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Between space crystals and amorphous materials there exists a third class of aperiodic structures which lack
translational symmetry but reveal long-range order. They are dubbed quasicrystals and their formation, similar
to the formation of space crystals, is related to spontaneous breaking of translational symmetry of underlying
Hamiltonians. Here, we investigate spontaneous emergence of quasicrystals in periodically driven systems.
We consider a quantum many-body system which is driven by a harmonically oscillating force and show that
interactions between particles result in spontaneous self-reorganization of the motion of a quantum many-body
system and in the formation of a quasicrystal structure in time.
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Quasicrystals are related to spatial structures which cannot
be reproduced by translation of an elementary cell but reveal
long-range order [1–3]. Quasicrystals are a subject of research
in solid state physics but also in optics [4–7] and ultracold
atomic gases [8].

Recently research of crystalline structures has migrated
to the time domain [9] (for phase-space crystals see
Refs. [10–13]). Indeed, a quantum many-body system can
spontaneously self-organize its motion and start moving pe-
riodically forming a crystalline structure in the time domain.
While the first idea of such time crystals turned out to
be impossible for the realization [14–17] another type of
spontaneous formation of crystalline structures in time was
proposed. These are the so-called discrete time crystals that
are periodically driven quantum many-body systems which
break spontaneously discrete time translation symmetry of
Hamiltonians and start moving with a period different from
the driving period [18–21]. Discrete time crystals have already
been realized in laboratories [22–26] and they draw consider-
able attention in the literature [27–47] (see also Refs. [48–53]
for a classical version of time crystals). In the field of time
crystals, quasicrystal structures have been investigated in clas-
sical systems [54], quantum systems [40,55,56], and in an
experiment on magnon condensation [57]. In Refs. [58,59]
quasicrystal response of systems which are driven quasiperi-
odically in time was demonstrated. Quasiperiodic response
of a periodically driven many-body system was analyzed in
Ref. [60] but with no spontaneous time translational symmetry
breaking process involved. In the present Rapid Communi-
cation we analyze how a quasicrystal structure forms due to
spontaneous breaking of discrete time translation symmetry
of a many-body time-periodic Hamiltonian.

One-dimensional (1D) quasicrystal sequence can be gen-
erated by a cut of a square lattice with the help of a line
whose gradient is an irrational number [61–63]. For the
Fibonacci quasicrystal the gradient is the golden ratio and
the successive cuts of vertical and horizontal lines of the

square lattice produce a sequence LRLLRLRL . . . of two
elementary cells which we denote by L and R, see Fig. 1. The
sequence corresponds to a quasicrystal structure where there
is no translation symmetry but two elementary cells are not
distributed randomly so that the sequence reveals long-range
order [1]. A finite fragment of the Fibonacci quasicrystal
sequence can be obtained by cutting the square lattice with
a line whose gradient is a rational number that approximates
the golden ratio, see Fig. 1. In the following we show how
any finite fragment of the Fibonacci quasicrystal structure can
spontaneously emerge in the time evolution of a periodically
driven many-body system if interactions between particles are
sufficiently strong.

We focus on ultracold atoms bouncing between two or-
thogonal harmonically oscillating mirrors in a 2D model.
Such a system can be realized experimentally [64] (for the
stationary mirror experiments see Refs. [65–72]). A single
atom bouncing between the mirrors is described, in the frame
oscillating with the mirrors [73,74], by the Hamiltonian [75]

H = p2
x + p2

y

2
+ x + y + λxx cos(ωt + �φ) + λyy cos(ωt ),

(1)

where ω is the frequency of the mirrors’ oscillations, �φ

the relative phase, and λx,y the amplitudes of the oscilla-
tions. The mirrors are located at x = 0 and at y = 0 and the
gravitational force �Fg points in the −(x + y) direction, see
inset of Fig. 1. We assume that in the many-body case, N
bosons are bouncing between the mirrors and interact via
Dirac-delta potential g0δ(r) [76]. Such contact interactions are
determined by the s-wave scattering length of atoms which
is assumed to be negative g0 < 0. The system is periodically
driven, thus, we may look for a kind of stationary states
which evolve periodically in time. They are eigenstates of the
Floquet Hamiltonian Ĥ(t ) = Ĥ − i∂t , where Ĥ is a many-
body version of (1) with the contact interactions between
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FIG. 1. Generation of the one-dimensional Fibonacci quasicrys-
tal. The solid black line cuts the square lattice. The tangent of
the angle that the line forms with the vertical axis is equal to the
golden ratio. Consecutive cuts of the line with the vertical (L) and
horizontal (R) lines of the lattice form the Fibonacci quasicrystal
sequence, LRLLRLRL . . . . Dashed green and dotted-dashed orange
lines correspond to rational approximation of the golden ratio, 3/2
and 13/8, respectively. In the case of ultracold atoms bouncing
between two mirrors which oscillate with frequency ω (see the
schematic plot in the inset where �Fg denotes the gravitational force),
the green and orange lines are related to spontaneous formation of
finite fragments of the Fibonacci quasicrystal in the time domain
with �x/�y = sy/sx = 3/2 and 13/8, respectively. That is, bounces
of atoms off the left L and right R mirrors form a sequence of events
that reproduces a fragment of the Fibonacci quasicrystal of length
sx + sy. Parameters �x and �y are frequencies of bouncing of atoms
off the left and right mirrors, respectively, see text. The axes of the
main figure can be considered as two independent time axes [54], tx,y,
related to periodic motion along the x and y directions.

particles included, see Ref. [73]. The corresponding eigenval-
ues are called quasienergies of the system [75,77]. The dis-
crete time translation symmetry of the time-periodic Hamil-
tonian, Ĥ(t + 2π/ω) = Ĥ(t ), implies that all Floquet eigen-
states must evolve with the driving period 2π/ω. In the fol-
lowing we show that in the limit when the number of particles
N → ∞ but g0N = const. [78], there are subspaces of the
Hilbert space of the system where low-lying quasienergy
eigenstates are fragile because they form macroscopic su-
perposition. Consequently even an infinitesimally weak per-
turbation, e.g., a measurement of a position of one atom,
is sufficient to induce collapse of the many-body state to
one of the superimposed states. It results in breaking of the
discrete time translation symmetry of the Hamiltonian [18].
Interestingly an evolving symmetry broken state can reveal a
sequence of events (bounces of atoms off the left L and right
R mirrors) which forms a finite fragment of the Fibonacci
quasicrystal in time.

Let us start with the single-particle problem (1) which
consists of the independent motion along x and y directions.
We are interested in a resonant driving of the system, i.e.,
the frequencies �x and �y of the unperturbed particle motion
along the x and y directions fulfill sx�x = ω and sy�y =
ω with integer sx and sy. The description of a resonantly

FIG. 2. Density of atoms bouncing between two orthogonal os-
cillating mirrors at t = 2π/3ω. The left (L) mirror is located at x = 0
and the right (R) mirror at y = 0 and the gravitational force �Fg points
in the −(x + y) direction, see inset of Fig. 1. Left panel is related
to the symmetry preserving state which evolves periodically with
the driving period 2π/ω—the left and right mirrors are visited by
atoms alternately: LRLRLR. The presented density consists of sxsy

localized Wannier-like wavepackets (sx = 2, sy = 3). The trajectory
the Wannier wavepackets are moving along is drawn in the panels.
Right panel corresponds to a symmetry broken state where inter-
actions between atoms result in spontaneous breaking of discrete
time translation symmetry of the Hamiltonian and emergence of a
quasicrystal structure in time. Atoms are visiting the left and right
mirrors in an order that matches the sequence LRLLR i.e. a finite
fragment of the Fibonacci quasicristal is reproduced because the
golden ratio gradient of the line in Fig. 1 is approximated by the ra-
tional number �x/�y = sy/sx = 3/2. The parameters of the system
are: λx = 0.094, λy = 0.030, ω = 1.1, �φ = 2π/3, g0N = 0 (left)
and g0N = −0.022 (right). The latter results in UiiN/J = −81, with
J = 4.8 × 10−6, in the Hamiltonian (2) that describes an effective
sx × sy lattice. The results are obtained within the quantum secular
approach [79].

driven particle can be reduced to an effective tight-binding
Hamiltonian [28,73,75,80,81]. When we switch from a single
particle to many bosons resonantly driven, the single-particle
tight-binding Hamiltonian becomes the Bose-Hubbard Hamil-
tonian,

Ĥeff = −1

2

∑

〈i,j〉
Jij â†

i âj + 1

2

∑

i,j

Uij â†
i â†

j âjâi, (2)

which is the many-body Floquet Hamiltonian written
in a basis of time-periodic functions Wi=(ix,iy )(r, t ) =
wix (x, t )wiy (y, t ) which are localized wave packets propa-
gating along the classical resonant orbit with the period
T = sxsy2π/ω and which play a role of Wannier func-
tions known in condensed matter physics [82], see Fig. 2.
There are sxsy Wannier functions Wi which are products
of localized wave packets wix (x, t ) and wiy (y, t ) moving
along the x and y directions with the periods 2π/�x and
2π/�y, respectively. In (2), âi’s are the standard bosonic
annihilation operators, the nearest neighbor tunneling am-
plitudes Jij = −(2/T )

∫ T
0 dt

∫
d2rW ∗

i (r, t )[H − i∂t ]Wj(r, t ),
and the coefficients of the effective interactions Uij =
(2/T )

∫ T
0 dt

∫
d2rg0|Wi|2|Wj|2 for i �= j and similar Uii but by

factor two smaller [28,40,73]. In the present Rapid Communi-
cation we choose the amplitudes of the mirrors’ oscillations,
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λx and λy, so that the resulting amplitudes for nearest neighbor
tunnelings along the x and y directions are the same, J ≡ Jij.
Typically, the coefficient for the on-site interactions Uii is at
least an order of magnitude larger than Uij for long-range
interactions (i �= j).

To conclude this part, the description of the resonantly
driven many-body system is reduced, in the time-periodic ba-
sis Wi(r, t ), to the Bose-Hubbard Hamiltonian (2) [73,83]. The
resonant driving is related to nonlinear classical resonances
where a particle cannot absorb an unlimited amount of energy
because transfer of the energy changes a period of motion
of the system, a particle goes out of the resonance and the
transfer stops [73].

For negligible interactions between particles the
ground state of Ĥeff is a Bose-Einstein condensate

0(r1, . . . , rN , t ) = ∏N

j=1 ψ (r j, t ), i.e., all atoms occupy
a condensate wave function ψ (r, t ) ∝ ∑

i Wi(r, t ) which
evolves with the driving period 2π/ω. Indeed, despite the
fact that each Wi evolves with the period T = sxsy2π/ω,
after each period 2π/ω, the Wannier wave functions Wi

exchange their positions so that the condensate wave function
ψ (r, t ) propagates with the driving period, see Fig. 2.
When the interactions between atoms are attractive and
sufficiently strong it is energetically favorable to group
all atoms in a single localized wave packet Wi(r, t ) [18].
Then, we expect the ground state of Ĥeff to be of the form

0 = ∏N

j=1 Wi(r j, t ) where i can be arbitrary. However,
such a state cannot be a Floquet eigenstate of the system
because it evolves with the period T = sxsy2π/ω while
the discrete time translation symmetry of the Hamiltonian
requires that all Floquet eigenstates must evolve with the
period of the driving 2π/ω. In order to reconcile the energy
and symmetry requirements, the ground state of Ĥeff takes
the form 
0 ∝ ∑

i

∏N
j=1 Wi(r j, t ) which is a macroscopic

superposition of Bose-Einstein condensates [84,85]. However,
such a macroscopic superposition is extremely fragile and
it is sufficient, e.g., to measure the position of one atom
and the ground state collapses to one of the Bose-Einstein
condensates which form the macroscopic superposition,

0 → 
 ≈ ∏N

j=1 Wi(r j, t ) [85,86]—which Wi is chosen
depends on a result of the measurement. In the limit when
N → ∞ but UiiN = const., the latter state is robust and
evolves with the period T = sxsy2π/ω and thus breaks
time translation symmetry of the many-body Hamiltonian
[18]. The described scenario is an example of a process of
spontaneous breaking of time translation symmetry in the
quantum many-body system. Similar spontaneous symmetry
breaking phenomenon is not present in [60] because Floquet
states are related to single Fock states in the position
representation.

In order to describe the system we apply the mean-field ap-
proach [18,44,73,87]. The mean-field approximation is valid
because the ground state of (2) for negligible interactions
and also symmetry broken states, 
 ≈ ∏N

j=1 Wi(r j, t ), in
the regime of the quasicrystal formation are Bose-Einstein
condensates. The mean-field energy of the system per par-
ticle reads E = −(J/2)

∑
〈i,j〉 a∗

i aj + (N/2)
∑

ij Uij|ai|2|aj|2
[44,73] and we are looking for a condensate wave function
ψ (r, t ) = ∑

i aiWi(r, t ) which minimizes E [78,87]. In the

left panel of Fig. 2 we show such a wave function ψ (r, t )
obtained for negligible interactions and for �x = ω/2 and
�y = ω/3 (i.e., sx = 2, sy = 3). The wave function ψ (r, t ) is
a uniform superposition of sxsy = 6 localized Wannier wave
packets, it evolves with the period 2π/ω and describes atoms
bouncing alternately off the left (L) and right (R) mirrors.
If we plot probabilities for the measurement of atoms close
to the left mirror, ρL(t ) = ∫

dy|ψ (x ≈ 0, y, t )|2, and close to
the right mirror, ρR(t ) = ∫

dx|ψ (x, y ≈ 0, t )|2, we can see
that maximal values of ρL,R(t ) appear alternately and form a
periodic sequence of events LRLR . . . , see Fig. 3. However,
if the interactions are sufficiently strong, i.e., UiiN/J � −6.5,
the system chooses spontaneously motion with the period T =
sxsy2π/ω. That is, the mean-field approach shows that the
ground state energy is degenerate and the corresponding wave
functions are not uniform superposition of Wi. The system
prepared in a lowest energy mean-field state breaks discrete
time translation symmetry of the many-body Hamiltonian
because it evolves with the period different from the driving
period. For UiiN/J � −25 the symmetry broken degenerate
ground states reduce to ψ (r, t ) ≈ Wi(r, t ) with accuracy better
than 99%—which Wi is chosen by the system is determined
in a spontaneous symmetry breaking process. In Fig. 2 we
show an example of such a ground state wave function ψ (r, t )
where a single localized wave packet bouncing between the
mirrors is visible. The corresponding probabilities ρL,R(t )
form a sequence of events LRLLR, whose length is sx + sy =
5, which is repeated with the period T , see Fig. 3. The
sequence is a fragment of the Fibonacci quasicrystal. The
time quasicrystal states predicted by the mean-field approach
lives forever. The predictions are valid in the limit when
N → ∞ but g0N = const because then the corresponding
symmetry preserving eigenstates of the quantum many-body
model (2) are degenerate and their superpositions, that form
the symmetry-broken states, do not decay [18].

It now becomes clear how to realize conditions where any
finite fragment of the Fibonacci quasicrystal emerges due to
spontaneous breaking of discrete time translation symmetry
of the Hamiltonian: (i) One has to choose a rational number
sy/sx which approximates the golden ratio and reproduces a
given fragment of the Fibonacci quasicrystal sequence when it
is taken as the gradient of the line in Fig. 1. (ii) Then, we know
which resonant subspace of the periodically driven many-
body system is able to realize such a quasicrystal, i.e., the sub-
space corresponding to the frequencies of unperturbed single-
particle motion �x = ω/sx and �y = ω/sy. (iii) If the many-
body system is prepared in a low-lying eigenstate within this
subspace, then either atoms are bouncing off the left and right
mirrors in the alternate way (if the interactions are negligible)
or the bounces on the mirrors form a sequence of events that
reproduces a finite fragment of the Fibonacci quasicrystal (if
the interactions are sufficiently strong). In the right panels
of Fig. 3 we illustrate these two situations for sx = 8 and
sy = 13. In the symmetry preserving case, the probabilities
for detection atoms close to the left and right mirrors, ρL,R(t ),
show a periodic sequence of maxima LRLR . . . . However,
when the attractive interactions are sufficiently strong, the
discrete time translation symmetry is spontaneously broken
and the Fibonacci quasicrystal LRLLRLRL . . . is formed [54].
We would like to stress that the quasicrystal structure formed
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FIG. 3. Scaled probabilities for the detection of atoms close to the left mirror ρL (t ) (blue lines) and close to the right mirror ρR(t ) (red
lines), where ρL (t ) = ∫

dy|ψ (x ≈ 0, y, t )|2 and there is an analogous expression for ρR(t ). Top panels are related to symmetry preserving
states while bottom panels to states where the discrete time translation symmetry of the Hamiltonian is spontaneously broken. Left panels
correspond to �x/�y = sy/sx = 3/2 while in the right panels such ratios are equal 13/8. Symmetry preserving states form periodic sequences
of the elementary cells L and R associated with the alternate appearance of maxima of ρL (t ) and ρR(t ). In the symmetry broken case, bounces of
atoms off the left and right mirrors form a sequence of events that reproduces a finite fragment (of length sx + sy) of the Fibonacci quasicrystal
which is repeated in the time evolution of the system with the period T = sxsy2π/ω. The results shown in the left panels correspond to the
same parameters as in Fig. 2, while in the right panels: λx = 0.087, λy = 0.026, ω = 1.77, �φ = π/2, sy = 13, sx = 8, g0N = 0 (top right
panel) and g0N = −0.029 (bottom right panel). The latter results in UiiN/J = −80 and J = 2.3 × 10−6 in the Bose-Hubbard Hamiltonian that
describes an effective sx × sy lattice.

by the bouncing atoms is related to the sequence of bounces
not to the sequence of time intervals between the bounces—
the latter can be different, see Fig. 3. In the experiment, the
time intervals which are very small can be disrupted due
to imperfections of the motion of the mirrors which can
result in defects in the Fibonacci quasicrystal. Long time
stability of our phenomenon resulting from the coupling of
the system to the subspace complementary to the resonant
subspace requires further investigation but we expect that the
considered quasicrystal is a prethermal state.

To conclude, quasicrystal structures can emerge in the
time domain due to spontaneous breaking of discrete time
translation symmetry of the time-periodic many-body Hamil-
tonian. They can be realized in ultracold atoms bouncing
between oscillating atom mirrors if atoms are loaded to a
resonant classical orbit. The latter can be done if an atomic
Bose-Einstein condensate is prepared in a trap located at a
classical turning point of a resonant trajectory and afterwards
the trapping potential is turned off at a proper moment of

time [44]—the mirrors can be realized by two blue-detuned
repulsive light sheets formed by focusing laser beams with
cylindrical lenses. It results in a quantum state where all
atoms occupy a single localized Wannier-like wave packet
that evolves along a resonant orbit. For sufficiently strong
attractive interactions between atoms, the localized atomic
wave packet will perform evolution with a quasicrystal struc-
ture in time and will not decay. In contrast, for negligible
interactions, atoms will tunnel to other localized wave pack-
ets evolving along the orbit which indicates decay of the
quasicrystal.
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GIERGIEL, KUROŚ, AND SACHA PHYSICAL REVIEW B 99, 220303(R) (2019)

[75] A. Buchleitner, D. Delande, and J. Zakrzewski, Phys. Rep. 368,
409 (2002).

[76] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod.
Phys. 82, 1225 (2010).

[77] J. H. Shirley, Phys. Rev. 138, B979 (1965).
[78] E. H. Lieb, R. Seiringer, and J. Yngvason, Phys. Rev. A 61,

043602 (2000).
[79] G. Berman and G. Zaslavsky, Phys. Lett. A 61, 295 (1977).
[80] A. Lichtenberg and M. Lieberman, Regular and Chaotic

Dynamics, Applied Mathematical Sciences (Springer-Verlag,
New York, 1992).

[81] K. Sacha and D. Delande, Phys. Rev. A 94, 023633
(2016).

[82] O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D. S. Lühmann,
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