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Exact solution of a percolation analog for the many-body localization transition
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We construct and solve a classical percolation model with a phase transition that we argue acts as a proxy for
the quantum many-body localization transition. The classical model is defined on a graph in the Fock space of
a disordered, interacting quantum spin chain, using a convenient choice of basis. Edges of the graph represent
matrix elements of the spin Hamiltonian between pairs of basis states that are expected to hybridize strongly.
At weak disorder, all nodes are connected, forming a single cluster. Many separate clusters appear above a
critical disorder strength, each typically having a size that is exponentially large in the number of spins but a
vanishing fraction of the Fock-space dimension. We formulate a transfer matrix approach that yields an exact
value ν = 2 for the localization length exponent, and also use complete enumeration of clusters to study the
transition numerically in finite-sized systems.
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Insights into quantum many-body systems can be gained
at a variety of levels from studying classical problems. An
exact equivalence is provided by the well-known mapping be-
tween ground-state properties of a quantum system and finite-
temperature behavior in a classical system in one higher di-
mension [1,2]. Qualitative understanding in quantum systems
may, however, be derived from classical models in other ways,
phenomenological in nature and rooted in physical argument.
For example, the analogy between Anderson localization and
classical percolation provides a picture which is particularly
useful in the context of the integer quantum Hall effect [3–5].
Many-body localization transitions [6–14] are currently of
great interest. They occur in highly excited states and concern
dynamical properties of quantum systems. They are therefore
not generally expected to admit exact mappings onto classical
problems. The question of whether or how classical statistical
mechanical models can be constructed that mimic aspects
of such phase transitions is thus naturally of fundamental
interest.

In this Rapid Communication we formulate a classical
percolation problem inspired by the quantum mechanics of
a disordered spin system. The percolation problem is defined
on a graph in the Fock space of the spin chain. We find that
there exists a percolation transition [15] in the classical model
which mimics certain aspects of the many-body localization
transition in the quantum model. In particular, our choice
of diagnostic for the percolation transition is motivated by
the behavior across the many-body localization transition of
the Fock-space participation entropies of eigenstates of the
quantum system [11,16].

Remarkably, the classical percolation problem arising in
this way from a commonly studied spin model with local
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interactions, admits an exact solution using a transfer matrix.
This allows us to extract analytically the critical disorder
strength and the value ν = 2 for the localization length ex-
ponent. In addition, we corroborate and extend our results
by enumerating Fock-space clusters exactly for finite-sized
systems. Our approach is complementary to works that use
a phenomenological renormalization group [17–21] or the
semiclassical limit of Clifford circuits [22] to construct a
classical percolation problem in real space, in that we work
entirely in Fock space (as was done in Ref. [23]) but use classi-
cal rules applied to individual realizations of the microscopic
quantum model.

We first discuss the construction of the classical problem.
The Hamiltonian of a quantum many-body system can be
expressed as a tight-binding model in Fock space [24], with
the form

H =
∑

I

EI |I〉 〈I| +
∑
I �=K

TIK |I〉 〈K| , (1)

where {|I〉} denotes a set of many-body basis states. We
consider a graph in Fock space, consisting of nodes that
represent these basis states and edges that indicate nonzero
matrix elements TIK . A suitable choice of basis is the one
corresponding asymptotically to eigenstates in the strong dis-
order limit.

The percolation problem we study arises by designating
edges active or inactive according to a microscopically based
rule. An edge is defined to be active if and only if

|TIK | > |EI − EK |. (2)

This rule is motivated by the fact that for a two-state quantum-
mechanical problem consisting of energy levels with separa-
tion � and coupling J , the extent of hybridization is controlled
by the ratio J/�. A percolation cluster is a maximal set of
nodes joined by edges that are active, and a transition occurs
in the model we treat because a decreasing proportion of edges
are active as disorder strength is increased.
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An appropriate diagnostic for the phase transition in
the classical model can be defined as follows, taking mo-
tivation from the behavior of participation entropies of
quantum-mechanical eigenstates. For a many-body eigen-
state |ψ〉 the first participation entropy in Fock space is
S1 = −∑

I |〈ψ |I〉|2 ln〈ψ |I〉|2. Denoting the Fock-space di-
mension by NH, a characteristic feature of the delocalized
phase is the scaling S1 ∼ a1 ln NH with a1 = 1. By contrast,
in the localized phase, a1 < 1 [11]. In a classical model, since
there are no probabilities of the form | 〈ψ |I〉 |2, we define a
scaled indicator function

pI =
{

1/NC, I ∈ C
0, otherwise,

(3)

where NC denotes the number of nodes in the cluster C. The
distribution of pI over Fock space plays an analogous role to
probabilities derived from a quantum wave function, and the
equivalent of the participation entropy is

−
∑

I

pI ln pI = ln NC = lnStyp. (4)

This is simply the logarithm of the typical cluster size Styp,
with an average over disorder realizations denoted by (·).
For completeness we also define the average cluster size
Savg = NC . In analogy with participation entropies, we expect
Savg/typ ∼ N

αavg/typ

H with αavg/typ = 1 in the percolating (delocal-
ized) phase and αavg/typ < 1 in the nonpercolating (localized)
phase. Hence we use the value of αavg/typ as a diagnostic for
the phase transition.

To put the entire formulation on a concrete footing we
consider a quantum Ising chain of spins 1/2 with disordered
longitudinal and uniform transverse fields, described by the
Hamiltonian

H = Jz

N−1∑
�=1

σ z
� σ

z
�+1 +

N∑
�=1

h�σ
z
� + J

N∑
�=1

σ x
� , (5)

where σ z
l = ±1, and h� ∈ [−W,W ] are random fields drawn

from a uniform distribution. As the disorder couples to
the {σ z

� }, a natural choice for {|I〉} is the basis composed
of product states with σ z

� = ±1. Since the off-diagonal
part of H is simply

∑
� σ x

� , the Fock-space graph is pre-
cisely an N-dimensional hypercube with edges between
pairs of spin configurations that differ only on one spin,
as illustrated in Fig. 1. The Fock-space node energies
EI = 〈I| Jz

∑
� σ z

� σ
z
�+1 + h�σ

z
� |I〉 can be evaluated straight-

forwardly with our basis choice, and the energy difference
|EI − EK | between states connected by spin reversal at site
� is 2|Jz (σ z

�+1 + σ z
�−1) + h�|. This includes both an on-site

term and cooperative contributions that depend on the states
of neighboring spins. To ensure that all edges are active in
the weak disorder limit (W → 0) we require J > 4Jz. The
corresponding quantum model has a many-body localization
transition as a function of W (see Supplemental Material [25]
for details).

Before presenting our analytic treatment of this model,
we show numerical results for Savg/typ obtained by exact
enumeration of clusters in a finite system [26]. From Fig. 2, it
is clear that there is a critical disorder strength Wc. For W <

Wc we find Savg/typ ∼ NH, indicating a percolating phase. For

(a) (b)

FIG. 1. Caricatures of (a) the percolating (delocalized) and
(b) the nonpercolating (localized) phases for a system of four spins
1/2. The nodes represent the 24 = 16 basis states of the Fock space as
indicated by the spin configurations. All nodes in a given cluster, and
the active edges joining them, have the same color. Edges colored
gray are inactive: they represent nonzero matrix elements in the
quantum Hamiltonian that fail to satisfy the percolation criterion
of Eq. (2).

W > Wc we find a localized phase in which Savg/typ ∼ N
αavg/typ

H
with α < 1. The latter scaling is akin to the behavior of quan-
tum eigenstates in the many-body localized phase [11,16].
The values of Wc and ν can be obtained by collapsing
the data for various system sizes onto a universal function
g[(W − Wc)N1/ν]. The data for Savg yields Wc ≈ 1.95 and ν ≈
1.79, whereas those for Styp give Wc ≈ 1.94 and ν ≈ 1.81.
These results are close to the exact values Wc = J/2 = 2.05
and ν = 2 derived below.

An important further numerical observation is that in the
percolating phase all Fock-space nodes form a single cluster,
as indicated by the fact that Savg/typ not only scales linearly
with NH but is equal to it. This behavior is completely dif-
ferent from that for bond percolation on a finite-dimensional
lattice. It arises because of the high coordination number
(=N) of the Fock-space graph, and despite the fact that
for W � Wc a finite fraction of edges are inactive. Both the
formation of a single cluster and the presence of inactive edges
in the percolating phase are central to our analytical approach,
which we sketch below with further details in [25].
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FIG. 2. Average (a) and typical (b) cluster sizes, normalized by
Fock-space dimension, as a function of disorder strength for various
system sizes N . Insets show raw data and main panels show scale-
collapsed data with best fits for Wc and ν. Calculations use Jz = 1 and
J = 4.1 with 105 realizations and errors estimated via the standard
bootstrap method with 500 resamplings.
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FIG. 3. Schematic representation of transitions involving spin
flips at sites N and N + 1.

To indicate the existence of a single cluster, we consider in
a system of size N a function of the disorder realization with
the properties

XN ({h�}) =
{

1, if NC = NH

0, otherwise.
(6)

Our strategy is to relate systems with open boundary condi-
tions of size N and N + 1, by writing an expression for XN+1

in terms of XN and hN+1. This constitutes our basic recursion
relation. We then perform a disorder average over all the
fields and solve the averaged recursion relation to obtain the
probability that all the nodes of the Fock-space graph belong
to the same cluster. In this way we identify the critical point
and determine the localization length exponent.

To find a recursion relation, we must account for two
points. First, the edge representing a spin flip at site N + 1
may be active or inactive, depending both on the value of hN+1

and (via the exchange interaction) on the spin orientation at
site N . Second, the effective field hN acting on the spin at
site N is modified in the N + 1 site system by the exchange
interaction with the spin at site N + 1. To represent these
features we define the indicator function

x(�) =
{

1, |�| < J

0, otherwise,
(7)

where � = EI − EK for configurations |I〉 and |K〉 connected
by a given spin flip. Transitions on the Fock-space graph aris-
ing from spin flips at sites N and N + 1 are shown schemat-
ically in Fig. 3. Those denoted with blue arrows arise from
spin flips at site N + 1 and are influenced by the exchange
field only from the spin at site N . Hence � = 2hN+1 + 2Jzσ

z
N

in this case. Transitions denoted with red arrows arise from
spin flips at site N and have � = 2(hN + Jz σ z

N+1) + 2Jz σ z
N−1.

Here the exchange interaction with the spin at site N + 1 is
equivalent to the modification hN → hN + Jz σ z

N+1 of the field
on site N .

In order that the four nodes represented in Fig. 3 are
connected, it is sufficient that at least three of the edges

depicted are active. From this we derive the recursion relation

XN+1 = X +
N X −

N (x+
N+1 + x−

N+1 − 3x+
N+1x−

N+1)

+ (X +
N + X −

N )x+
N+1x−

N+1. (8)

Here X ±
N = XN (h1, . . . , hN ± Jz ) and x±

N = x(2hN ± 2Jz ). To
obtain a closed set of equations we require expressions for
X ±

N+1. These are simple to obtain because in Eq. (8) the field
hN+1 enters the expression for XN+1 only via x±

N+1, which is
independent of the fields at other sites. Hence equations for
X ±

N+1 are obtained by replacing hN+1 with hN+1 ± Jz in the
argument of x±

N+1. Defining the notation z±
N = x(2hN ± 4Jz ),

zN = x(2hN ), and YN ({h�}) = X +
N X −

N , the recursion relations
for X ±

N+1 are

X ±
N+1 = YN (zN+1 + z±

N+1 − 3zN+1z±
N+1)

+ (X +
N + X −

N )zN+1z±
N+1. (9)

Finally, we can find an expression for YN+1 from Eq. (9) by
multiplying the recursions relations for X +

N+1 and X −
N+1, giving

YN+1 = YN [zN+1 + z+
N+1z−

N+1 − 3zN+1z+
N+1z−

N+1]

+ (X +
N + X −

N )zN+1z+
N+1z−

N+1. (10)

Linearity in YN+1 and X ±
N is retained under multiplication

because YN and X ±
N are idempotent.

The recursion relations (9) and (10) are a closed set of
coupled linear equations for YN and X ±

N . They have the form
vN+1 = MN+1vN where vN = (YN , X +

N , X −
N )T . Crucially, the

matrix MN+1 depends only on hN+1 and not on h� for � � N .
Due to this and the linearity, the system of equations can
be converted into one for the averaged quantities. Defining
the disorder average by (·) = [

∏
�=1

∫
dh�P(h�)](·) where

P(h) = �(W − |h|)/2W , the averaged system of equations is

vN+1 = M · vN = (M)N · v1, (11)

with v1=(1, 1, 1)T as the boundary condition. From Eq. (11),
vN can be obtained for arbitrary N . Substitution into the
disorder-averaged form of Eq. (8) gives X N . This locates the
phase transition: X N is unity for all N in the percolating phase,
and decreases with increasing N in the localized phase.

The critical disorder strength and localization length expo-
nent can be evaluated analytically by computing the eigenval-
ues of M. We expect the largest eigenvalue, denoted by λmax,
to be unity in the percolating phase and smaller than unity in
the localized phase. We indeed find [25]

λmax =
{

1 for W � J/2


 < 1 for J/2 < W
(12)

with 
 = {J + 4Jz+[(J − 4Jz )(8W −3J−4Jz )]1/2}/4W for
J/2 � W < (J + 4Jz )/2. This shows that the critical disorder
strength is Wc = J/2. The value of the exponent ν is deter-
mined by the asymptotic form

1 − λmax(W ) ∼ (W − Wc)ν for W � Wc. (13)

Expanding Eq. (12) around Wc = J/2 for W > J/2, we find

λmax = 1 − 4

J (J − 4Jz )
(W − Wc)2 + O[(W − Wc)3] . (14)
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From this we identify the value ν = 2. The analytical deter-
mination of Wc and ν constitutes two of our central results.

Understanding of the critical point is provided by a sim-
ple picture for the appearance of short, real-space segments
in the chain where spins cannot fluctuate. As an example,
consider three consecutive sites, � − 1, �, and � + 1. Sup-
pose that |2h�±1| > J and |2h� + 4Jz| > J . Then the spins at
these sites in a Fock-space cluster with σ z

�−1 = σ z
� = σ z

�+1 = 1
are frozen: the cluster has no active edges to nodes with other
configurations of these spins, regardless of the orientation of
the spins at sites � ± 2. Such a disorder realization requires
fields on two end sites (h�±1 in this case) exceeding a crit-
ical strength Wc = J/2. Similar arguments also apply if the
end sites are adjacent, or if they have more than one site
separating them. Frozen segments therefore appear with a
density proportional to (W − Wc)2 and their separation defines
a correlation length, implying ν = 2.

We note that the value ν = 2 is consistent with the Harris-
CCFS bound [27,28], which stipulates for a disorder-driven
phase transition that ν � 2/d in spatial dimension d . A similar
bound has been derived for many-body localization transitions
[29,30]. It is interesting that a scaling theory of entanglement
at the many-body localization transition, based on treating the
many-body resonances classically in real space, also yields
ν = 2 for the typical data [19]. Note that exact diagonalization
studies for this model in practice yield ν ≈ 1 [25] (as they do
for various other models in 1D), which is in violation of the
Harris-CCFS bounds.

It is natural to ask how important a role the exchange
interaction Jz plays in the transition, particularly since Wc is
independent of Jz. In fact, the character of the localized phase
is controlled by interactions. This is illustrated most directly
by the fact that ν is discontinuous, taking the value ν = 1 at
Jz = 0 [25]. It is revealed in more detail by considering the
magnetization m at a given real-space site, averaged over all
nodes in a Fock-space cluster, and the probability distribution
Pm(m) of this quantity over disorder realizations. In the per-
colating phase Pm(m) = δ(m), while in the localized phase
without interactions Pm(m) has delta-function components
at m = 0 and m = ±1. As illustrated in Fig. 4, interactions

−1.0 −0.5 0.0 0.5 1.0
m

10−3

10−1

101

P
m
(m

)

W = 1.75 < Wc N = 10

N = 12

N = 14

N = 16

N = 18

−1.0 −0.5 0.0 0.5 1.0
m

W = 2.75 > Wc

FIG. 4. Probability distribution of the cluster-averaged magneti-
zation in the percolating (left) and localized (right) phases, computed
by complete enumeration of clusters.

generate a broad background in addition to the delta-function
components, which we study in detail elsewhere [31]. Analo-
gous differences in the distributions of eigenstate expectation
values of local observables have also been observed across the
many-body localization transition [32,33].

In summary, we have constructed a classical percolation
model in the Fock space of a disordered, interacting quantum
spin chain. The classical model mimics aspects of the many-
body localization transition in the quantum system. Using a
transfer matrix approach we have computed exactly for the
classical problem the critical disorder strength and localiza-
tion length exponent. We have corroborated these results by
enumerating clusters exactly on finite-sized systems.

A number of interesting directions remain open. In particu-
lar, the Fock-space percolation model can be interpreted as an
example of a kinetically constrained model. Such models are
known to show dynamical phase transitions and nonergodic
behavior [34–37]. They can be studied using Monte Carlo
dynamics, which gives access to much larger system sizes
than complete enumeration. This perspective also leads to the
introduction of new, dynamical correlation functions, which
we examine in a separate work [31].
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S. A. Parameswaran for useful discussions. This work was in
part supported by EPSRC Grant No. EP/N01930X/1.
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