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Helical spin texture in a thin film of superfluid 3He
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We consider a thin film of superfluid 3He under conditions that stabilize the A phase. We show that in the
presence of a uniform superflow and an external magnetic field perpendicular to the film, the spin degrees of
freedom develop a nonuniform, helical texture. Our prediction is robust and relies solely on Galilei invariance
and other symmetries of 3He, which induce a coupling of the orbital and spin degrees of freedom. The length
scale of the helical order can be tuned by varying the velocity of the superflow and the magnetic field and may
be in reach of near-future experiments.

DOI: 10.1103/PhysRevB.99.214506

I. INTRODUCTION

The experimental discovery of superfluidity in 3He [1]
was a major breakthrough in low-temperature physics. The
unconventional pairing of fermions in this system provided
one of the first examples of topological quantum matter. The
intricate symmetry-breaking patterns realized in 3He give rise
to a number of unexpected phenomena which have kept both
theorists and experimentalists busy for nearly a half century
[2–4].

Recent advances in nanofabrication made it possible to
study superfluidity experimentally under well-controlled con-
ditions in 3He confined to two spatial dimensions [5,6]. Two-
dimensional confinement leads to a substantial modification
of the phase diagram of superfluid 3He. In particular, at
zero temperature it is the chiral A phase that is energetically
stabilized in a film with a thickness of the order of a few times
the superfluid coherence length ξ0 [7].

Motivated by these developments, we analyze in this paper
the low-energy spin physics in the A phase of quasi-two-
dimensional 3He at zero temperature. We use the effective
field theory approach, based solely on symmetry and the
low-energy degrees of freedom. Our main result is that the
presence of a uniform superflow and a magnetic field H �
30 G, perpendicular to the 3He film, induces a nonuniform,
planar helical texture (see Fig. 1) in the ground state of the
spin degrees of freedom. The pitch of the helical texture
depends, apart from the macroscopic superflow velocity and
the magnetic field, on a sole intrinsic observable: the phase
velocity of spin waves. The pitch can be tuned by varying
the former two macroscopic parameters, and within near-
future experiments with superfluid 3He films, it may reach the
centimeter range.

Owing to the rich structure of the order parameter, the
precise form of the ground state of superfluid 3He usually
depends on many factors, including geometrical constraints
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(boundary conditions), interaction with external fields, and,
last but not least, the weak dipole (spin-orbit) coupling be-
tween the spin and orbital degrees of freedom. This results in a
large number of possible textures in superfluid 3He, depending
on precise external conditions [2]. Thus, for instance, similar
helical textures were previously predicted in bulk 3He [8] and
in 3He confined to a nanotube [9]. Likewise, a periodic texture
was predicted for the A phase of 3He confined to a thin slab
[10]. The textures proposed in Refs. [8,10] depend crucially
on the presence of the dipole interaction.

The texture found in this paper is fundamentally different
in that it does not rely on the presence of the dipole interaction.
In contrast, it is a robust consequence of Galilei invariance
and other symmetries of 3He. The only assumptions we make,
which set constraints on possible experimental realization of
this novel texture, are (i) a slab geometry that stabilizes the A
phase and (ii) a magnetic field strong enough to rotate the spin
vector d̂ into the slab plane.

The paper starts in Sec. II with an overview of the essen-
tials of quasi-two-dimensional 3He, including its symmetries
and some basic order-of-magnitude estimates, relevant for its
experimental realization. In Sec. III, we then develop the low-
energy effective field theory of spin in the A phase, stressing
the role of Galilei invariance. This is followed by a detailed
derivation of the helical texture in the ground state in Sec. IV.
In Sec. V, we discuss the excitation spectrum above the helical
texture and its possible signatures through nuclear magnetic
resonance (NMR) spectroscopy. Some further technical de-
tails are relegated to two Appendixes.

II. QUASI-TWO-DIMENSIONAL 3He

Bulk 3He at zero temperature and low pressures features
the isotropic B phase. The ground state, however, changes
when 3He is confined to a narrow slab. Weak-coupling theory
predicts [11] that the A phase is stabilized for slab thickness
D � 9ξ0, being separated from the B phase by a stripe phase
at 9ξ0 � D � 13ξ0. While the question of the existence of the
stripe phase remains unresolved by experiment, the stability
of the A phase in narrow slabs has been confirmed [6,12].
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FIG. 1. Helical spin texture in a film of 3He A. The orbital vector
l̂ is forced by surface interactions to be perpendicular to the film.
The magnetic field H is chosen to point in the same direction. The
local, in-plane spin vector d̂ varies along the superflow velocity u but
remains uniform in the transverse direction.

Given that ξ0 ≈ 70 nm for pressures below ∼2 bars [5] and
that the dipole interaction becomes important only at length
scales above the order of 10 μm [4], the latter will play a
negligible role in our analysis.

The order parameter of the A phase of 3He has the structure

�ir ∝ d̂i(m̂r + in̂r ), (1)

where d̂ is a unit vector in the spin space and m̂, n̂ are two
orthogonal unit vectors in the orbital space. The three degrees
of freedom contained in m̂, n̂ can be encoded in a single
vector, l̂ ≡ m̂ × n̂, and an overall complex phase θ . Boundary
effects induce an aligning force on l̂ that tries to orient it
perpendicularly to the surface. In the quasi-two-dimensional
regime of 3He confined to a narrow slab, the l̂ vector will
be completely oriented to the direction normal to the slab,
and the only active orbital degree of freedom will thus be
the superfluid phase θ . The total of three degrees of freedom,
contained in d̂ and θ , corresponds to the symmetry-breaking
pattern in the A phase in two spatial dimensions [2],

SU(2)S × SO(2)L × U(1)φ → U(1)S × U(1)φ−L, (2)

where S and L refer, respectively, to spin and orbital symme-
tries and U(1)φ stands for the particle number symmetry.

The dipole interaction breaks the independent spin and
orbital symmetries down to the diagonal SO(2)L+S subgroup.
In the absence of other symmetry-breaking perturbations, it
aligns the d̂ vector (anti)parallel to l̂ . To overcome this weak
aligning force and make the spin vector d̂ oriented in the
slab plane, we assume the presence of a magnetic field H ,
perpendicular to the slab. The desired orientation of the d̂
vector will be achieved provided H is stronger than the char-
acteristic field of the dipole interaction, Hd ≈ 30 G [2]. On
the other hand, the magnetic field should not be too strong so
as not to distort significantly the order parameter. Taking the
temperature scale of the order parameter as T� ∼ 1 mK, we
can estimate the corresponding critical angular frequency as
kBT�/h̄ ∼ 100 MHz. Current experiments typically operate
at Larmor frequencies of spin precession fL = ωL/(2π ) ∼

1 MHz, corresponding to magnetic field H ≈ 300 G [5]. This
satisfies, with a good margin, both bounds.

Finally, recall that the superfluid becomes unstable when
the superflow velocity u exceeds the Landau critical velocity.
For the A phase of 3He, this is of the order of ucr ≈ 5 cm/s [4].
The superflow velocity in actual experiments on 3He films is
typically much lower, in the submillimeter per second range
[13].

III. LOW-ENERGY EFFECTIVE THEORY

The dynamics of the A phase of quasi-two-dimensional
3He at low energies is dominated by the soft degrees of
freedom corresponding to the symmetry-breaking pattern (2),
that is, the variables d̂ and θ . In this paper, we assume that
the superflow, defined by its velocity u = ∇θ/m, constitutes a
fixed background for the dynamics of the spin vector d̂. This
is a reasonable assumption for u � ucr and can be justified
formally using the power counting of the low-energy effective
theory [14]. With this assumption, the low-energy dynamics
of the order parameter d̂ can be fully captured by an effective
theory for d̂ alone.

The effective theory must respect all the symmetries of the
microscopic interactions among 3He atoms. The space-time
symmetries include space and time translations, Galilei in-
variance, spatial rotation invariance SO(2)L, two-dimensional
parity P (under which x ↔ y), and time reversal T . The in-
ternal symmetries include the spin rotation invariance SU(2)S

and the particle number symmetry U(1)φ .
Under an infinitesimal boost, x′ = x + vt , the superfluid

phase θ shifts as θ ′(x′) = θ (x) + mv · x. Galilei invariance
then requires that time derivatives of other, boost-invariant
fields enter the action only through the “material derivative,”
∂̃t ≡ ∂t + u · ∇. To the leading order in the derivative expan-
sion, the effective spin Lagrangian density then reads [15]

L = 1

2
(Dt d̂ + urDr d̂ )2 − c2

s

2
(Dr d̂ )2 + Ldip. (3)

Here cs is the phase velocity of spin waves in the absence of
background fields. The covariant derivative of the d̂ vector is
defined by

Dμd̂ ≡ ∂μd̂ + Aμ × d̂, (4)

where Aμ is the gauge field of the SU(2)S group. In the
presence of a magnetic field H and no other external fields,
it reads Aμ = δμtγ H [16], where γ ≈ −20 379 (G s)−1 is
the gyromagnetic ratio of the 3He nucleus [17]. Finally, the
symmetry-breaking perturbation Ldip represents the dipole
interaction,

Ldip = 1
2�2

L(l̂ · d̂ )2, (5)

where �L is the so-called Leggett frequency, corresponding to
the dipole field Hd. We stress that the coupling to the magnetic
field, defined by Eq. (4), is not a perturbation in the same
sense as the dipole coupling. Namely, it is completely fixed by
the SU(2)S invariance and involves no new, a priori arbitrary,
parameters.

In two spatial dimensions, the term εrsd̂ · (Dr d̂ × Dsd̂ ) is
also consistent with the continuous symmetries of the system.
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This term is, however, prohibited by the discrete parity and
time-reversal symmetries.

Our construction above is completely general and relies
only on the symmetries of the system. Given a microscopic
model of a thin film of 3He, one can alternatively derive
the effective Lagrangian (3) by integrating out the fermionic
degrees of freedom. Such an approach allows one to fix the
spin-wave velocity in terms of the parameters of the micro-
scopic model. To complement our general construction pre-
sented here, we perform this calculation for the Bogoliubov–
de Gennes mean-field theory in Appendix A.

IV. GROUND-STATE TEXTURE

We are now interested in the ground state of the system
in the presence of a uniform background superflow and an
external magnetic field perpendicular to the film (see Fig. 1).
To that end, we first compute the canonical Hamiltonian
density, H = ∂t d̂ · ∂L /∂ (∂t d̂ ) − L ,

H = 1

2
(∂t d̂ )2 − 1

2
(γ H × d̂ + ur∂r d̂ )2

+ c2
s

2
(∂r d̂ )2 − 1

2
�2

L(l̂ · d̂ )2. (6)

Given the way the temporal derivatives enter the Hamiltonian,
the ground state will obviously be time independent. The
Hamiltonian for static field configurations can then be cast as

H = −γ 2

2
(H × d̂ )2 − 1

2
�2

L(l̂ · d̂ )2

− γ u∂xd̂ · (H × d̂ ) + c2
eff

2
(∂xd̂ )2 + c2

s

2
(∂yd̂ )2, (7)

where, without loss of generality, we chose the x axis along
the superflow. We also defined c2

eff ≡ c2
s − u2. Note that in

practice, the Landau critical velocity ucr is much smaller than
the spin-wave velocity cs; hence, the coefficient c2

eff is always
positive and approximately equal to c2

s . Next, we combine the
terms containing ∂xd̂ and rewrite (H × d̂ )2 = H2 − (H · d̂ )2,
which leads to

H = H0 + γ 2

2

(
1 + u2

c2
eff

)
(H · d̂ )2 − 1

2
�2

L(l̂ · d̂ )2

+ c2
eff

2

(
∂xd̂ − γ u

c2
eff

H × d̂
)2

+ c2
s

2
(∂yd̂ )2, (8)

where H0 ≡ − γ 2

2 (1 + u2

c2
eff

)H2. This makes it clear that for

H ‖ l̂ and H > Hd, or, equivalently, |γ |H > �L, the follow-
ing conditions must be satisfied in the state of lowest energy:

H · d̂ = 0, ∂xd̂ = γ u

c2
eff

H × d̂, ∂yd̂ = 0. (9)

The unique solution up to an overall spin rotation is given by
in-plane Larmor precession of the d̂ vector with the coordinate
x along the superflow playing the role of time (see Fig. 1).

The pitch of the helical texture follows from Eq. (9) and
can be expressed in terms of easily measurable quantities as

λ = 1

fL

c2
s − u2

u
= 2π

|γ |H
c2

s − u2

u
. (10)

Assuming that u � cs and approximating the spin-wave ve-
locity by cs ≈ 20 m/s [18], we get a numerical estimate for
the pitch in terms of the tunable parameters fL, or H , and u,

λ ≈ 40 cm ×
(

fL

MHz

u

mm/s

)−1

≈ 120 m ×
(

H

G

u

mm/s

)−1

.

(11)

Taking fL ≈ 1 MHz and u ≈ 1 mm/s as typical for current ex-
periments [see the discussion below Eq. (2)] gives λ ≈ 40 cm.
Since the size of the experimental cell in current experiments
lies in the centimeter range [5], either fL or u (or both) has to
be increased moderately for the helical texture to be directly
observable. The latter might be achieved by using a different
geometry, either by studying a thin layer of 3He under rotation
or by using oscillating superflow [19]. Even if the whole pitch
turns out to be too long, it should still be possible to observe
the effect through chirality of spin-spin correlations.

Let us now mention some theoretical aspects of the discov-
ered helical texture. First of all, the derivation of the ground
state was carried out in a fixed reference frame attached to the
slab confining the 3He sample; the parameter u measures the
velocity of the superflow with respect to the slab. The same
result can, however, be obtained in any other reference frame
due to Galilei invariance; see Appendix B for details.

Second, the generation of dissipationless spin currents has
been of great theoretical as well as practical interest lately
(see, e.g., Ref. [20]), and the structure of the helical ground
state might suggest that it carries such a current. The Noether
current of the SU(2)S spin symmetry reads

jμ = d̂ × ∂L

∂ (∂μd̂ )
, (12)

and for the spin texture Eq. (9) has only a temporal com-
ponent, γ Hc2

s /c2
eff. The spin current is therefore zero in the

reference frame used here, but due to the nonzero spin density,
it will be nonzero in any other inertial reference frame (see
Appendix B).

Third, previous theoretical work [21] discovered that the
effective theory of spin in a superfluid 3He A film contains a
topological Hopf term, responsible for the quantum statistics
of skyrmions and quantized spin Hall effect. The Hopf term is
defined by the Lagrangian

LHopf = 1

32π2

∫
d2x dt εμνλAμFνλ, (13)

where Fμν ≡ ∂μAν − ∂νAμ ≡ d̂ · (∂μd̂ × ∂ν d̂ ) is an auxil-
iary composite gauge field. The Hopf term was not included
in our effective theory, being formally of higher order in the
derivative expansion. Moreover, our helical texture varies in
only one spatial direction; hence, it carries a zero skyrmion
number, and the Hopf term accordingly vanishes.

Fourth, the ground state can be found using the Hamil-
tonian (8) also for orientations of the magnetic field other
than perpendicular to the slab. In the ideal limit of exact
spin symmetry, �L → 0, the ground state will correspond
to an analogous helical texture featuring precession of the d̂
vector around the H vector. A nonzero dipole coupling will,
in general, lead to a distortion of the helix when H ∦ l̂ .

214506-3



TOMÁŠ BRAUNER AND SERGEJ MOROZ PHYSICAL REVIEW B 99, 214506 (2019)

Finally, note that the helical texture can also be derived
using Ginzburg-Landau theory, which is based on power ex-
pansion in both the order parameter and its derivatives. To that
end one can use the energy functional for superfluid 3He in the
presence of an external magnetic field, derived in Ref. [22].
Note, however, that the Ginzburg-Landau framework is reli-
able only close to the critical temperature for the superfluid
phase transition. In contrast, our effective field theory setup is
designed to work at zero temperature and is organized as an
expansion in derivatives of the order parameter fluctuations.

V. EXCITATION SPECTRUM

The basic tool for identification of nonuniform textures in
3He is NMR spectroscopy [23]. To understand possible NMR
signatures of our helical texture, we need to determine the
excitation spectrum. To that end, we write the d̂ vector in the
ground state as

〈d̂1〉 = cos αx, 〈d̂2〉 = sin αx, 〈d̂3〉 = 0, (14)

where α ≡ γ uH/c2
eff. Next, we introduce the “comoving” spin

variable d̂
′
through

d̂(r) =
⎛
⎝cos αx − sin αx 0

sin αx cos αx 0
0 0 1

⎞
⎠d̂

′
(r), (15)

in which the ground state is trivial, 〈d̂ ′〉 = (1, 0, 0). Upon this
redefinition, the Lagrangian (3) becomes, up to a constant,

L = 1

2
(∂t d̂

′ + u∂xd̂
′
)2 − 1

2
c2

s (∂r d̂
′
)2

+ γ H

(
1 + u2

c2
eff

)
(d̂ ′

1∂t d̂
′
2 − d̂ ′

2∂t d̂
′
1)

− 1

2

[
γ 2H2

(
1 + u2

c2
eff

)
− �2

L

]
d̂ ′2

3 . (16)

Since the ground state is oriented in the d̂ ′
1 direction, the spec-

trum is determined by the part of the Lagrangian bilinear in
d̂ ′

2,3. The dispersion relations of the two modes, corresponding
to d̂ ′

2,3, can be read off from the first and third lines of Eq. (16),

ω2,3(k) = ukx +
√

c2
s k2 + μ2

2,3, (17)

where

μ2 = 0, μ3 =
√

γ 2H2

(
1 + u2

c2
eff

)
− �2

L. (18)

Note that d̂ ′
2 remains gapless in spite of the presence of the

external magnetic field and the dipole coupling. This reflects
the exact U(1)S symmetry corresponding to in-plane spin
rotations, which is spontaneously broken in the ground state.

In the theory of NMR response due to Leggett [2,23], the
resonance frequencies are obtained by solving the equations
of motion for the d̂ vector and the operator of total spin. At
zero temperature, where our effective theory setup applies, the
equation of motion for spin is a consequence of that for the d̂
vector, however.

The frequency of collective spin oscillations, probed by
NMR with a uniform magnetic field, corresponds to the spin-
wave dispersion relation (17) at k = 0 and is given by μ2,3.
The tiny u-dependent shift of the resonance frequency of the
d̂ ′

3 mode can, in principle, be used as evidence for our helical
texture. The relative shift of the frequency is essentially
independent of the magnetic field and for superflow in the
millimeter per second range is of the order of u2/(2c2

eff ) ∼
10−9, which is at the frontier of resolution in current NMR
experiments.

VI. CONCLUSIONS

Galilei invariance is known to impose powerful constraints
on effective theories of nonrelativistic superfluids [14,24]. In
this paper we argued that in the case of a thin film of 3He A,
it inevitably leads to a coupling between superflow and spin
degrees of freedom, an effect that could easily be overlooked
by considering only the orbital and spin symmetries and
their spontaneous breaking. Based on this observation, we
predicted that the ground state of a superfluid film of 3He A in
the presence of a uniform superflow and an external magnetic
field perpendicular to the film features a nonuniform, helical
texture. The helix pitch depends only on the phase velocity of
spin waves, the superflow velocity, and the magnetic field and
can be tuned by varying the latter two.

In order to gain a better grasp of the phenomenological
implications of our prediction, it would be desirable to study
the effects of nonzero temperature. On the one hand, this
would help to clarify in what temperature range the helical
texture represents the equilibrium state of a thin film of
superfluid 3He A. By the same token, it would be important to
understand the role of thermal fluctuations in the equilibrium
state.

In view of experimental prospects for detection of the pre-
dicted texture, it would likewise be interesting to extend our
study of spin physics of two-dimensional 3He A superflow to
other geometries, including rotating and oscillating superflow
under external magnetic field.

Finally, given the model-independent nature of the effec-
tive theory used here, it would be interesting to search for
other systems where the combination of uniform external
fields and Galilei invariance might lead to a nonuniform
ground state.
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APPENDIX A: MICROSCOPIC DERIVATION
OF EFFECTIVE ACTION

Here the effective theory for the spin and superfluid
degrees of freedom will be derived from a microscopic
fermionic model. To that end, we will first specify the
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microscopic theory and make sure that it has the desired
symmetries. Subsequently, we will integrate out the fermionic
degrees of freedom to obtain the effective action. For simplic-
ity, the dipole interaction will be neglected here.

1. Symmetries of 3He

Both the low-energy effective theory and any microscopic
model must respect the actual symmetries of 3He. In the three-
dimensional bulk and in the absence of the dipole interaction,
the total continuous global symmetry group of 3He is

G = SU(2)S × SO(3)L × U(1)φ, (A1)

together with space and time translations and Galilei boosts.
Here SU(2)S corresponds to spin rotations, SO(3)L corre-
sponds to spatial (orbital) rotations, and U(1)φ corresponds
to the conservation of the number of helium atoms (particle
number). The order parameter of the A phase as given in
Eq. (1) breaks the symmetry group G spontaneously down to

H = U(1)S × U(1)φ−L. (A2)

The spin rotation group is broken into its U(1)S subgroup by
the d̂ vector. The residual U(1)φ−L subgroup reflects the fact
that the complex orbital vector m̂ + in̂ is left invariant by a
combination of a spatial rotation and a phase redefinition.

In the quasi-two-dimensional setup considered here, the
rotation group SO(3)L is reduced to the SO(2)L group of
in-plane rotations. In the thin layer of 3He in the A phase, the
orbital l̂ vector is aligned by boundary effects perpendicular
to the slab. As a consequence, the vectors m̂ and n̂ lie in the
slab plane, and the residual U(1)φ−L symmetry is maintained.
The low-energy degrees of freedom of the A phase of quasi-
two-dimensional 3He therefore follow from the symmetry-
breaking pattern

SU(2)S × SO(2)L × U(1)φ → U(1)S × U(1)φ−L. (A3)

2. Microscopic action

We shall now consider an idealized theory of strictly two-
dimensional 3He where the fermionic degrees of freedom are
fully gapped in the A phase. Without specifying a concrete
microscopic interaction, we assume that the theory has been
semibosonized. This leads to a Bogoliubov–de Gennes–type
theory that describes noninteracting fermions propagating on
a background of collective pair fields. Following closely the
notation introduced by Stone and Roy [21], we write the
Euclidean Lagrangian of this microscopic mean-field theory
as

L = 1

2
�†(∂τ + Ĥ )�, Ĥ ≡

(
ĥ �̂

�̂† −ĥT

)
, (A4)

where � ≡ (ψα ψ∗
α )T is the Nambu spinor, with α = ↑,↓.

In addition,

ĥ ≡ − 1

2m
(∇ − iA − iB)2 − (A0 + B0) (A5)

is the one-particle Hamiltonian. It will turn out to be con-
venient to couple the microscopic fermionic theory to a set
of background gauge fields for its internal symmetries. Thus,

Aμ is the matrix-valued gauge field of the spin SU(2)S group,
whereas Bμ is the gauge field of the U(1)φ symmetry.

The physical content of Eq. (A4) can be highlighted by dis-
posing of the Nambu notation and rewriting the Lagrangian,
up to a surface term, as

L = ψ†(∂τ + ĥ)ψ + 1
2 (ψ†�̂ψ∗ + H.c.). (A6)

The pairing field �̂ must be antisymmetric as a consequence
of the Pauli principle and can be cast as

�̂ = �

2kF
(P̂�̂ei� − ei��̂P̂T ), (A7)

where

�̂ ≡ i(d̂ · σ )σ2,

P̂ ≡ −i(Dx + iDy). (A8)

Here kF is the Fermi momentum, � is the gap parameter, σ is
the vector of Pauli matrices, and the covariant derivatives with
spatial and temporal indices are defined as

D ≡ ∇ − i(A + B) ≡ ∇ − iA,

Dτ ≡ ∂τ − (A0 + B0) ≡ ∂τ − A0. (A9)

Finally, we used the shorthand notation � ≡ 2
h̄θ for the collec-

tive field of the spontaneously broken U(1)φ symmetry. Note
that our expression for �̂ differs somewhat from that of Stone
and Roy [21]. The form (A7) is necessary for maintaining
the full gauge symmetry, as long as we wish to write the
Lagrangian in terms of simple, covariant building blocks.

Let us now give explicit expressions for the symmetries of
the Lagrangian. We will denote by U a generic element of
the SU(2)S × U(1)φ gauge group. It can be decomposed as
U = U1U2 = U2U1, using the natural notation for U1 ∈ U(1)φ
and U2 ∈ SU(2)S. The transformation rules for the fermions
and the gauge field Aμ then read

ψ → Uψ,

A → UAU −1 + iU∇U −1,

A0 → UA0U
−1 − U∂τU −1. (A10)

The second and third lines summarize the usual transforma-
tion rule for a non-Abelian gauge field, modified owing to the
fact that we work in Euclidean space. The transformation rules
for the collective fields d̂ and � read accordingly

d̂ · σ → U2(d̂ · σ )U −1
2 ,

ei� → U1ei�U1 = U 2
1 ei� = ei�U 2

1 . (A11)

The first line above implies

�̂ → U2�̂U T
2 . (A12)

Since the covariant derivatives transform by construction co-
variantly, P̂ → UP̂U −1, one finds in the end that

�̂ → U �̂U T . (A13)

Based on Eqs. (A10), (A11), and (A13), we can conclude
that the Lagrangian (A4) is gauge invariant under transforma-
tions from the SU(2)S × U(1)φ group, as it should be.
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3. Effective action

By integrating out the fermions, we arrive at the effective
action, given in Euclidean space by

Seff = − 1
2 Tr ln(∂τ + Ĥ ) ≡ − 1

2 Tr ln D−1. (A14)

This action is a functional of �, d̂, and Aμ and inherits
the gauge invariance of the microscopic action under a si-
multaneous gauge transformation of these fields. There is no
anomaly involved in integrating out the fermions since the
symmetry transformation of the fermion field � is realized
by a unitary similarity transformation of the Bogoliubov–de
Gennes (BdG) operator ∂τ + Ĥ and thus does not affect its
spectrum.

At this intermediate stage, it is convenient to use the gauge
invariance of the effective action to remove the collective
scalar fields. The variable d̂ transforms in the vector, or
adjoint, representation of SU(2)S and can be rotated to any
fixed direction by a local SU(2)S transformation. In other
words, there is a unitary matrix V such that

d̂ · σ = V σ2V
−1, �̂ = iVV T . (A15)

From Eqs. (A11) and (A12), we can see that both � and d̂ can
then be absorbed into a redefinition of the gauge field Aμ by
choosing

U1 = e−i�/2, U2 = V −1. (A16)

The effective action now depends solely on the composite
gauge field, defined by Eq. (A10) with the above choice for
U1,2. In the following, this composite gauge field will be
denoted by the same symbol Aμ. Only at the very end of this
section will we restore the dependence of the action on the
spin vector d̂ and the phase �.

To evaluate the effective action, we adopt a derivative
expansion scheme. Since we are interested in the dynamics
of small fluctuations of the spin degrees of freedom, we shall
count each derivative of d̂ as order 1. At the same time, we al-
low for a finite uniform velocity of the superflow background.
Hence, one derivative acting on � will count as order 0, and
every other derivative acting on the same field as will count as
order 1. As a consequence, the fields Aμ and Bμ are of order
1 and 0, respectively. We shall evaluate the effective action
(A14) to the leading order in both fields, which means order
2 for Aμ and order 0 for Bμ. In this approximation, we can
treat Aμ as a constant fixed background. We need to expand
to second order in Aμ, whereas Bμ has to be resummed to all
orders.

To facilitate the Taylor expansion in the non-Abelian gauge
field Aμ, it is suitable to split the BdG operator into parts of
order 0, 1, and 2 in Aμ, D−1 = D−1

0 + D−1
1 + D−1

2 . Upon
Fourier transforming to frequency ω and momentum p,

D−1
0 =

(
iω + π2

2m − B0
i�p+

kF

− i�p−
kF

iω − π̃2

2m + B0

)
,

D−1
1 =

( − 1
m π · A − A0

i�
2kF

(−A+ + AT
+),

− i�
2kF

(−A− + AT
−) − 1

m π̃ · AT + AT
0

)
,

D−1
2 =

(
A2

2m 0

0 − (AT )2

2m

)
, (A17)

where we introduced the notation π ≡ p − B, π̃ ≡ p + B,
p± ≡ px ± ipy, with similar notation for other quantities. The
zeroth-, first-, and second-order pieces of the action in the
expansion in the SU(2)S gauge field now read

−Seff = 1
2 Tr ln D−1

0 + 1
2 Tr

(
D0D

−1
1

)
+ 1

4 Tr
(
2D0D

−1
2 − D0D

−1
1 D0D

−1
1

) + · · · .

(A18)

The propagator D0 is obtained by inverting the BdG operator
D−1

0 and in momentum space takes the form

D0 = 1

det

(
iω − π̃2

2m + B0 − i�p+
kF

+ i�p−
kF

iω + π2

2m − B0

)
,

det ≡ −
(

ω + ip · B
m

)2

−
(

p2 + B2

2m
− B0

)2

− �2 p2

k2
F

.

(A19)

As a consistency check, note that the last expression implies
that for B = 0 and B0 = μ, the well-known spectrum of
fermion excitations in the mean-field approximation follows

E (p) =
√(

p2

2m
− μ

)2

+ �2 p2

k2
F

. (A20)

The leading-order, pure superfluid part of the effective ac-
tion is given by the first term in Eq. (A18). The corresponding
effective Lagrangian reads

L LO
eff = −

∫
dω d2 p
(2π )3

ln

[
ω2 +

(
p2 + B2

2m
− B0

)2

+ �2 p2

k2
F

]
, (A21)

and upon frequency integration,

L LO
eff = −

∫
d2 p

(2π )2

√(
p2 + B2

2m
− B0

)2

+ �2 p2

k2
F

. (A22)

The effective Lagrangian is a (nonlinear) function of the combination B2

2m − B0, as dictated by Galilei invariance.
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The next-to-leading order of the effective action is given by the term quadratic in the SU(2)S gauge field Aμ. A straightforward,
if slightly tedious, manipulation leads to the following expression:

L NLO
eff = 1

4

∫
dω d2 p
(2π )3

{
2

det

β

m
〈A · A〉 + 1

det2

[
2(α2 + β2)

〈(
p · A

m

)2

+
(

A0 − B · A
m

)2〉
+ 8�2

k2
F

β

m
〈(p · A2)2〉

+ 2�2

k2
F

(α2 − β2)〈A2 · A2〉 + 2γ 2

〈
(p · A)(p · A)T

m2
−

(
A0 − B · A

m

)(
A0 − B · A

m

)T 〉]}
, (A23)

where the brackets 〈·〉 indicate a trace over the spin space and
we introduced the shorthand notation

α ≡ iω − p · B
m

, β ≡ p2 + B2

2m
− B0, γ ≡ �|p|

kF
.

(A24)

In Eq. (A23), A denotes the spatial part of the matrix-valued
gauge field Aμ, whereas A2 corresponds to its second spin
component, i.e., is also a matrix. This notation makes the re-
sult independent of the choice of normalization of the SU(2)S

generators.
The frequency integration can easily be carried out ana-

lytically. The momentum integration is, however, potentially
ultraviolet divergent and thus requires regularization. Here we
will use dimensional regularization, modifying the integration
region into a Euclidean space of dimension d ≡ 2 − 2ε. Upon
some manipulation, it can be shown that the second spin
component of Aμ drops out of the action. (One arrives at
the same conclusion if regularization with a hard cutoff � is
used instead and the limit � → ∞ is taken.) Denoting the
remaining matrix-valued components as A⊥μ = (A⊥0, A⊥),
the effective Lagrangian takes the form

L NLO
eff = 1

2
c1〈A⊥ · A⊥〉 + 1

2
c2

〈(
A⊥0 − B · A⊥

m

)2〉
. (A25)

The coefficients c1,2 can be read off Eq. (A23). Upon fre-
quency integration, they can be cast as

c1 = 1

2m

∫
dd p

(2π )d

γ 2√
β2 + γ 2(

√
β2 + γ 2 + β )

,

c2 = −1

2

∫
dd p

(2π )d

γ 2

(β2 + γ 2)3/2
. (A26)

The coefficient c2 is well defined through a convergent inte-
gral. The coefficient c1, on the other hand, is given by a log-
arithmically divergent integral. To estimate such an integral
in practice requires knowledge of the ultraviolet and infrared
momentum scales, where the integration is effectively cut off.
In the present problem, the inverse size of the hard core of
the interatomic potential can be taken as the ultraviolet cutoff,
whereas the inverse of the size of the sample provides an
infrared cutoff.

We are now in a position to restore the dependence of
the effective action on the collective fields d̂ and θ . Using
Eqs. (A10), (A15), and (A16), it is straightforward to show
that

〈A⊥ · A⊥〉 = 1
2 (Dr d̂ )2, (A27)

where the covariant derivative in the vector notation is given
by Dμd̂ ≡ ∂μd̂ + Aμ × d̂. Likewise, it readily follows upon

analytical continuation to real time that〈(
A⊥0 − B · A⊥

m

)2〉

= 1

2

[
Dt d̂ + 1

m
(∂rθ − Br )Dr d̂

]2

. (A28)

In the above expressions, Aμ and Bμ are not composite any-
more, but rather denote the original external gauge fields of
the SU(2)S × U(1)φ group.

We have thus recovered the effective spin Lagrangian
density from Eq. (3) (without the dipole term Ldip). The phase
velocity of the spin waves is determined by the parameters of
the microscopic theory through

c2
s = −c1

c2
. (A29)

APPENDIX B: GALILEI INVARIANCE OF THE
HELICAL TEXTURE

Since we are discussing a superfluid system that does not
require an underlying crystal lattice or substrate, the micro-
scopic physics must be Galilei invariant. One can thus ask the
following question: how can we deduce the existence of the
helical spin texture in the ground state in a reference frame
where the background superflow vanishes?

First, the fact that the magnetic field is introduced through
the temporal component of the SU(2)S gauge field implies that
we have to use an unusual, so-called electric, limit of elec-
tromagnetism [25] if we want the coupling to the background
fields to maintain Galilei invariance. In this limit, the Maxwell
equations miss the term that induces the Faraday effect (elec-
tromagnetic induction). The electromagnetic potentials ϕ and
A transform under a Galilei boost with velocity v as

ϕ′ = ϕ, A′ = A − ε0μ0ϕv. (B1)

Accordingly, the electric and magnetic fields E and B trans-
form as

E ′ = E, B′ = B − ε0μ0v × E. (B2)

The combination of a constant magnetic field and zero electric
field, imposed on our system, is therefore invariant under the
Galilei transformations in this limit.

Second, equilibrium properties of a many-body system are
generally described by a density matrix that follows from the
principle of maximum entropy. The principle in turn dictates
that we have to correctly take into account all macroscopic
constraints on the state of the system. In a system with
macroscopic motion such as the background superflow, this
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means that we need to introduce a Lagrange multiplier for the
momentum operator.

To carry out this procedure properly, we first have to
rewrite the canonical Hamiltonian in terms of the canonical
variables, that is, the field d̂ and the associated canonical
momentum,

π ≡ ∂L

∂ (∂t d̂ )
= D̃t d̂, (B3)

which is itself invariant under Galilei boosts. The Hamilto-
nian, defined by Eq. (6), is then rewritten as

H = 1

2
π2 − π · (γ H × d̂ + ur∂r d̂ )

+ c2
s

2
(∂r d̂ )2 − 1

2
�2

L(l̂ · d̂ )2. (B4)

Next, we introduce the Lagrange multiplier wr for the operator
of momentum density Pr , given by the standard Noether
expression

Pr = − ∂L

∂ (∂t d̂ )
· ∂r d̂ = −π · ∂r d̂. (B5)

The grand-canonical Hamiltonian Hw for the spin-wave sec-
tor is then obtained from the canonical Hamiltonian (B4) by
subtracting the term wrPr ,

Hw = H − wrPr

= 1

2
π2 − π · (γ H × d̂ + ũr∂r d̂ )

+ c2
s

2
(∂r d̂ )2 − 1

2
�2

L(l̂ · d̂ )2, (B6)

where ũ ≡ u − w. Unlike the Hamiltonian H , the grand-
canonical Hamiltonian Hw is invariant under the simulta-
neous Galilei transformation of the coordinates and fields,
whose infinitesimal form reads

x′ = x + vt, w′ = w + v, θ ′(x′) = θ (x) + mv · x.

(B7)

The many-body ground state of the system, which is deter-
mined by the absolute minimum of (the spatial integral of)
Hw, is therefore independent of the choice of reference frame,
as it should be.

To proceed towards finding the ground state, all one has to
do is to cast Eq. (B6) as

Hw = 1

2
(∂t d̂ + wr∂r d̂ )2 − 1

2
(γ H × d̂ + ũr∂r d̂ )2

+ c2
s

2
(∂r d̂ )2 − 1

2
�2

L(l̂ · d̂ )2 (B8)

and then follow the argument below Eq. (6). The spatial
profile of the ground state is still given by Eq. (9) upon
replacing the superflow velocity u with the Galilei-invariant
combination ũ = u − w. In an arbitrarily chosen reference
frame, the texture also has a nontrivial temporal profile given
by ∂t d̂ = −wr∂r d̂. This is a necessary consequence of Galilei
invariance and the spatial dependence of the static texture we
found in Eq. (9).

The spin density and current are given by the effective
Lagrangian, Eq. (3), in any inertial reference frame. The
general expression for the Noether current of the SU(2)S

spin symmetry following from this Lagrangian is given by
Eq. (12). Inserting the texture found by minimization of the
grand-canonical Hamiltonian (B8), one finds the following
spin density and current, respectively:

j0 = c2
s

c2
s − ũ2

γ H, jr = wr j0. (B9)

It follows that the spin density carried by the helical texture
is Galilei invariant, whereas the spin current transforms as a
Galilei vector. The Lagrange multiplier w plays the role of the
velocity of the spin degrees of freedom.

We conclude that the helical texture, discovered in Sec. IV
in the frame where w = 0, can be obtained as well, for
instance, in the frame where there is no background superflow.
All that matters is the relative motion of the superfluid and
spin degrees of freedom, encoded by their relative velocity ũ.
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