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Possible two-component pairings in electron-doped Bi2Se3 based on a tight-binding model
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Recent experiments show the spontaneous breaking of rotational symmetry in the superconducting topological
insulators MxBi2Se3 (M represents Cu, Sr, or Nd), suggesting that the pairing belongs to a two-dimensional rep-
resentation of the D3d symmetry group of the crystal. Motivated by this progress, we construct an exhaustive list
of possible two-component pairings of the MxBi2Se3 superconductors, both for the odd-parity Eu representation
and for the even-parity Eg representation. Starting from a tight-binding model for the normal phase of Bi2Se3

and MxBi2Se3, we firstly construct the pairing channels in the spin-orbital basis, up to second-nearest-neighbor
pairing correlations in the basal plane. We then infer the properties of these pairings by transforming them
to the band (pseudospin) basis for the conduction band. A comparison with the experiments leads to several
multichannel pairings as promising pairings for MxBi2Se3 superconductors. Besides a nematic and time-reversal
symmetric pairing combination, the other pairings that we have identified are chiral and nematic at the same
time, which may be nonunitary and have a spontaneous magnetization. A complementary set of experiments are
proposed to identify the true pairing symmetries of these superconductors and their evolution with the doping
concentration x.
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I. INTRODUCTION

The nature of the pairing of superconducting topological
insulators, to be abbreviated MxBi2Se3, with M representing
a metallic element that might be Cu, Sr, or Nd, has been
mysterious since their discovery [1–6]. Various experiments
made conflicting implications, alluding the pairing to be
topologically nontrivial [7–11] or trivial [12,13]. Recently, a
series of new experiments have shown convincingly that the
pairing of this family of superconductors is unconventional
(see Yonezawa [14] for a recent review). For CuxBi2Se3

[15,16] and SrxBi2Se3 [17,18], more than one experiment has
revealed that the superconducting state breaks the threefold
rotational symmetry of the normal phase to twofold rotational
symmetry, which is possible only if the pairing belongs to a
two-dimensional representation of the underlying D3d point
group. The pairing was thereby called nematic superconduc-
tivity [19]. For NdxBi2Se3, in addition to the broken threefold
in-plane rotational symmetry [20,21], the time-reversal sym-
metry appears to be also broken [6].

Multiple theoretical analyses have been made to account
for these new experimental findings [22–31], which focus
mostly on the odd-parity Eu representation of the D3d point
group. While the studies can account for the qualitative fea-
tures of various experiments, a satisfactory explanation of
all crucial experimental features in terms of known pairings
appears to be difficult. For example, while recent experiments
deny the presence of in-gap states on the surface of super-
conducting CuxBi2Se3 [12,13], the most studied Eu pairing
is shown to have robust low-energy surface states [31]. In
addition, the proposed Eu pairing has not been stabilized as
the leading pairing instability in any theoretical calculations
based on a microscopic pairing mechanism, such as the

electron-phonon interaction [32–35] or the electron-electron
interaction [36]. In view of the difficulty in first-principles
predictions of the pairing symmetry on one hand and the
extensive experimental observations accumulated to date on
the other, a promising approach is to construct an exhaustive
list of possible two-component pairings and compare them
with the available experimental consensuses. From this com-
parison, we may see to what extent the existing experiments
have constrained the pairing symmetry and what further ex-
periments are necessary to figure out definitely the genuine
pairing symmetries of the MxBi2Se3 superconductors.

Motivated by the above considerations, we construct in
this work a complete list of pairing channels belonging to
the two-dimensional irreducible representations of the D3d

point group. Starting from a tight-binding model for Bi2Se3

and the normal phase of MxBi2Se3, we construct pairings
belonging to the odd-parity Eu representation and pairings
in the even-parity Eg representation. Consistent with the
tight-binding model, which is up to second-nearest-neighbor
(2NN) in-plane hoppings, the constructed pairing channels
are restricted to 2NN in-plane pairing correlations. The lists
of two-component pairings are constructed based purely on
symmetry analyses, without referring to a specific micro-
scopic pairing mechanism, which is unclear at the present
moment. By transforming from the spin-orbital basis to the
band (pseudospin) basis and retaining only the conduction
band which contributes to the Fermi surface, we analyze the
general properties of various interesting and typical pairing
channels.

After a comprehensive review over the experimental con-
sensuses on these superconductors, including their bulk spec-
trum, surface spectrum, and magnetic properties, we infer the
constraints of these experiments on the pairing symmetry.
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Besides a well-known Eu pairing [19,32], the comparison
leads to several pairing combinations that are multichannel,
in addition to having two components. A purely nematic
pairing combination in the Eu representation can give a fully
gapped and twofold symmetric bulk spectrum, a fully gapped
surface spectrum, and a twofold symmetric electronic spin
susceptibility. In addition, we find several chiral and nematic
pairing combinations that can explain more than one key
experimental result in both the Eg representation and the Eu

representation. The chiral and nematic pairing of the Eu rep-
resentation, besides breaking the time-reversal symmetry, may
also be nonunitary and having a spontaneous magnetization.
We finally discuss the implications of the present work to the
future experiments, which are highly desirable to determine
the true pairing symmetry of the MxBi2Se3 superconductors.

II. MODEL IN THE SPIN-ORBITAL
AND PSEUDOSPIN BASIS

The low-energy band structures of Bi2Se3 and MxBi2Se3

(M denotes Cu, Sr, or Nd) can be described by the follow-
ing two-orbital tight-binding model, defined on a quasi-two-
dimensional hexagonal lattice [31,36–39]:

H0(k) = ε(k)I4 + M(k)�5 + B0cz(k)�4 + A0[cy(k)�1

−cx(k)�2] + R1d1(k)�3 + R2d2(k)�4. (1)

The basis operator is taken as φ
†
k = [a†

k↑, a†
k↓, b†

k↑, b†
k↓],

where the a and b orbitals separately correspond to the pz

orbitals of the top and bottom Se layers of the Bi2Se3 quin-
tuple units, with a certain amount of hybridization with the pz

orbitals of the neighboring Bi layers [37–39]. I4 is the 4 × 4
unit matrix. �1 = σ3 ⊗ s1, �2 = σ3 ⊗ s2, �3 = σ3 ⊗ s3, �4 =
−σ2 ⊗ s0, and �5 = σ1 ⊗ s0 [32,36–41]. si and σi (i = 1, 2, 3)
are Pauli matrices for the spin and orbital degrees of freedom,
and s0 and σ0 are the corresponding unit matrices. With the
parity operator P = σ1 ⊗ s0, it is easy to verify that the model
has the inversion symmetry PH0(k)P−1 = H0(−k).

The above model was obtained previously [36] based
on symmetry analysis and comparison with a k · p model
defined near kx = ky = kz = 0 [37]. The lattice of Bi2Se3

and MxBi2Se3, which belong to the D5
3d space group,

is mapped to a hexagonal lattice in the tight-binding
model. The in-plane (labeled as the xy plane) and
out-of-plane (labeled as the z direction) lattice parameters,
a and c, are taken as a = 4.14 Å and 3c = 28.64 Å
[42]. ε(k) = C0 + 2C1[1 − cos(k · δ4)] + 4

3C2[3 − cos(k ·
δ1) − cos(k · δ2) − cos(k · δ3)]. M(k) is obtained from
ε(k) by making the substitutions Ci → Mi(i = 0, 1, 2).
cx(k) = 1√

3
[sin(k · δ1) − sin(k · δ2)], cy(k) = 1

3 [sin(k ·
δ1) + sin(k · δ2) − 2 sin(k · δ3)], and cz(k) = sin(k · δ4).
Finally, d1(k) = − 8

3
√

3
[sin(k · a1) + sin(k · a2) + sin(k · a3)]

and d2(k) = −8[sin(k · δ1) + sin(k · δ2) + sin(k · δ3)]. Here,
the four NN bond vectors of the hexagonal lattice are
δ1 = (

√
3

2 a, 1
2 a, 0), δ2 = (−

√
3

2 a, 1
2 a, 0), δ3 = (0,−a, 0), and

δ4 = (0, 0, c). The three in-plane 2NN bond vectors in d1(k)
are a1 = δ1 − δ2, a2 = δ2 − δ3 and a3 = δ3 − δ1. The last
and second last terms of H0(k) induce hexagonal warping of
the Fermi surface and the topological surface states [37,38].
We mention in passing that NdxBi2Se3 was reported to have

multiple Fermi surfaces, with possible contributions from
the d orbitals of the Nd dopants [43]. We will neglect this
complexity and work with the above model for all three
superconductors [26,27].

The dopants of MxBi2Se3 (M is Cu, Sr, or Nd) dope
electrons to the system so that only the conduction band
contributes to the Fermi surface. Regardless of whether the
superconductivity is in the weak-coupling limit or in the
strong-coupling limit, as long as the Fermi energy is much
larger than the superconductivity gap, as is true for the present
case [2,44,45], only the states close to the Fermi surface are
involved in the low-energy behavior of the superconductivity,
such as the energy-gap structure and the existence of the
surface Andreev bound states. Therefore, we turn to the
band (pseudospin) basis and retain only the states of the
conduction band in the following analyses [46–52]. Because
MxBi2Se3 in the normal state has both inversion symmetry
and time-reversal symmetry, the conduction band is twofold
degenerate (the Kramers degeneracy) at each wave vector k.
The operator for the inversion symmetry is the parity opera-
tor P = σ1 ⊗ s0. The time-reversal operator is taken as T =
−iσ0 ⊗ s2K , where K denotes the complex conjugation. We
define the pseudospin basis for the conduction-band states on
the northern hemisphere (i.e., kz > 0) of the three-dimensional
Brillouin zone (BZ) as

[|k, α〉, |k, β〉] = [|k, α′〉, |k, β ′〉]uk, (2)

where α and β are the two pseudospin degrees of freedom.
The Kramers degeneracy relates the two bases via |k, β〉 =
PT |k, α〉. The two auxiliary bases are defined as [31]

|k, α′〉 = 1

D̃kNk

(
Ẽk

M̃−(k)

)(
A0c+(k)
D−(k)

)
(3)

and

|k, β ′〉 = PT |k, α′〉 = 1

D̃kNk

(
M̃+(k)

Ẽk

)(−D−(k)
A0c−(k)

)
, (4)

where the first and second two-component vectors are spinors
separately in the subspaces of the original orbital and spin
degrees of freedom. The unitary matrix connecting the two
basis sets is [31]

uk =
(

iei(ϕk+φk ) cos θk
2 −eiφk sin θk

2
e−iφk sin θk

2 −ie−i(ϕk+φk ) cos θk
2

)
. (5)

For notational simplicity, we have introduced the
following abbreviations in Eqs. (3)–(5): c±(k) = cy(k) ±
icx(k), M̃±(k) = M(k) ± i[B0cz(k) + R2d2(k)], Dk =√

A2
0[c2

x (k) + c2
y (k)] + R2

1d2
1 (k), Ek =

√
|M̃±(k)|2 + D2

k,
Ẽk = Ek + Dk, Nk =

√
2EkẼk, D±(k) = Dk ± R1d1(k),

D̃k = √
2DkD−(k), and

c+(k) = i
√

c2
x (k) + c2

y (k)e−iϕk = ic(k)e−iϕk , (6)

Wk = Ẽk + M̃+(k)√
2Nk

= |Wk|eiφk , (7)

R1d1(k) + iA0c(k) = Dkeiθk . (8)

The above formulas define the pseudospin basis for the
conduction-band states on the northern hemisphere of the BZ
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(kz > 0). For conduction-band states on the southern hemi-
sphere (i.e., kz < 0), the pseudospin basis are related to the
pseudospin basis for states on the northern hemisphere by
the symmetry operations: |k, α〉 = P| − k, α〉 = −T | − k, β〉
and |k, β〉 = P| − k, β〉 = T | − k, α〉. We introduce the new
Pauli matrices 
i (i = 1, 2, 3) and the corresponding unit
matrix 
0 in the subspace of the two pseudospin bases. The
reduced model containing only states of the conduction band
is simply

h0(k) = E (k)
0, (9)

where the dispersion of the conduction band is E (k) = ε(k) +
Ek.

III. LISTS AND GENERAL PROPERTIES OF
TWO-COMPONENT PAIRINGS

We now construct the full lists of the basis functions for
the Eg and Eu representations of the D3d group, up to 2NN
in-plane pairing correlations, consistent with the tight-binding
model, which is up to 2NN in-plane hopping terms [36].
Corresponding to the two basis of the model defined in the
previous section, there are two ways of classifying the possi-
ble pairing channels in MxBi2Se3. The first approach focuses
on the low-energy states close to the Fermi surface [23,24,28].
For the x > 0 case of all three superconductors, the Fermi
surface consists of states in the conduction band. Then we can
neglect the valence band from our full model and work with a
reduced model with only the states in the conduction band.
In the second approach, we work with the full two-orbital
model and construct the basis functions in the spin-orbital
basis [26,27,32]. If we are interested only in the low-energy
properties of the MxBi2Se3 superconductor in the bulk, or if
the normal phase is topologically trivial, the two approaches
give essentially the same results. However, if we are also
interested in the topological aspect of the system inherited
from the topologically nontrivial normal phase, such as the
coexistence of the topological surface states with the Fermi
surface [2,44,45], then it is advantageous, if not imperative, to
work with the second approach.

We will first construct in the spin-orbital basis the full lists
of pairing channels in both the Eg and the Eu representations,
up to 2NN in-plane pairing correlations. Basis functions for
the irreducible representations of the D3d symmetry group can
be constructed in terms of the � matrices or the symmetrized
Fourier functions. Here, we define the “symmetrized Fourier
functions” as linear combinations of the trigonometric func-
tions cos(k · l) and sin(k · l), where k is the wave vector and l
represents a NN or 2NN bond vectors defined in Sec. II. Full
lists of these basis functions exist in previous works [36,37].
To be self-contained, we include them in Tables I and II. For
each representation, there are two sets of basis functions in
terms of the � matrices. Up to a constant number of unit
modules, the two basis sets differ by a factor of �5. This is
easy to understand from the fact that �5 belongs to the A1g

representation, which respects the full symmetry of the crystal
and maps an existing basis set to a new basis set belonging to
the same representation. For the Eg and Eu representations,
the two basis sets in Table I transform in the same manner
under the D3d group [36]. The symmetrized Fourier functions

TABLE I. Basis functions in terms of the � matrices. The sym-
bols in the brackets of the first column are another commonly used
name for the corresponding representation [36,37]. The semicolons
in the second column separate different basis sets of the same
representation.

Representation Basis

A1g(�̃+
1 ) I4; �5

A2g(�̃+
2 ) �12; �34

Eg(�̃+
3 ) {�13, �23}; {�24, �41}

A1u(�̃−
1 ) �3; �35

A2u(�̃−
2 ) �4; �45

Eu(�̃−
3 ) {�1, �2}; {�15, �25}

in Table II and their expansions in the limit of small in-plane
wave vectors (i.e., kxa 	 0 and kya 	 0) are

ϕ0(k) = 1

3
[cos k · δ1 + cos k · δ2 + cos k · δ3]

	 1 − 1
6

(
k2

x + k2
y

)
a2, (10)

ϕ1(k) = 1

2
[cos k · δ1 − cos k · δ2] 	 −

√
3

4
kxkya2, (11)

ϕ2(k) = [cos k · δ1 + cos k · δ2 − 2 cos k · δ3]

2
√

3

	 −
√

3

8

(
k2

x − k2
y

)
a2, (12)

ϕ3(k) = d1(k) 	 (
k3

x − 3kxk2
y

)
a3 = 1

2

(
k3
+ + k3

−
)
a3, (13)

ϕ4(k) = d2(k) 	 (
3kyk2

x − k3
y

)
a3 = 1

2i

(
k3
+ − k3

−
)
a3, (14)

ϕ5(k) = cx(k) 	 kxa, (15)

and

ϕ6(k) = cy(k) 	 kya. (16)

We have introduced the abbreviation k± = kx ± iky. If we
extend this to include the inter-quintuple-layer pairings, we

TABLE II. Basis functions in terms of the symmetrized Fourier
functions. The symmetrized Fourier functions are defined as lin-
ear combinations of cos(k · l) and sin(k · l), where k is the wave
vector and l represents an NN or 2NN bond vectors defined below
Eq. (1). The symbols in the brackets of the first column are another
commonly used name for the corresponding representation [36,37].
The semicolon in the second line of the second column separates
different basis sets of the A1g representation.

Representation Basis

A1g(�̃+
1 ) 1; ϕ0(k)

A2g(�̃+
2 ) None

Eg(�̃+
3 ) {ϕ1(k), ϕ2(k)}

A1u(�̃−
1 ) ϕ3(k)

A2u(�̃−
2 ) ϕ4(k)

Eu(�̃−
3 ) {−ϕ6(k), ϕ5(k)}
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can replace ϕ0(k) with ϕ′
0(k) = cos k · δ4 and replace ϕ4(k)

with ϕ′
4(k) = sin k · δ4. However, we will focus on the intra-

quintuple-layer pairings in this work.
By multiplying the basis functions in Table I and those in

Table II, we can get various product representations of the
D3d group. These product representations can be decomposed
into the irreducible representations according to the group the-
ory [53]. For example, A1u ⊗ Eg = Eu and Eg ⊗ Eu = A1u +
A2u + Eu. In such a manner, we can identify all the realizations
of the possible irreducible representations. When taken as a
part of the model Hamiltonian, they are subject to further
constraints. If a term is taken as a part of the model for
the electronic structures in the normal state, this term should
belong to the A1g representation and has to be Hermitian
[36,37]. These constraints, together with the time-reversal
symmetry of the materials, eliminate many combinations.

If a basis set is taken as the superconducting pairing term,
then it has to satisfy the Fermi exchange statistics. Another
important aspect of the symmetry of the pairing term is related
to the peculiar transformation property of the pairing term
under the time-reversal operation [54,55]. In the spin-orbital
basis φ

†
k, the pairing term has the following general expres-

sion:

φ
†
k�(k)[φ†

−k]T + H.c., (17)

where the superscript T means taking the transpose, and H.c.
means the Hermitian conjugate of the first term. According to
Blount [54,55], the time-reversed creation operator transforms
under the symmetry operation just like the corresponding
annihilation operator. That is,

T [φ†
k]T = −iσ0 ⊗ s2[φ†

−k]T (18)

transforms in the same manner as φk under the action of the
D3d symmetry group and the time-reversal operation [54].
This means that, by transforming the creation operator part
of the pairing term to

φ
†
k�(k)[φ†

−k]T = φ
†
k�(k)iσ0 ⊗ s2(−iσ0 ⊗ s2)[φ†

−k]T, (19)

the matrix

�(k)iσ0 ⊗ s2 (20)

has the same transformation property as the terms in the model
for the normal-state electronic structures. As a result, we can
construct the basis functions according to the general proce-
dure for the normal state [37,53]. Since the obtained basis
is of the form of Eq. (20), we multiply −iσ0 ⊗ s2 from the
right and get the basis functions of the pairing term. Then we
single out from the results those obeying the Fermi exchange
statistics, namely, �T(−k) = −�(k). The above discussions
correspond to taking the Nambu basis as [φ†

k, φ
T
−k]. If we

take the Nambu basis as [φ†
k, φ

T
−k(iσ0 ⊗ s2)] instead, then the

pairing term will be in the form of Eq. (20) spontaneously
[46]. Hereafter, we will stick to the first Nambu basis.

The resulting basis sets (up to 2NN in-plane pairing cor-
relations) for the Eg and Eu representations are separately
shown in Table III and Table IV. The new � matrices in the
tables with two subindices are defined as �μν = 1

2i [�μ, �ν],
where both μ and ν run from 1 to 5. Explicitly, �12 = σ0 ⊗ s3,
�13 = −σ0 ⊗ s2, �14 = σ1 ⊗ s1, �15 = σ2 ⊗ s1, �23 = σ0 ⊗

TABLE III. Basis functions for the even-parity two-dimensional
representation Eg, expressed as linear combinations of products
between the � matrices and the symmetrized Fourier functions.
The first column is the numbering of the various pairing channels.
The second and third columns are separately the two components of
the corresponding basis sets.

E (n)
g ψ

(n)
1 (k)(σ0 ⊗ is2) ψ

(n)
2 (k)(σ0 ⊗ is2)

n = 1 –I4ϕ2(k) I4ϕ1(k)
n = 2 –�5ϕ2(k) �5ϕ1(k)
n = 3 –�4ϕ6(k) �4ϕ5(k)
n = 4 �2ϕ3(k) –�1ϕ3(k)
n = 5 �1ϕ4(k) �2ϕ4(k)
n = 6 �3ϕ5(k) �3ϕ6(k)
n = 7 �2ϕ5(k) + �1ϕ6(k) –�2ϕ6(k) + �1ϕ5(k)

s1, �24 = σ1 ⊗ s2, �25 = σ2 ⊗ s2, �34 = σ1 ⊗ s3, �35 = σ2 ⊗
s3, and �45 = σ3 ⊗ s0. Note that, we have multiplied a factor
of σ0 ⊗ is2 to each component of the basis sets. To get the final
expressions for the pairing components, we have to multiply
back a factor of σ0 ⊗ (−is2) to each component listed in
the tables [46,54–56]. Also notice that each basis set can be
multiplied by a factor of an arbitrary linear combination of
ϕ0(k) and a constant.

The symmetry channels listed in Tables III and IV are
one central result of this work. Two features of the tables
are apparent. First, only the two basis functions of E (1)

u are
completely k independent. This is the pairing channel that
has attracted the most attention as a promising candidate for
the nematic pairing in CuxBi2Se3 [19,22]. Second, among
the listed basis sets in the Eg channel, only the leading three
channels are spin-singlet in the spin-orbital basis. Among the
twelve Eu channels, only E (3)

u is spin-singlet in the spin-orbital
basis.

According to a theorem by Yip and Garg, the most general
pairing can be written as a linear combination of all inde-

TABLE IV. Basis functions for the odd-parity two-dimensional
representation Eu, expressed as linear combinations of products
between the � matrices and the symmetrized Fourier functions.
The first column is the numbering of the various pairing channels.
The second and third columns are separately the two components of
the corresponding basis sets.

E (n)
u ψ̃

(n)
1 (k)(σ0 ⊗ is2) ψ̃

(n)
2 (k)(σ0 ⊗ is2)

n = 1 �15 �25

n = 2 �35ϕ1(k) �35ϕ2(k)
n = 3 �45ϕ2(k) −�45ϕ1(k)
n = 4 �15ϕ2(k) + �25ϕ1(k) �15ϕ1(k)−�25ϕ2(k)
n = 5 �12ϕ5(k) �12ϕ6(k)
n = 6 �34ϕ5(k) �34ϕ6(k)
n = 7 �13ϕ3(k) �23ϕ3(k)
n = 8 −�24ϕ3(k) �14ϕ3(k)
n = 9 �23ϕ4(k) −�13ϕ4(k)
n = 10 �14ϕ4(k) �24ϕ4(k)
n = 11 −�13ϕ5(k) + �23ϕ6(k) �13ϕ6(k) + �23ϕ5(k)
n = 12 �14ϕ6(k) + �24ϕ5(k) �14ϕ5(k) − �24ϕ6(k)
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pendent basis sets of the representation [57]. We therefore
write the general expression of the pairing term in the Eg

representation as

�g(k) =
7∑

α=1

�α

[
η1ψ

(α)
1 (k) + η2ψ

(α)
2 (k)

]
. (21)

(η1, η2) is the same vector for all seven Eg pairing channels,
so that the order parameter transforms as a well-defined vector
in the subspace of the Eg representation. Similarly, the general
pairing in the Eu representation is written as

�u(k) =
12∑

α=1

�̃α[η̃1ψ̃
(α)
1 (k) + η̃2ψ̃

(α)
2 (k)]. (22)

Again, (η̃1, η̃2) is the same vector for all twelve Eu pairing
channels. Notice that we have restricted the pairing to the
same (i.e., Eu or Eg) irreducible representation of the symme-
try group. The superconducting state with mixed even-parity
and odd-parity components, which was found to stabilize
under suitable circumstances [28,58], will not be considered
in the present work.

Among the pairing combinations contained in Eqs. (21)
and (22), we are particularly interested in those pairings
that have been stabilized as the ground state in previous
studies, based on a microscopic or phenomenological pairing
mechanism, and those that are possibly consistent with more
than one key experimental consensuses on the MxBi2Se3

superconductors. The theoretical studies motivated by the
recent experiments focus on pairings in the odd-parity Eu

channel. Besides E (1)
u [19,31], other Eu pairings have been

studied in previous works. Direct comparison shows that E (6)
u

and E (11)
u were studied by Yuan et al. [26], E (6)

u and E (9)
u

(if we replace ϕ4(k) with ϕ′
4(k) = sin k · δ4) were studied by

Chirolli et al. [27]. These pairing channels exhaust the three
kinds of pairings in Tables III and IV, with regard to the
difference between the two pairing components: For E (1)

u and
E (9)

u the difference comes from the two different � matrices,
�15 versus �25 for E (1)

u and �13 versus �23 for E (9)
u ; for E (6)

u
the difference between the two components comes from the
ϕ5(k) and ϕ6(k) symmetry factors; for E (11)

u the distinction
comes from a combination of the difference between �13 and
�23 and the difference between ϕ5(k) and ϕ6(k).

The even-parity Eg channels have attracted much less at-
tention. The only theoretical paper focusing on the even-parity
pairings studied the leading pairing instabilities resulting from
the purely repulsive short-range electron-electron interactions
[36,56]. The six pairings found in that paper could be identi-
fied as the six pairing components of E (1)

g , E (2)
g , and E (3)

g . In
all these three Eg channels, the difference between the two
basis components comes completely from the k-dependent
symmetry factors.

The nature of the pairing defined by Eq. (21) [Eq. (22)]
depends both on the pairing strengths �α (�̃α) and on the
two-component vector (η1, η2) [(η̃1, η̃2)]. For simplicity, we
will assume in the following analysis that �α (α = 1, . . . , 6)
and �̃α (α = 1, . . . , 12) are all real numbers. By this conven-
tion, we neglect pairings analogous to the single-component
chiral pairings, like the s + is′, d + id ′, and p + ip′ pairings
[59–61]. The nonzero �α or �̃α indicate the pairing channels

that contribute to the superconducting order parameter. The
relative magnitudes of the �α or �̃α parameters charac-
terize the contributions of different pairing channels. Then,
depending on the (η1, η2) or the (η̃1, η̃2) vector, we may
define the chirality and nematicity of the two-component
superconducting order parameters [19,23,24]: The pairing is
nematic if at least one of |η1|2 − |η2|2 (|η̃1|2 − |η̃2|2) and
η1η

∗
2 + η∗

1η2 (η̃1η̃
∗
2 + η̃∗

1 η̃2) is nonzero. The pairing is chiral
if η1η

∗
2 − η∗

1η2 �= 0 (η̃1η̃
∗
2 − η̃∗

1 η̃2 �= 0), or equivalently, η1/η2

(η̃1/η̃2) is a nonzero and finite complex number.
To understand the properties of various pairings, we

turn from the spin-orbital basis to the band (pseudospin)
basis [46–52], defining Uk = [|k, α〉, |k, β〉] and U−k =
[| − k, α〉, | − k, β〉] for kz > 0. A pairing wave function (i.e.,
superconducting order parameter) expressed as �(k) in the
original spin-orbital basis transforms to

�̃(k) = U †
k �(k)U ∗

−k (23)

in the pseudospin basis [31]. As the properties of the six sym-
metry factors ϕi(k) (i = 1, . . . , 6) are known from Eqs. (11)–
(16), the remaining task is to calculate the basis transforma-
tions for the sixteen 4 × 4 matrices in Tables III and IV.

A. The Eg pairings

First consider the Eg representation. Define I ′
4 = I4(−σ0 ⊗

is2) and �′
i = �i(−σ0 ⊗ is2) (i = 1, . . . , 5), and define the

Pauli matrices in the pseudospin basis as 
i (i = 0, 1, 2, 3). In
terms of Eq. (23), the relevant transformations are found to be

Ĩ ′
4(k) = −i
2, (24)

�̃′
1(k) = −A0cy(k)

Ek
i
2, (25)

�̃′
2(k) = A0cx(k)

Ek
i
2, (26)

�̃′
3(k) = −R1d1(k)

Ek
i
2, (27)

�̃′
4(k) = −B0cz(k) + R2d2(k)

Ek
i
2, (28)

�̃′
5(k) = −M(k)

Ek
i
2. (29)

While only three (i.e., E (1)
g , E (2)

g , and E (3)
g ) out of the seven

channels listed in Table III are spin singlet in the original spin-
orbital basis, all seven Eg channels are pseudospin singlets
in the pseudospin basis. In particular, although E (7)

g is very
different from E (1)

g and E (2)
g in the spin-orbital basis, the

symmetry factors of the two basis components of E (7)
g behave

like k2
x − k2

y and −2kxky in the band (pseudospin) basis,
qualitatively the same as the corresponding basis components
of E (1)

g and E (2)
g , if the slight anisotropy introduced by Ek

and M(k) is neglected. In addition, E (4)
g is identical to E (6)

g in
the pseudospin basis, up to a k-independent constant factor.
Finally, we point out that the seemingly different E (3)

g and
E (5)

g are closely related. In fact, if we replace ϕ4(k) = d2(k) in
E (5)

g by ϕ4(k) + B0
R2

ϕ′
4(k) = d2(k) + B0

R2
cz(k), which have the

same symmetry as that of ϕ4(k) under D3d , then E (3)
g and
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E (5)
g are identical in the pseudospin basis up to a constant

factor.
Notice that the six spin-singlet pairings identified in a pre-

vious study combine to E (1)
g , E (2)

g , and E (3)
g [36,56]. The two

components of E (3)
g were incorrectly identified as belonging

to the Eu representation [36,56] because of neglecting the dif-
ferent transformation properties of the pairing term compared
to the model for the normal-state electronic structures, as we
explained in Eqs. (17)–(20).

To understand the qualitative properties of the various
pairing channels, we consider each pairing channel separately.
That is, we assume that only one among the seven �α pa-
rameters in Eq. (21) is nonzero. From the transformations
in Eqs. (24)–(29) and the expansions in Eqs. (11)–(16), it is
easy to see that all 14 pairing components, ψ (n)

m (n = 1, . . . , 7
and m = 1, 2), included in Table III have line nodes for both
spheroidal and corrugated cylindrical Fermi surfaces. If the
Fermi surface is corrugated cylindrical, a chiral combination
of ψ

(1)
1 and ψ

(1)
2 can give a fully gapped bulk spectrum. The

same is true for the two components of E (2)
g and the two

components of E (7)
g . If the Fermi surface is spheroidal, the

chiral combination of the two components of E (1,2,7)
g give a

bulk spectrum with two point nodes at kx = ky = 0 of the
Fermi surface. The remaining four pairing channels, E (3)

g –
E (6)

g , have line nodes for arbitrary (η1, η2), for both spheroidal
and corrugated cylindrical Fermi surfaces. One common set
of line nodes for E (3)

g comes by setting the B0cz(k) + R2d2(k)
factor of Eq. (28) to zero. Six line nodes persist for E (4)

g and
E (6)

g , which both come from ϕ3(k) = d1(k) = 0. E (5)
g also has

six prevalent line nodes, which come from ϕ4(k) = d2(k) =
0. For a spheroidal Fermi surface, the six line nodes from
d1(k) = 0 or d2(k) = 0 connect at the two points of the Fermi
surface with kx = ky = 0.

We can also estimate the magnitude of the superconducting
gaps. For MxBi2Se3 (M is Cu, Sr, or Nd), the chemical
potential μ > 0 lies in the conduction band. According to
experiments [2,44] and first-principles calculations [37,39],
kxa and kya are all very small for wave vectors on the Fermi
surface. The superconducting gap of a certain pairing channel
can therefore be characterized in terms of its power in ka =√

k2
x + k2

y a. For states lying on the Fermi surface, we have
Ek + ε(k) = μ. ε(k) and M(k) vary only slightly over states
on the Fermi surface, and so does Ek [31]. As an approxima-
tion, we treat Ek = μ − ε(k) and M(k) as constants. Under
these conditions, we see that the gap of E (1)

g is of the order
(ka)2. E (2)

g and E (7)
g also open superconducting gaps in the

order of (ka)2 but reduced by a factor of M(k)/Ek and A0/Ek

compared to E (1)
g . The superconducting gaps of E (4,5,6)

g are all
in the order of (ka)4 and are two powers smaller than (ka)2.
For cz(k) = 0, the superconducting gap for E (3)

g is also in the
order of (ka)4. However, the two components of E (3)

g behave
more like (kxa)(kzc) and (kya)(kzc), and are more efficient
than E (4,5,6)

g in opening the superconducting gap. The angular
dependence of the pairing amplitudes on the kxky plane, which
was neglected in the above analysis in terms of the ka factor,
can be obtained from Eqs. (11)–(16). The above estimations
are summarized in Table V.

TABLE V. Order-of-magnitude estimations of the superconduct-
ing gaps for the Eg pairing channels defined in Table III, on the
kz = 0 slice of the Fermi surface. The first column is the numbering
of the various pairing channels. The second column contains the
order-of-magnitude estimation of the corresponding pairing channel
in terms of the magnitude of the wave vector on the kz = 0 slice of
the Fermi surface. k =

√
k2

x + k2
y is the magnitude of the Fermi wave

vector. a = 4.14 Å is the in-plane lattice parameter. Notice that, as is
explained in the text, E (3)

g is more effective in opening an energy gap
away from the kz = 0 plane.

E (n)
g Order of magnitude of the pairing

n = 1 (ka)2

n = 2 |M(k)|
Ek

(ka)2

n = 3 |R2 |
Ek

(ka)4

n = 4 |A0 |
Ek

(ka)4

n = 5 |A0 |
Ek

(ka)4

n = 6 |R1|
Ek

(ka)4

n = 7 |A0 |
Ek

(ka)2

Among the seven pairing channels in Table III, only the
two components of E (3)

g can have a sign change in the pseu-
dospin basis, when we substitute −kz for kz. This implies that
only E (3)

g can give surface Andreev bound states on the natural
xy surface of the MxBi2Se3 superconductors. As regards the
topological surface states of the normal phase, according to
a previous theoretical study [62], all the pairing channels in
Table III except for E (3)

g can open a gap in the topological
surface states. Therefore, among all seven Eg pairings, E (3)

g is
special with regard to the surface properties. The surface states
for the E (3)

g pairings were studied in a previous work [36].
On the other hand, since all seven Eg pairings are pseudospin
singlets, they are expected to have trivial isotropic electronic
spin susceptibility in the xy plane.

B. The Eu pairings

We next study the pairings belonging to the Eu represen-
tation. We define �′

μν = �μν (−iσ0 ⊗ s2) for μ, ν = 1, . . . , 5
and μ < ν. As noticed in previous studies, the E (1)

u chan-
nel, which is k independent in the spin-orbital basis, has a
complicated k dependence in the band (pseudospin) basis
[19,31,46]. This is generally true for all the 12 Eu channels
listed in Table IV. Besides the E (1)

u channel, only the sym-
metry factors of E (2)

u , E (3)
u , and E (4)

u are even functions of
k. In addition, E (2)

u (multiplied by σ0 ⊗ is2 from right) is a
direct product of �35 which belongs to the A1u representation
(Table I) and {ϕ1(k), ϕ2(k)} which belongs to the Eg represen-
tation (Table II). �′

35 was a chief candidate of the pairing for
CuxBi2Se3 in early theoretical discussions [32,40,46,63]. The
relevant basis transformations for these four channels are

�̃′
15(k) = [(B0cz + R2d2)
1 − R1d1
2 − A0cx
3]

i
2

Ek
, (30)

�̃′
25(k) = [R1d1
1 + (B0cz + R2d2)
2 − A0cy
3]

i
2

Ek
, (31)
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�̃′
35(k) = [A0cx
1 + A0cy
2 + (B0cz + R2d2)
3]

i
2

Ek
, (32)

�̃′
45(k) = [−A0cy
1 + A0cx
2 − R1d1
3]

i
2

Ek
. (33)

The k dependence of the terms in the results are suppressed
to simplify the notations. In contrast to the salient twofold
anisotropy in the spin structure factors in the two bases for

E (1)
u , the spin structure factors for E (2)

u , E (3)
u , and E (4)

u are fairly
symmetric in the xy plane.

The symmetrized Fourier functions for the remaining Eu

channels are all odd functions of k. The properties of these
pairing channels can also be understood by combining the
symmetry factors and the expressions of the remaining six �

matrices in the pseudospin basis. By straightforward applica-
tions of Eq. (23), we get the following results:

�̃′
12(k) = { − [A0cx(B0cz + R2d2) + A0cyR1d1]
1 − [A0cy(B0cz + R2d2) − A0cxR1d1]
2

− [
Ek(Ek + M ) − A2

0c2]
3
} i
2

Ek(Ek + M )
, (34)

�̃′
34(k) = {

[A0cx(B0cz + R2d2) + A0cyR1d1]
1 + [A0cy(B0cz + R2d2) − A0cxR1d1]
2

− [
M(Ek + M ) + A2

0c2
]

3

} i
2

Ek(Ek + M )
, (35)

�̃′
13(k) = {[

R1d1(B0cz + R2d2) − A2
0cxcy

]

1 + [

Ek(Ek + M ) − A2
0c2

y − R2
1d2

1

]

2

−[A0cxR1d1 + A0cy(B0cz + R2d2)]
3
} i
2

Ek(Ek + M )
, (36)

�̃′
23(k) = { − [

Ek(Ek + M ) − A2
0c2

x − R2
1d2

1

]

1 + [

A2
0cxcy + R1d1(B0cz + R2d2)

]

2 + [A0cx(B0cz + R2d2)

− A0cyR1d1]
3
} i
2

Ek(Ek + M )
, (37)

�̃′
14(k) = { − [

Ek(Ek + M ) − A2
0c2

y − (B0cz + R2d2)2
]

1 − [

A2
0cxcy + R1d1(B0cz + R2d2)

]

2

− [A0cx(B0cz + R2d2) − A0cyR1d1]
3
} i
2

Ek(Ek + M )
, (38)

�̃′
24(k) = { − [

A2
0cxcy − R1d1(B0cz + R2d2)

]

1 + [

A2
0c2

x + (B0cz + R2d2)2 − Ek(Ek + M )
]

2

− [A0cxR1d1 + A0cy(B0cz + R2d2)]
3
} i
2

Ek(Ek + M )
. (39)

Again, the k dependence of the terms in the results are suppressed. The expression multiplying 
3 in the second line of Eq. (35)
can be rewritten as

M(Ek + M ) + A2
0c2 = Ek(Ek + M ) − R2

1d2
1 − (B0cz + R2d2)2.

The transformations in Eqs. (30)–(39) and those in Eqs. (24)–(29) are another central result of the present work.
There is an interesting relation among the six basis transformations in Eqs. (34)–(39). According to Table I, the six primed �

matrices separate into three pairs: �′
12 and �′

34 = �′
12�5, �′

13 and �′
42 = �′

13�5, �′
23 and �′

14 = �′
23�5. The connection between

the two components of each pair is revealed by summing over the corresponding expressions in the pseudospin basis, which
gives

�̃′
12(k) + �̃′

34(k) = −Ek + M

Ek

3(i
2), (40)

�̃′
23(k) + �̃′

14(k) = −Ek + M

Ek

1(i
2), (41)

�̃′
31(k) + �̃′

24(k) = −Ek + M

Ek

2(i
2). (42)

Note that I4 + �5 = I4 + P, which underlies the above combinations, is the projection operator to the even-parity subspace
in the spin-orbital basis. Equations (40)–(42) have a clear cyclical structure. This should be related to the definition of the
pseudospin basis, which was chosen to make the even-parity component of the magnetic moment operator to transform like
a proper axial vector [31]. The combinations corresponding to the projection operator I4 − �5 = I4 − P, which projects to the
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odd-parity subspace, are

�̃′
12(k) − �̃′

34(k) = { − 2[A0cx(B0cz + R2d2) + A0cyR1d1]
1 − 2[A0cy(B0cz + R2d2) − A0cxR1d1]
2

+ [
A2

0c2 − R2
1d2

1 − (B0cz + R2d2)2
]

3

} i
2

Ek(Ek + M )
, (43)

�̃′
23(k) − �̃′

14(k) = {[
A2

0(c2
x − c2

y ) + R2
1d2

1 − (B0cz + R2d2)2
]

1 + 2

[
A2

0cxcy + R1d1(B0cz + R2d2)
]

2

+ 2[A0cx(B0cz + R2d2) − A0cyR1d1]
3
} i
2

Ek(Ek + M )
, (44)

�̃′
31(k) − �̃′

24(k) = {
2
[
A2

0cxcy − R1d1(B0cz + R2d2)
]

1 + [

A2
0

(
c2

y − c2
x

) + R2
1d2

1 − (
B0cz + R2d2

)2
]
2

+ 2[A0cxR1d1 + A0cy(B0cz + R2d2)]
3
} i
2

Ek(Ek + M )
. (45)

Although more complex than Eqs. (40)–(42), Eqs. (43)–(45)
are simpler than Eqs. (34)–(39), because the Ek(Ek + M )
factors are eliminated from the numerators.

An implication of Eqs. (40)–(45) is that we can rehy-
bridize four pairs of the Eu channels in Table IV to simplify
the discussions on the properties of those pairing channels.
Explicitly, the four pairs include {E (5)

u , E (6)
u }, {E (7)

u , E (8)
u },

{E (9)
u , E (10)

u }, and {E (11)
u , E (12)

u }. The eight new pairing combi-
nations are defined in Table VI. The expressions in the pseu-
dospin basis of the eight pairing channels in Table VI follow
directly from the definitions in Table IV and Eqs. (40)–(45),
and will not be written out explicitly. In shifting from Table IV
to Table VI, Eq. (22) is also changed in a straightforward
manner. For example, the pairing components corresponding
to E (5)

u and E (6)
u are changed to E (1p)

u and E (1m)
u by

6∑
α=5

�̃α

[
η̃1ψ̃

(α)
1 (k) + η̃2ψ̃

(α)
2 (k)

]

=
1m∑

α′=1p

�̃α′
[
η̃1ψ̃

(α′ )
1 (k) + η̃2ψ̃

(α′ )
2 (k)

]
, (46)

where the (η̃1, η̃2) vector does not change, �̃1p = (�̃5 +
�̃6)/2 and �̃1m = (�̃5 − �̃6)/2. Hereafter, we consider E (1)

u
to E (4)

u in Table IV and the eight pairings in Table VI as the 12
independent Eu pairing channels.

TABLE VI. Redefinitions of the basis functions for the eight
channels of the Eu representation in Table IV, from E (5)

u to E (12)
u .

E (n′ )
u ψ̃

(n′ )
1 (k) ψ̃

(n′ )
2 (k)

n′ = 1p ψ̃
(5)
1 (k) + ψ̃

(6)
1 (k) ψ̃

(5)
2 (k) + ψ̃

(6)
2 (k)

n′ = 1m ψ̃
(5)
1 (k) − ψ̃

(6)
1 (k) ψ̃

(5)
2 (k) − ψ̃

(6)
2 (k)

n′ = 2p ψ̃
(7)
1 (k) + ψ̃

(8)
1 (k) ψ̃

(7)
2 (k) + ψ̃

(8)
2 (k)

n′ = 2m ψ̃
(7)
1 (k) − ψ̃

(8)
1 (k) ψ̃

(7)
2 (k) − ψ̃

(8)
2 (k)

n′ = 3p ψ̃
(9)
1 (k) + ψ̃

(10)
1 (k) ψ̃

(9)
2 (k) + ψ̃

(10)
2 (k)

n′ = 3m ψ̃
(9)
1 (k) − ψ̃

(10)
1 (k) ψ̃

(9)
2 (k) − ψ̃

(10)
2 (k)

n′ = 4p ψ̃
(11)
1 (k) + ψ̃

(12)
1 (k) ψ̃

(11)
2 (k) + ψ̃

(12)
2 (k)

n′ = 4m ψ̃
(11)
1 (k) − ψ̃

(12)
1 (k) ψ̃

(11)
2 (k) − ψ̃

(12)
2 (k)

Now we make an order-of-magnitude estimation over the
superconducting gap amplitudes of the various pairing chan-
nels in Tables IV and VI by taking advantage of the basis
transformations of the � matrices in Eqs. (30)–(45) and the
expansions of the symmetry factors in Eqs. (11)–(16). As we
have explained in the previous section, kxa and kya are all
very small for wave vectors on the Fermi surface. The pairing
amplitude of a pairing channel can be characterized in terms
of its power in ka =

√
k2

x + k2
y a. Also, as an approximation,

we may treat Ek = μ − ε(k) and Ek + M(k) as constants.
Under the above conditions, the gap of E (1)

u is in the order
of ka, and the gaps of E (2,3,4)

u are in the order of (ka)3. While
E (1p)

u and E (4p)
u open gaps in the order of ka, E (1m)

u and E (4m)
u

open gaps in the order of (ka)3. E (2p)
u and E (3p)

u also open gaps
in the order of (ka)3. The gaps opened by E (2m)

u and E (3m)
u are

of the order (ka)5. The dependence of the superconducting
gap amplitudes on the directions of the wave vectors on the
kxky plane can be read from the expansions in Eqs. (11)–(16).
Notice that if the Fermi surface is corrugated cylindrical, the
cz(k) factor undergoes drastic variations in scanning over the
Fermi surface and may dominate the variation of the pairing
amplitude [31]. The above analysis is then an estimate of the
bulk pairing magnitudes on the kz = 0 and kz = ±π planes
of the BZ. From the above analysis, E (1)

u , E (1p)
u , and E (4p)

u

are the most efficient in opening a large superconducting gap.
In contrast, the E (2m)

u and E (3m)
u channels are least effective

in producing a superconducting gap and are unlikely to be
the leading pairing channels. The remaining seven Eu pairing
channels have the intermediate ability in opening a bulk
superconducting gap. The above analyses are summarized in
Table VII.

The surface states on the natural xy surface of supercon-
ducting MxBi2Se3 may include the surface Andreev bound
states and the topological surface states. The surface Andreev
bound states are directly related to the superconducting order
parameter and exist (do not exist) if the superconducting
pairing wave function undergoes (does not undergo) a sign
reversal upon the reflection changing kz to −kz. By this rule, it
is easy to see that only five pairing channels do not support
surface Andreev bound states on the xy surface, including
E (3)

u , E (1p)
u , E (2p)

u , E (3p)
u , and E (4p)

u . The topological surface
states inherited from the normal state may or may not open
a gap at the Fermi level in the superconducting phase, de-
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TABLE VII. Order-of-magnitude estimations of the supercon-
ducting gaps for the Eu pairing channels defined in Tables IV and
VI on the kz = 0 slice of the Fermi surface. The first column is
the numbering of the various pairing channels. The second column
contains the order-of-magnitude estimations of the corresponding

pairing channel. k =
√

k2
x + k2

y is the magnitude of the wave vector

on the kz = 0 slice of the Fermi surface, and a = 4.14 Å is the
in-plane lattice parameter.

E (n)
u Order of magnitude of the pairing

n = 1 |A0 |
Ek

ka

n = 2 |A0 |
Ek

(ka)3

n = 3 |A0 |
Ek

(ka)3

n = 4 |A0 |
Ek

(ka)3

n = 1p Ek+M
Ek

ka

n = 1m
A2

0
Ek (Ek+M ) (ka)3

n = 2p Ek+M
Ek

(ka)3

n = 2m
A2

0
Ek (Ek+M ) (ka)5

n = 3p Ek+M
Ek

(ka)3

n = 3m
A2

0
Ek (Ek+M ) (ka)5

n = 4p Ek+M
Ek

ka

n = 4m
A2

0
Ek (Ek+M ) (ka)3

pending both on the nature of the bulk pairing and on the
nature of the topological surface states. A full list of the
pairings that open a gap in the topological surface states of
Bi2Se3 was constructed previously [40,62]. According to that
list, E (1)

u , E (2)
u , and E (4)

u cannot gap the topological surface
states. On the other hand, all the remaining pairings can at
least partially gap the topological surface states. For example,
ψ̃

(3)
1 can gap all the topological surface states at the Fermi

level, except for the crossing points between the topological
surface states at the Fermi level and the lines determined by
ϕ2(k) = 0.

To infer the qualitative behaviors of the electronic spin
susceptibility relevant to the Knight shift experiment, we
reformulate the pairing defined by Eq. (23) in the standard
expression as

�̃(k) = [d0(k)
0 + d(k) · �]i
2, (47)

where d0(k) is the pseudospin-singlet component of the pair-
ing, d(k) = [d1(k), d2(k), d3(k)] is a three-component vec-
tor for the pseudospin-triplet part of the pairing, and � =
(
1, 
2, 
3). From the above results, we have d(k) = (0, 0, 0)
for the even-parity Eg pairings and d0(k) = 0 for the odd-
parity Eu pairings. Note that Eqs. (24)–(45) have already
been written in the above standard form, from which the
corresponding expressions of d0(k) and d(k) can be read
directly. The superconducting gap for a wave vector k on
the Fermi surface is determined by the d0(k) function for the
Eg pairings as �g(k) = 2|d0(k)| or determined by the d(k)

vector for the Eu pairings as

�u(k) = 2
√

d(k) · d∗(k) ± id(k) × d∗(k). (48)

The d(k) vector of an Eu pairing is perpendicular to the
spin direction of the corresponding Cooper pair [64–67]. The
spin susceptibilities show distinct behaviors depending on
the relative orientation between the external magnetic field
H and the d(k) vector [15,49,64–67]: for H ⊥ d(k), the
spin susceptibility barely changes across the superconducting
transition temperature Tc; for H ‖ d(k), the spin susceptibility
decreases below Tc similar to a spin-singlet superconductor.
In this manner, we can understand the qualitative behaviors of
the electronic spin susceptibilities for the Eu pairing channels
in Tables IV and VI in terms of Eqs. (30)–(45). For simplicity
and without losing much rigor, we can first set R1 = R2 = 0
and work with the effective pairing in the simplified model.
It is easy to see that both of the two components of the E (1)

u
channel break the spin rotational symmetry in the xy plane
to twofold symmetry. It is also clear that both E (2)

u and E (3)
u

respect the spin rotational symmetry in the xy plane. For E (4)
u ,

while the two � matrices that are contained in each channel
break the spin rotational symmetry in the xy plane, the linear
combination restores this symmetry. E (1p)

u and E (1m)
u respect

the spin rotational symmetry in the xy plane. The two compo-
nents of E (2p)

u and E (3p)
u both break the threefold in-plane spin

rotational symmetry in the xy plane to twofold symmetry. The
two components of E (2m)

u and E (3m)
u only slightly break the

threefold in-plane spin rotational symmetry in the xy plane.
The components of E (4p)

u and E (4m)
u respect the spin rotational

symmetry in the xy plane.

IV. COMPARISON TO EXPERIMENTAL RESULTS

A. Survey of experimental consensuses

In this section, we first make a survey over the main
experimental consensuses on the three superconductors. Then
we combine the results in the previous section to infer the
most probable pairings for the three superconductors. To be
clear, we categorize the relevant experiments on the MxBi2Se3

(M is Cu, Sr, or Nd) superconductors into three broad classes,
which separately probe the bulk spectrum, the surface spec-
trum (along the natural xy surface parallel to the basal plane),
and the magnetic properties. Since both the bulk spectrum and
the surface spectrum influence the magnetic properties, this
division is by no means absolute.

For the bulk spectrum, both CuxBi2Se3 [12,68] and
SrxBi2Se3 [69] were reported to be fully gapped. However,
there is no solid consensus on the momentum dependence
of the band gap. For CuxBi2Se3, while a scanning tunnel-
ing microscopy (STM) experiment by Levy et al. gives a
tunneling spectrum consistent with isotropic s-wave pairing
[12], a later field-angle-dependent specific heat experiment
by Yonezawa et al. suggests an energy-gap structure with
salient twofold symmetry in the kxky plane [16]. In addi-
tion, the experiment of Yonezawa et al. seems to suggest
the possible existence of (approximate) point nodes in the
bulk spectrum of CuxBi2Se3 [16]. For SrxBi2Se3, an STM
experiment implies an anisotropic s-wave pairing [69]. Later,
an experiment shows with resistivity and Laue diffraction
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measurements that the energy-gap structure of SrxBi2Se3 also
has twofold symmetry in the kxky plane [17]. For NdxBi2Se3,
an experiment finds evidence for point nodes in its bulk
spectrum [70].

For the surface spectrum, the situation is rather confus-
ing for all three superconductors. While several early ex-
periments, in particular those based on point-contact spec-
troscopy, claim to have found evidence of surface Andreev
bound states for CuxBi2Se3 [7–9], later experiments denied
the existence of surface Andreev bound states [12,13]. Similar
confusion exists for SrxBi2Se3. An experiment infers the ex-
istence of surface states in SrxBi2Se3 through the Shubnikov–
de Haas oscillations [3]. However, an STM/scanning tun-
neling spectroscopy (STS) experiment does not report any
in-gap states [69]. For superconducting NdxBi2Se3, an angle-
resolved photoemission spectroscopy experiment shows that
the topological surface states in the normal state are preserved
in the superconducting state [6]. But it is unclear whether or
not the topological surface states are gapped at the Fermi level
and whether or not there are surface Andreev bound states on
the xy surface of superconducting NdxBi2Se3.

For the magnetic properties, NdxBi2Se3 was reported to
have spontaneous magnetization in the superconducting phase
[6], which seems to be related to the magnetism of the
Nd dopants. The CuxBi2Se3 and SrxBi2Se3 superconductors
are usually considered as nonmagnetic in the absence of
external magnetic fields [6]. On the other hand, for all three
superconductors, there are magnetism-related experiments in-
dicating that the threefold rotational symmetry in the normal
phase is broken down to twofold rotational symmetry in
the superconducting phase. The Knight shift experiment by
Matano et al. shows that the electronic spin susceptibilities
of CuxBi2Se3 is twofold symmetric in the basal plane and
is invariant for an out-of-plane magnetic field [15]. Another
magnetic measurement is the upper critical field Bc2. By
varying the direction of the magnetic field in the basal plane of
the superconductors, a twofold symmetry in the upper critical
field is observed for CuxBi2Se3 [16], SrxBi2Se3 [18], and also
for NdxBi2Se3 [21]. For NdxBi2Se3, the twofold rotational
symmetry in the basal plane is also confirmed in a torque
magnetometry measurement [20].

B. Promising two-component pairings inferred from
comparison with experiments

In light of the above survey, the most well-established
experimental feature is the twofold rotational symmetry in
the basal plane for all three superconductors. This twofold
symmetry has two incarnations: (1) in the electronic spin
susceptibility and (2) in the momentum dependence of the
superconducting gap amplitude. As we explain below, these
two aspects of the twofold symmetry are independent of each
other.

The nematic combination of two components of E (1)
u is the

most well-known candidate for the twofold symmetry in the
electronic spin susceptibility [15,19,22]. E (2p)

u and E (3p)
u can

also lead to twofold symmetry in the spin susceptibility in the
xy plane. Because for E (2p)

u and E (3p)
u the d(k) vectors in the

pseudospin basis do not have the third component, as shown in
Eqs. (41) and (42), the corresponding spin susceptibility will

stay invariant for an out-of-plane magnetic field. On the other
hand, the d(k) vectors for the two E (1)

u pairing components,
as shown in Eqs. (30) and (31), have finite third components.
The spin susceptibility for a pairing in the E (1)

u channel should
therefore decrease slightly for an out-of-plane magnetic field
[49]. In this respect, E (2p)

u and E (3p)
u fit the Knight shift

experiment better than the E (1)
u pairing [15].

The twofold symmetry in the k dependence of the super-
conducting gap amplitudes could be explained by the nematic
realization of E (1)

u or E (3)
g . E (2m)

u and E (3m)
u also result in

twofold symmetry in the kxky plane. But the (ka)5 depen-
dence of their pairing amplitude implies that they are unlikely
the leading pairing instability. The remaining channels in
Tables III and Table IV do not give clear twofold symmetry
in the superconducting gap amplitude in the kxky plane to
account for the experiments. Therefore, with regard to the
twofold symmetry in the basal plane, the E (1)

u channel is
the only channel that naturally accounts for both of the two
aspects of the twofold rotational symmetry. On the other hand,
each incarnation of the twofold symmetry has alternative
realizations other than E (1)

u .
Now we consider further constraints imposed by the bulk

spectra of the superconducting state. For both CuxBi2Se3

[12,68] and SrxBi2Se3 [69], the bulk spectra were reported
to be fully gapped, without true or approximate nodes in the
bulk spectrum. However, the recent experiment of Yonezawa
et al. seems to imply the possible presence of true or ap-
proximate nodes in the bulk spectrum of superconducting
CuxBi2Se3 [16]. Here, we define an approximate node as a
very tiny energy gap in the bulk quasiparticle spectrum that
is easily overcome by the relevant experimental temperature
or smeared by scatterings due to nonmagnetic or magnetic
impurities (e.g., the Cu, Sr, or Nd dopants). In the light of
a previous work [31], the gap minima for the ψ̃

(1)
2 (k) pairing

component of E (1)
u is 2–3 orders of magnitude smaller than the

gap maxima. According to the experimental estimation, the
magnitude of the gap maxima is in the order of 1 meV [2]. The
gap minima of ψ̃

(1)
2 (k) would thus be in the range of 0.001–

0.01 meV. This tiny gap is easily smeared by a temperature of
0.1 K, which is small compared to the superconducting critical
temperature (usually above 3 K). Therefore, the approximate
nodes of ψ̃

(1)
2 (k) in a practical sense appear to be true nodes

in the quasiparticle spectrum [71,72]. The two components of
E (4p)

u individually open a full gap on the Fermi surface if we
have a corrugated cylindrical Fermi surface, with the size of
the gap scaling as ka for wave vectors on the Fermi surface.
For spheroidal Fermi surfaces, both of the two components
of E (4p)

u give two point nodes at kx = ky = 0. All the remain-
ing individual pairing components in Tables III, IV, and VI
[including ψ̃

(1)
1 (k) of E (1)

u ] give true nodes to the bulk spec-
trum, for both spheroidal and corrugated cylindrical Fermi
surfaces.

For several of the pairing channels other than E (4p)
u , we

can also get a fully gapped bulk spectrum by forming chiral
combinations of the two pairing components for suitable
Fermi surface topology. These channels include E (1,2,7)

g of

the Eg representation and E (2,3,1p)
u of the Eu representation.

When the Fermi surface is a corrugated cylinder, the chiral
combinations (e.g., η1 = 1 and η2 = i, or η̃1 = 1 and η̃2 = i)
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TABLE VIII. Single pairing channels which are separately com-
patible with one of the following four types of properties of the
superconducting state: (1) twofold symmetry of the electronic spin
susceptibility in the xy plane; (2) twofold symmetry of the pairing
amplitude in the xy plane; (3) a fully gapped bulk spectrum, in terms
of time-reversal symmetric combinations of the two components, and
for a corrugated cylindrical Fermi surface; (4) a fully gapped bulk
spectrum, in terms of chiral combinations of the two components
which break the time-reversal symmetry, and for a corrugated cylin-
drical Fermi surface. The first column is the numbering of the various
properties. The second column contains the pairing channels (sep-
arated by semicolons) that are compatible with the corresponding
property.

Property Compatible pairing channels

(1) E (1)
u ;E (2p)

u ;E (3p)
u

(2) E (3)
g ;E (1)

u ;E (2m)
u ;E (3m)

u

(3) E (4p)
u

(4) E (1)
g ;E (2)

g ;E (7)
g ;E (1)

u ;E (2)
u ;E (3)

u ;E (1p)
u

of the two components of E (1,2,7)
g or E (2,3,1p)

u all lead to a
fully gapped bulk quasiparticle spectrum. For a chiral and
nematic combination (e.g., η1 = 0.5 and η2 = i, or η̃1 = 0.5
and η̃2 = i) of the two components of E (1,2,7)

g or E (2,3,1p)
u , the

bulk quasiparticle spectrum is also fully gapped, if we have a
corrugated cylindrical Fermi surface. When the Fermi surface
is a spheroid, these chiral or chiral and nematic pairings have
two point nodes at the kx = ky = 0 points of the Fermi surface.
None of the above pairing channels, including E (1,2,7)

g and

E (2,3,1p,4p)
u , can account for the twofold symmetries observed

in the experiments.
The time-reversal symmetry breaking combinations of the

two components of E (1)
u have more complicated behaviors.

For a spheroidal Fermi surface, the purely chiral combinations
of the two components of E (1)

u have two point nodes at the
kx = ky = 0 points of the Fermi surface [24,26]. These point
nodes disappear both when we consider a chiral and nematic
combination of the two components, and when the Fermi
surface turns to a corrugated cylinder. On the other hand,
all these various time-reversal symmetry-breaking pairing
combinations within the E (1)

u channel support surface Andreev
bound states on the xy surface and keep the topological surface
states at the Fermi level ungapped.

Summing up the above discussions into Table VIII, it
is clear that for CuxBi2Se3 and SrxBi2Se3, there is not a
time-reversal symmetric pairing combination of a single pair-
ing channel that can simultaneously explain the twofold in-
plane symmetries and the fully gapped bulk spectrum. For
NdxBi2Se3, while the E (1)

u channel can explain the twofold
symmetry and bulk spectrum with (true or approximate) point
nodes, the complexity of the Fermi surface of this compound
complicates the comparison [43]. If the (true or approximate)
point nodes in superconducting CuxBi2Se3 implied by the
experiment of Yonezawa et al. [16] can be confirmed, then
E (1)

u is the ideal candidate for the pairing, and the remaining
task is to look for the theoretically predicted robust sur-
face Andreev bound states [31]. If, on the other hand, we

TABLE IX. Pairing combinations identified from the comparison
with the experiments. The first column lists the various combina-
tions. In each pairing combination, the numberings of the two major
pairing channels are indicated in the bracket of the superscript,
with the pairing amplitude of the first pairing channel much larger
than the pairing amplitude of the second pairing channel. Pairing
combinations with similar properties are listed in the same row
and are separated by semicolons. The second column specifies the
important properties of the corresponding pairing combination. The
properties are specified by the numbers defined in the caption of
Table VIII. The third column indicates the presence (Y) or absence
(N) of surface states on the xy surface of the superconductor. The
surface states include the surface Andreev bound states and the
topological surface states inherited from the normal phase. Note
that all pairing combinations are nematic. The combination is time-
reversal symmetric if it has property (3) and has broken time-reversal
symmetry (i.e., chiral) if it has property (4).

Pairing combinations Properties Surface states

E (1,3)
g ; E (2,3)

g ; E (7,3)
g (1);(2);(4) N

E (4p,1)
u (1);(2);(3) N

E (3,1)
u (1);(2);(4) N

E (2,1)
u (1);(2);(4) Y

E (1)
u (1);(2);(4) Y

consider the bulk spectrum of CuxBi2Se3 and SrxBi2Se3 as
fully gapped, then an implication of the above comparison
is that we have to consider more than one pairing channel.
In other words, the pairing has to be multichannel, in ad-
dition to having two components. Leaving alone the well-
studied E (1)

u pairings [19,31,32], in what follows we focus on
the superconductors with a fully gapped bulk spectrum and
explore various possible multichannel pairing combinations.
We will relax the constraint of time-reversal symmetry and
explore all the possible pairing combinations that give both the
twofold symmetry in the basal plane and the fully gapped bulk
quasiparticle spectrum. The obtained pairing combinations
are listed in Table IX, together with the chiral and nematic
pairing combination in the E (1)

u channel.
To get a fully gapped bulk spectrum with twofold sym-

metry in the superconducting gap amplitude, in terms of a
multichannel pairing in the Eg representation, the (η1, η2)
vector in Eq. (21) must be simultaneously chiral and nematic.
The chirality and nematicity of the pairing are separately re-
sponsible for the fully gapped bulk spectrum and the twofold
symmetry in the kxky plane. The full gap may be achieved by a
chiral combination of E (1)

g , or E (2)
g , or E (7)

g , under the premise
that the Fermi surface is a corrugated cylinder. Including a
finite contribution of E (3)

g , the nematicity of the pairing can
account for the twofold symmetry in the gap amplitude. The
fully gapped bulk spectrum requires the strength of the E (1)

g

(or E (2)
g , or E (7)

g ) channel to be larger than the strength of the
E (3)

g channel, namely, that �1 (or �2, or �7) is sufficiently
large compared to �3. In this case, the superconducting order
parameter (the wave function of the Cooper pairs) does not
undergo a sign reversal upon scattering off the xy surface,
implying the absence of surface Andreev bound states. In
addition, the chiral combination of the dominant E (1)

g (or E (2)
g ,
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or E (7)
g ) pairing component fully gaps the topological surface

states. Therefore, there are no low-energy in-gap states on
the xy surface for this chiral and nematic pairing in the Eg

representation.
If we further impose the constraint of twofold symmetry

in the electronic spin susceptibility [15], we have to consider
the Eu channels. A combination of E (1)

u (or E (2p)
u , or E (3p)

u )
and E (4p)

u is possible to give a purely nematic pairing that has
a fully gapped bulk spectrum, if �̃4p is large compared to �̃1

(or �̃2p, or �̃3p). Let us define (I) the combination of E (1)
u with

E (4p)
u , (II) the combination of E (2p)

u with E (4p)
u , and (III) the

combination of E (3p)
u with E (4p)

u . For the Knight shift experi-
ment, combinations II and III explain the invariant c-axis spin
susceptibility better than combination I. In addition, they can
also more naturally explain the absence of surface Andreev
bound states and the gapped topological surface states on
the xy surfaces of the superconductor. For these experimental
features, combinations II and III are better alternatives to
combination I. On the other hand, if we consider the twofold
symmetry in the superconducting gap amplitude, combination
I explains it naturally, whereas combinations II and III do
not lead to salient twofold symmetry in the gap amplitude.
Overall, to explain at least qualitatively the key experimen-
tal features of CuxBi2Se3 with a nematic and time-reversal
symmetric pairing, we have to consider a pairing consisting
mainly of E (1)

u and E (4p)
u , and possibly supplemented by E (2p)

u

and (or) E (3p)
u . Finally, following the same analysis as that

for the above chiral and nematic Eg pairing, there are no
low-energy in-gap states on the xy surface. Explicitly, because
�̃4p is assumed to be large compared to �̃1 (or �̃2p, or �̃3p),
the superconducting order parameter does not undergo sign
change upon the substitution of −kz for kz, so that there
are no surface Andreev bound states on the xy surface. In
addition, since �̃4p gaps the topological surface states at the
Fermi level, there are no topological surface states that may
contribute to the low-energy in-gap states.

For other Eu combinations, we again have to consider
a chiral and nematic combination to account for the fully
gapped bulk spectrum and the twofold in-plane rotational
symmetry at the same time, similar to the Eg case. If both the
superconducting gap amplitudes and the electronic spin sus-
ceptibilities are required to be twofold symmetric in the basal
plane, we can choose the chiral and nematic combinations
of E (1)

u with E (2,3)
u . If only the electronic spin susceptibilities

are required to be twofold symmetric, the chiral and nematic
combinations of E (2p,3p)

u with E (2,3)
u are eligible. Again, the

pairing amplitudes for E (2,3)
u , which give the fully gapped

bulk spectrum, should be larger than the pairing amplitudes
for E (1)

u . Because the dominant third component of the d(k)
vector for E (2)

u is proportional to B0cz + R2d2 	 B0cz, and
both E (1)

u and E (2)
u do not gap the topological surface states

at the Fermi level, the chiral and nematic combination of E (1)
u

and E (2)
u have surface Andreev bound states and ungapped

topological surface states on the xy surface. The chiral and
nematic combination of E (1)

u and E (3)
u , with the magnitude

of �̃3 much larger than the magnitude of �̃1 to ensure a
fully gapped bulk spectrum, does not have surface Andreev
bound states and ungapped topological surface states on the
xy surface.

C. More discussions on the properties of the identified
two-component pairings

A salient feature of the above multichannel pairings is the
ubiquity of the chiral and nematic pairing combinations in
both the Eg and the Eu representations. Besides the broken in-
plane rotational symmetry, the chiral character of the pairing
implies that it can show typical signatures in experiments such
as muon spin relaxation and optical Kerr effect, which probe
the broken time-reversal symmetry [73–75]. The chiral and
nematic Eu pairings are also nonunitary, which can be verified
by proving the nonvanishing of the vector product d(k) ×
d∗(k) �= 0 for general k [76,77]. Nonunitary pairings, as a
special case of pairings with broken time-reversal symmetry,
are known to have a spontaneous moment from the Cooper
pairs [76,77]. Also note that the chiral or chiral and nematic
pairing combinations of the two components of E (1)

u are all
nonunitary.

Another common character of the above pairing combi-
nations is the requirement of a corrugated cylindrical Fermi
surface to have a fully gapped bulk spectrum. The undoped
Bi2Se3 is known to have a spheroidal Fermi surface. As the
concentration of the dopants increases, it is natural to expect a
continuous evolution of the Fermi surface from spheroidal to
corrugated cylindrical. Alongside, the nodal structure of the
pairing may also change. While the experiment of Lahoud
et al. shows that the superconducting CuxBi2Se3 has a cor-
rugated cylindrical Fermi surface in the normal phase [44],
there are presently no systematic studies on the evolution of
the Fermi surface for any of the three superconductors.

It is also interesting to notice that several pairing chan-
nels in Tables III, IV, and VI exhibit prominent fourfold
rotational symmetry, including the E (1,2,7)

g channels of the
Eg representation and the E (2,3,4)

u channels of the Eu repre-
sentation, through the k dependence of the ϕ1(k) and ϕ2(k)
symmetry factors. The fourfold symmetry also breaks the
threefold rotational symmetry of the underlying crystal lattice
in the normal phase. Several of the chiral and nematic pairing
combinations proposed above contain these pairing channels.
They are therefore expected to exhibit some characteristics of
the fourfold symmetry. On the experimental side, a fourfold
symmetric component in the superconducting gap amplitude
was indeed observed by Du et al. for SrxBi2Se3 [69]. These
chiral and nematic pairings are, however, inconsistent with
the general belief that the superconducting state of SrxBi2Se3

preserves the time-reversal symmetry.
Finally, from previous theoretical studies [78–80], the

two-component pairings for electron-doped Bi2Se3 might be
robust against nonmagnetic impurities. It has been shown
that the large intrinsic spin-orbit coupling in this compound
protects the odd-parity pairings against nonmagnetic impuri-
ties [78–80]. The mechanism was illustrated for both single-
component [78,79] and two-component [80] odd-parity pair-
ings. Since for single-component pairings, the conventional
even-parity pairing is more robust than the odd-parity pairing
[78], it is reasonable to expect that the even-parity Eg pairings
are also robust against nonmagnetic impurities. It is highly
desirable to carry out explicit theoretical studies to clarify
the impact of impurities on the two-component pairings of
electron-doped Bi2Se3.
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V. IMPLICATIONS FOR FUTURE EXPERIMENTS

From the analysis of the previous section, the available
experiments have imposed stringent constraints on the true
pairing symmetries of the MxBi2Se3 (M is Cu, Sr, or Nd)
superconductors. These experiments, on the other hand, do not
provide sufficient and consistent information to unambigu-
ously identify the true pairing symmetry of these supercon-
ductors. In particular, for each of the three superconductors,
the parameter x defines a series of superconductors which
might have qualitatively different Fermi surface topology
in the normal state and different pairing symmetries in the
superconducting state. This doping dependence has not been
systematically investigated for any of the three superconduc-
tors, although the phase diagram of CuxBi2Se3 exists [81]. It is
therefore highly desirable to make a systematic experimental
study on each member of the series with a complementary set
of experimental tools.

Based on the survey over the experimental consensuses
and the comparison with the possible pairing channels, the
relevant properties and the experiments that may be performed
to probe them include the following: (1) The evolution of the
Fermi surface with the doping concentration x. The magnetic
oscillation experiments, including the Shubnikov–de Haas
oscillation and the de Haas–van Alphen effect, can probe the
Fermi surface contour in the normal phase [43,44,82]. From
the discussions of the above section, the geometry of the
Fermi surface significantly influences the bulk quasiparticle
spectrum of the superconducting state. It is highly desirable
to determine the systematic evolution of the Fermi surface as
the doping concentration x increases. In addition, the angle-
resolved photoemission spectroscopy (ARPES), which may
probe the continuous evolution of the topological surface
states with x [2,44,45], supplements the magnetic oscillation
experiment, which gives the bulk Fermi surface. (2) The
bulk quasiparticle spectrum of the superconducting state, fully
gapped or not. For each doping concentration that turns the
material to a superconductor, we may determine whether
the superconducting state is fully gapped or not by combin-
ing the STS measurements [12] and the measurements of
the zero-field bulk specific heat [68]. The STS experiment,
besides probing the bulk quasiparticle spectrum, probes also
the in-gap states on the surface of the superconductors [12,69].
The spin-lattice relaxation rates [83] and penetration depth
[70] can also be used to probe the nodal structures of the
bulk superconducting spectrum. (3) The momentum depen-
dence of the superconducting gap amplitude. This property on
one hand refines the understanding obtained from the above
step and on the other hand shows the presence or not of
the anisotropy in the superconducting gap amplitudes. The
relevant experiments include the field-angle-dependent spe-
cific heat experiments [16,72,84], the field-angle-dependent
upper critical magnetic field experiments [16,18,21], the field-
angle-dependent resistivity experiments [17], the field-angle-
dependent thermal conductivity experiments [71,72,85,86],
and the field-angle-dependent STS [87]. Besides the above
experiments for the magnitude of the superconducting gap,
the phase of the superconducting gap can be probed with the
orientation-dependent Josephson junctions [88]. (4) The elec-
tronic spin susceptibility, which is the most direct diagnostic

tool for the structure of the d vectors of the pseudospin-triplet
pairings. The major relevant experiment is the Knight shift
measurement [15]. (5) The persistence or not of the time-
reversal symmetry in the superconducting state. The time-
reversal symmetry breaking of the superconductors can be
probed by several techniques, such as the muon spin reso-
nance [73], optical Kerr effect [74,75], and the Josephson ef-
fect [67]. The zero-field Hall effect was also used by Qiu et al.
to probe the broken time-reversal symmetry in NdxBi2Se3 [6].
(6) The presence or not of spontaneous magnetization. The
above chiral and nematic Eu pairings are mostly nonunitary
and should lead to spontaneous magnetization. The experi-
ment of Qiu et al. reporting the spontaneous magnetization of
NdxBi2Se3 was based on the field-dependent dc magnetiza-
tion, which is a measurement of the global magnetization [6].
It is desirable to study the spontaneous magnetization with a
local measurement, such as the polarized neutron diffraction
experiments [67].

For each member of the three series of superconductors,
a systematic study of the above experiments should be able
to identify the genuine pairing symmetry. From the breadth
of the experimental tools involved, extensive experimental
collaborations by sharing the same high-quality samples are
highly desirable.

Besides the experiments listed above, other experiments
which may probe further implications of the candidate pair-
ings would also be of great potential interest. For example,
as a natural consequence of the two-component nature of
the pairing, the domain structure should exist in the super-
conducting state. Although most of the multichannel two-
component pairings inferred from the analysis of the previous
section do not support surface Andreev bound states on the
xy surface, all the Eu pairings should give Andreev bound
states as domain wall states for domain walls parallel to the
z axis, because the superconducting order parameters are odd
functions of kx and ky in the pseudospin basis. Evidence of
domains was reported in the experiment of Yonezawa et al.
[16]. However, it is unclear whether or not there are nontrivial
domain wall states. Further experiments like those performed
for Sr2RuO4 [89] and superfluid 3He-A [90] are highly de-
sirable. As another example, for nonunitary pairings in the
Eu representation, there should be collective modes associated
with the oscillation of the magnetization of the Cooper pairs
[76]. It would be interesting to detect this collective mode
via experiments like electron-spin resonance or ultrasound
attenuation [76].

VI. SUMMARY

Starting from a tight-binding model for the normal-state
electronic structures, we have constructed the full lists of
two-component pairings for MxBi2Se3 (M is Cu, Sr, or Nd).
We then transform the pairings to the pseudospin basis, based
on which we study their qualitative properties. In addition
to a well-known odd-parity pairing channel [i.e., E (1)

u ], we
have identified through comparison with existing experiments
several multichannel two-component pairings that can explain
more than one key experiment. Besides a time-reversal sym-
metric nematic pairing belonging to the Eu representation, we
identify chiral and nematic pairings in both the Eg and the Eu
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representations. However, for all three superconductors, the
existing experiments are insufficient to unambiguously deter-
mine the nature of the superconducting state. In particular,
the studies on the dependence of the Fermi surface and the
superconducting properties on the doping concentration x are
inadequate for all three superconductors. A complementary
set of experiments are suggested to identify unambiguously
the genuine pairing symmetries of the three superconducting
electron-doped Bi2Se3.
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