functions with moments
transverse to the magnetization are coherent superpositions
of states with different wave vectors. The different wave
vectors lead to rapid precession and dephasing, which favors
longitudinal spins.

Spin currents in ferromagnets have been measured in sev-
eral experiments. Wang er al. probe the spin Hall effect in
a single Py layer capped by oxide layers [31]. Using the
polar magneto-optical Kerr effect (MOKE), a deflection of
the magnetization is observed at the Py/oxide boundaries,
indicating a spin-transfer torque exerted by a spin Hall current
generated within the ferromagnetic layer. A simple model
provides a lower bound for the spin Hall conductivity, and
its value is similar to the results presented in this Rapid
Communication. Other experiments also isolate the spin Hall
current whose spin direction is transverse to the magnetiza-
tion using more complicated heterostructures [13,14]. Some
experiments measure the spin current with a magnetization-
aligned spin direction [8-11,15], as would be expected for
bulk spin currents in ferromagnets that have spin directions
aligned with the magnetization [22]. Das et al. quantify contri-
butions from both transverse and magnetization-aligned spin
directions within Py [12], providing experimental evidence
supporting some of the results presented here.

In this Rapid Communication, we demonstrated that spin
currents in ferromagnets generated by the intrinsic mechanism
are well approximated as the sum of a spin Hall current and a
spin anomalous Hall current. The spin Hall current has a spin
direction transverse to the magnetization and could generate
spin-orbit torques at material interfaces. In transition-metal
ferromagnets, we find that these spin currents are comparable
in magnitude to those generated in heavy metals. This work
should have immediate bearing on experiments which probe
the spin anomalous Hall and spin Hall effects in ferromagnets
and spin-orbit torque in magnetic heterostructures.
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