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Spin-torque resonance due to diffusive dynamics at the surface of a topological insulator
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We investigate spin-orbit torques on magnetization in an insulating ferromagnetic layer that is brought into
close proximity to a topological insulator (TI). In addition to the well-known fieldlike spin-orbit torque, we
identify an anisotropic anti-damping-like spin-orbit torque that originates in a diffusive motion of conduction
electrons. This diffusive torque is vanishing in the limit of zero momentum (i.e., for a spatially homogeneous
electric field or current), but it may, nevertheless, have a strong impact on spin-torque resonance at finite
frequency provided the external field is neither parallel nor perpendicular to the TI surface. The required
electric-field configuration can be created by a grated top gate.
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I. INTRODUCTION

It is widely known that spin-orbit interaction provides an
efficient way to couple electronic and magnetic degrees of
freedom. It is, therefore, no wonder that the largest torque
on magnetization, which is also referred to as the spin-orbit
torque, emerges in magnetic systems with strong spin-orbit
interaction [1,2], as has long been anticipated [3].

The spin-orbit coupling may be enhanced by confinement
potentials in effectively two-dimensional systems consisting
of conducting and magnetic layers. The in-plane current may
efficiently drive domain walls or switch magnetic orienta-
tion in such structures with the help of spin-orbit torque
[4–7], which is present even for uniform magnetization, or
with the help of spin-transfer torque, which requires the
presence of a magnetization gradient (due to, e.g., domain
wall) [8–11].

Topological insulators (TIs) [12–15] may be thought of
as materials with an ultimate spin-orbit coupling. Indeed,
the effective Hamiltonian of conduction electrons at the TI
surface contains essentially nothing but a spin-orbit interac-
tion term that provides a perfect spin-momentum locking.
Thus, the magnetization dynamics in a thin ferromagnetic
(FM) film in proximity to a TI surface is expected to be
strongly affected by electric currents and/or electric fields
[16]. There seems to be, indeed, substantial experimental
evidence that the efficiency of domain switching in TI/FM het-
erostructures is dramatically enhanced as compared to that in
metals [17–22].

Nowadays the symmetry of spin-orbit torques is routinely
inferred from the ferromagnetic resonance measurements
in which an alternating microwave-frequency current (with
frequencies 7–12 GHz) is applied within the sample plane
[17,23–26].

II. TWO-DIMENSIONAL DIRAC FERMIONS WITH
SD-INTERACTION ON THE TI/FM INTERFACE

In this work, we identify an anti-damping-like torque orig-
inating in a diffusive motion of conduction electrons at the
TI surface. Such a torque originates in a nonlocal diffusive
response of z component of the conduction electron spin
density to the in-plane electric field. The nonlocality of the
response is determined by the so-called diffusion pole in
analogy to the density-density response of a disordered sys-
tem. It is, however, important that the diffusive response of the
spin-density in the TI is always present in the perpendicular-
to-the-plane component of the spin density, irrespective of
the magnetization direction in the FM. In nontopological
FM/metal systems, such a diffusive response is present only
in the spin-density component that is directed along the local
magnetization of the FM. Thus, the diffusive antidamping
spin-orbit torque, which we describe below, is specific for the
TI/FM interfaces. Similarly, we identify a strong anisotropy of
the Gilbert damping in the TI/FM system due to a combination
of electron elastic scattering on nonmagnetic impurities and a
spin-momentum locking in the TI.

Diffusive antidamping spin-orbit torque, which we are
going to study, can be related to a response of conduction
electron spin density to an electric field at a finite, but small,
frequency and momentum. Such a field can be created, e.g.,
by applying an ac gate voltage to a grated top-gate as shown
in Fig. 1. The presence of the diffusive spin-orbit torque
can be detected by rather unusual spin-orbit-torque reso-
nances in the TI/FM structures that we also investigate in this
work.

Microscopic theory of current-induced magnetization dy-
namics in TI/FM heterostructures has been limited up to
now to some particular cases: (i) the specific direction of
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FIG. 1. Proposed experimental setup. Nonhomogeneous in-plane
electric-field components are created by an ac top-gate voltage Vtop

that induces a strong diffusive spin-orbit torque (4) of the damping-
like symmetry. An effective magnetic field H is directed at the angle
χ with respect to ẑ.

magnetization and (ii) the limit of vanishing exchange in-
teraction between FM angular momenta and the spins of
conduction electrons. In particular, an analytic estimate of
spin-transfer and spin-orbit torques in a TI/FM bilayer was
given in Ref. [27] for magnetization perpendicular to the TI
surface. An attempt to generalize these results to an arbi-
trary magnetization direction was undertaken more recently
in Ref. [28]. The nonlocal transport on the surface of the
TI was first discussed in Ref. [29]. The results of that work
were later applied to TI/FM systems [30,31] in a perturbative
approach with respect to a weak sd-type exchange. However,
the nonlocal behavior of nonequilibrium out-of-plane spin
polarization in TI/FM systems, which gives rise to diffusive
spin-orbit torques, was overlooked in all these publications.

To describe magnetization dynamics at a TI/FM interface,
we employ an effective two-dimensional Dirac model for
conduction electrons,

H = v [(p − eA) × σ]z − �sd m · σ + V (r), (1)

where A stands for the vector potential, e = −|e| is the elec-
tron charge, z is the direction perpendicular to the TI surface,
v is the effective velocity of Dirac electrons, and V (r) is a
disorder potential that models the main relaxation mechanism
of conduction electrons. The energy �sd = JsdS is characteriz-
ing the local exchange interaction Hex = −Jsd

∑
n Sn · c†

nσcn
between localized classical magnetic moments Sn on an FM
lattice (with conserved absolute value S = |Sn| per unit cell
area A) and the electron spin density [represented by the
vector operator σ = (σx, σy, σz ) on the TI surface] [32]. Here
σα stands for Pauli matrices and Jsd quantifies the sd-type
exchange-interaction strength.

A classical equation of motion for the unit magnetization
vector m = S/S is determined by the sd-like exchange inter-
action Hex as

∂m/∂t = γ H × m + T , T = (JsdA/h̄) m × s, (2)

where h̄ = h/2π is the Planck constant and γ is a gyromag-
netic ratio for the FM spin. The effective field H represents the
combined contribution of the external magnetic field and the
field produced by neighboring magnetic moments in the FM
(e.g., due to direct exchange), while the term T represents the
effect of the conduction electron spin density s(r, t ) = 〈c†

nσcn〉
on the TI surface.

To quantify the leading contributions to T , we micro-
scopically compute (i) a linear response of s to the in-plane
electric field E(r, t ) = Eq,ω exp(−iωt + iq · r), and (ii) a

linear response of s to the time derivative ∂m/∂t . The former
response defines the spin-orbit torque, while the latter defines
the Gilbert damping.

Before we proceed with the analysis, we shall note that the
velocity operator v = v (σ × ẑ) in the model of Eq. (1) is di-
rectly related to the spin operator σ. As the result, the response
of the in-plane spin density s‖ = (sx, sy) to electric field E =
−∂A/∂t is defined by the conductivity tensor [28,33]. This
also means that the nonequilibrium contribution to s‖ from
the electric current density J is given by s‖ = (ẑ × J)/ev
for any frequency and momentum irrespective of the type of
scattering for conduction electrons and even beyond the linear
response.

Thus, the response of s‖ defines an exceptionally universal
fieldlike spin-orbit torque

T SOT
FL = (JsdA/h̄ev) m × (ẑ × J), (3)

which acts in the same way as an in-plane external magnetic
field applied perpendicular to the charge current.

Apart from the universal response of s‖, there might also
exist a nonequilibrium spin polarization sz perpendicular to
the TI surface. This component plays no role in Eq. (2) for
m = ±ẑ due to the vector product involved. Also, the sz

component is vanishing by symmetry for m = m‖, where we
decompose m = m‖ + m⊥ to in-plane and perpendicular-to-
the-plane components.

We find, however, that for a general direction of m, the spin
density sz may be strongly affected by the in-plane electric
field at a small but finite frequency and a small but finite wave
vector. In the leading approximation, the result can be cast in
the following form:

T SOT
diff = η m × m⊥

iD q · E
iω − Dq2

, η = eJ2
sdAS

2π h̄3v2
, (4)

where D is a diffusion coefficient for conduction electrons
at the TI surface, and E = Eq,ω exp(−iωt + iq · r). Note that
the diffusive torque is nonlinear with respect to m and, from
the point of view of the time-reversal symmetry, is analogous
to antidamping torque. The denominator iω − Dq2 in Eq. (4)
reflects diffusive (Brownian) motion of conduction electrons
that defines the time-delayed diffusive torque on magnetiza-
tion, T SOT

diff .
It is interesting to note that the torque of Eq. (4) has an

antidamping symmetry (when expressed through electric cur-
rent rather than electric field). Moreover, the torque formally
diverges as 1/q in the dc limit ω = 0. This singularity is
well known in the theory of disordered systems [34,35] and
originates in the diffusive (Brownian) motion of conduction
electrons in a disorder potential. The dc limit singularity in
Eq. (4) is, in fact, regularized by the dephasing length of
conduction electrons on the surface of the TI. The length
is strongly temperature- and material-dependent, and at low
temperatures it can reach hundreds of microns. Thus, the
result of Eq. (4) also predicts large antidamping spin-orbit
torque in the dc limit that originates in a mechanism that is
specific for the TI interface.
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III. DERIVATION OF DIFFUSIVE SPIN-ORBIT
TORQUE AND GILBERT DAMPING FROM

LINEAR-RESPONSE THEORY

To derive the result of Eq. (4) and the expressions for
Gilbert damping, we shall adopt a particular relaxation model
for both spin and orbital angular momenta of conduction
electrons. For the model of Eq. (1), those are provided by
scattering on a disorder potential. We choose the latter to
be the white-noise Gaussian disorder potential that is fully
characterized by a single dimensionless parameter α � 1,

〈V (r)〉 = 0, 〈V (r)V (r′)〉 = 2πα (h̄v)2 δ(r − r′), (5)

where angular brackets denote the averaging over the ensem-
ble of disordered systems.

Since both the vector potential A and the magnetization
m couple to spin operators in Eq. (1), the linear response
of s to E = −∂A/∂t and ∂m/∂t is defined in the
frequency-momentum domain as

s = (v2h)−1K̂ (q, ω)[ev (E × ẑ) − iω�sd m]. (6)

Here, the dimensionless nine-component tensor K̂ (q, ω) is
given by the Kubo formula

K̂αβ (q, ω) = v2
∫

d2 p
(2π )2

Tr
〈
σαGR

p+h̄q,ε+h̄ωσβGA
p,ε

〉
, (7)

where the notation GR(A)
p,ε stands for the retarded (advanced)

Green’s function for the Hamiltonian of Eq. (1), the angular
brackets denote the averaging over disorder realizations, while
the energy ε refers to the Fermi energy (zero-temperature
limit is assumed).

The tensor K̂ can be represented by the matrix

K̂ =

⎛
⎜⎝

σxx σxy Qy

σyx σyy −Qx

Qy −Qx ζ

⎞
⎟⎠, (8)

of which σαβ are the components of the two-dimensional
conductivity tensor at the TI surface (all conductivities are
expressed in units of e2/h), the vector Q defines the diffu-
sive spin-orbit torque of Eq. (4) (its contribution to Gilbert
damping is negligible), while ζ determines the response of
sz to ∂mz/∂t . The components of K̂ correspond to different
responses at different limits. When discussing the response
to an electric field Eqω, we are primarily interested in the
limit ω � Dq2, whereas the response to the time derivative
of magnetization m is defined by the limit q → 0.

In the linear-response theory of Eq. (6), one needs to
compute the tensor in Eq. (7) for a constant direction m and
for A = 0. In usual systems (conducting ferromagnets), the
response of s in the direction of m is always diffusive. This
response, however, plays no role in the torque since T ∝ m ×
s. The situation at the TI surface is, however, special. Here,
the in-plane components of magnetization mx, my play no role
in Eq. (1), since those are simply equivalent to a constant in-
plane vector potential for conduction electrons, and therefore
they can be excluded by a gauge transform (shift of the Dirac
cone). Consequently, all observable quantities in the model
(including all components of the tensor K̂) may only depend
on the field �z = �sdmz. As a result, the diffusive response

FIG. 2. Diagrams considered in the calculation of K̂ : (a) non-
crossing diagram, (b) X diagram, and (c),(d) � diagrams. Green
areas indicate the ladder summation (e) for the vertex correction in
the noncrossing approximation [36].

occurs exclusively in the sz component of spin polarization
and can easily enter the expression for the torque.

The conductivity tensor in the model of Eqs. (1) and (5)
has been analyzed in detail in Ref. [36] in the limit ω = q =
0 (and for α � 1) with the result σxx = σyy = σ0 and σxy =
−σyx = σH, where

σ0 = ε2 − �2
z

πα
(
ε2 + 3�2

z

) , σH = 8ε�3
z(

ε2 + 3�2
z

)2 . (9)

Since the anomalous Hall conductivity σH ∝ α σ0 is sublead-
ing with respect to σ0, it has to be computed beyond the Born
approximation (see Refs. [36–38]).

Here we generalize the analysis to calculate the tensor
K̂ for finite ω and q assuming α � 1, ωτtr � 1, and ω ∝
Dq2, where D = h̄v2σ0/ε is the diffusion coefficient and
τtr = h̄εσ0/(ε2 + �2

z ) is the transport scattering time for the
problem. In real samples, τtr = 0.01–1 ps [39–42].

A. Disorder averaging: Born approximation
and vertex corrections

The main building block of our analysis is the averaged
Green’s function in the first Born approximation

GR
p,ε = εR + v(p × σ )z − �R

z σz

(εR)2 − v2 p2 − (
�R

z

)2 , (10)

where the complex parameters εR = ε(1 + iπα/2) and �R
z =

�z(1 − iπα/2) are found from the corresponding self-energy

�R(ε) = 2πα v2
∫

d2 p
(2π )2

GR
p,ε, (11)

which gives rise to Im �R = −πα(ε − �zσz )/2 (strictly
speaking, the RG analysis [36] has to be applied). In the
Green’s function of Eq. (10) we shift the momentum p such
that there is no direct dependence on the in-plane magnetiza-
tion components mx and my.

The next step in disorder-averaging requires the compu-
tation of vertex corrections. This means we need to replace
the spin operator σα with a vertex-corrected spin operator
σ vc

α in the ladder approximation as depicted in Fig. 2(e). The
crossed diagrams in Figs. 2(b)–2(d) give a contribution to the
components of K̂ of the order O(α0). The only components
that are modified to this order are those corresponding to the
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Hall conductivity (i.e., σxy and σyx). Details of this calculation
can be found in Ref. [36].

The dressing of σα with a single disorder line is denoted
by σ 1×dr

α and is conveniently represented in matrix form by
introducing a matrix M̂ with 16 components Mαβ for α, β =
0, x, y, z (with σ0 = 1),

σ 1×dr
α = 2πα v2

∫
d2 p

(2π )2
GA

ε+ω,p+qσαGR
p = παMαβσβ, (12)

where the summation of the repeating index β = 0, x, y, z
is assumed. Full expressions of the components of M̂ up to
second order in ω and q are given by Eqs. (B1a)–(B1f).

In our calculation, the terms of the order of α ln pcutoff/ε

(where pcutoff is the ultraviolet momentum cutoff) are disre-
garded with respect to 1. This approximation is legitimate
since we assume that all model parameters ε, �sd, and α are
first renormalized such that pcutoff ≈ ε.

It is easy then to see that the vertex-corrected spin operator
is readily obtained from the geometric series of powers of
παM̂,

σ vc
α = σα + παM̂αβσβ + (πα)2(M̂2)αβσβ + · · ·

= [1 − παM̂]−1
αβσβ. (13)

Thus, in the noncrossing approximation [illustrated in
Fig. 2(a)], one simply finds K̂ = M̂[1 − παM̂]−1.

Dressed spin-spin correlators are defined by the compo-
nents K̂αβ with α, β = x, y, z. The vector q selects a partic-
ular direction in space that makes the conductivity tensor
anisotropic. By choosing the x direction along the q vector,
we find the conductivity components σxx = σ0, σxy = −σyx =
σH, and σyy = iω σ0/(iω − Dq2), where we have kept only the
leading terms in the limits α � 1, ωτtr � 1 [more general
expressions are given by Eqs. (B3a)–(B3d)]. We can see that
the σyy component also acquires a diffusion pole. One needs to
go beyond the noncrossing approximation in the computation
of anomalous Hall conductivity [36–38].

B. Diffusive spin-orbit torque and Gilbert damping

Clearly, the components σαβ define the fieldlike contribu-
tion T SOT

FL , which was already discussed above. It is interesting
to note that the conductivity is isotropic, σxx = σyy = σ0, only
if the limit q = 0 is taken before the limit ω = 0. If the limit
ω = 0 is taken first, the conductivity remains anisotropic with
respect to the direction of q even for q = 0.

The vector Q = (Qx, Qy) quantifies both the response of sz

to an electric field or to ∂m‖/∂t as well as the response of s‖
to ∂mz/∂t . From Eq. (7) we find

Q(ω, q) = �z

h̄v

iDq
iω − Dq2

[1 + O(ωτtr )], (14)

where we again assumed ωτtr � 1. The result of Eq. (14) then
corresponds to an additional diffusive spin-orbit torque of the
form Eq. (4).

Finally, the response of sz to ∂mz/∂t is defined by

ζ = �2
z

ih̄εω

[
1 + O

(
ω2τ 2

tr

)]
, (15)

where the limit q = 0 is taken. Thus, we find from Eq. (6)
that there exists no response of sz to ∂mz/∂t . Instead, the

quantity ζ defines the additional spin polarization in the z
direction, δsz = −�3

sdm3
z /(2π h̄2v2ε), which we ignore below.

Equations (14) and (15) including subleading terms in ωτtr are
presented in Eq. (B4).

We also note that Q(q = 0) = 0, hence there is no term
in sz that is proportional to ∂m/∂t . This reflects the highly
anisotropic nature of the Gilbert damping in the model of
Eq. (1).

The remaining parts of the Gilbert damping can be cast in
the following form:

T GD = J2
sdAS

π h̄2v2
m ×

(
σ0

∂m‖
∂t

+ σH

mz

∂m‖
∂t

× m⊥

)
, (16)

where the coefficients σ0 and σH/mz from Eq. (9) depend
on m2

z , which is yet another source of the Gilbert damping
anisotropy. We note that even though Eq. (16) does not contain
a term proportional to ∂mz/∂t , the existing in-plane Gilbert
damping is sufficient to relax the magnetization along the ẑ
direction.

Despite the strongly anisotropic nature of the diffusive
torque (the torque is vanishing for purely in-plane or purely
perpendicular-to-the-plane magnetization), its strength for a
generic direction of magnetization may be quite large. For
example, for m directed approximately at 45◦ to the TI sur-
face, the ratio of amplitudes of diffusive and fieldlike torques
is readily estimated as

T SOT
diff

T SOT
FL

= �sd

h̄qv

1

σ0
, (17)

where we used the condition ω � Dq2. Let us assume that
a top gate in Fig. 1 induces an ac in-plane electric field
with the characteristic period 2πq−1 ≈ 1 μm and a typical
FM resonance frequency, ω ≈ 7–12 GHz. Then, for realistic
materials one can estimate Dq2 ≈ 100 GHz, hence ω � Dq2

indeed. For a typical velocity v = 106 m/s one finds h̄qv ≈
4 meV. Thus, the ratio �sd/h̄qv in Eq. (17) may reach three
orders of magnitude, while the value of σ0 is typically 10.
This estimate suggests that, for a generic direction of m, the
magnitude of diffusive torque can become three orders of
magnitude larger than that of the fieldlike spin-orbit torque.

The diffusive torque at the TI surface can be most directly
probed by the corresponding spin-torque resonance. In this
case, one can disregard the effect of the fieldlike torque, so
that Eq. (2) is simplified to

∂m
∂t

= γ H × m + f (r, t ) m × m⊥ + αG m × ∂m‖
∂t

, (18)

where αG = J2
sdASσ0/π (h̄v)2 is the Gilbert damping ampli-

tude (which is a constant for ε � �sd), while the terms
containing σH are omitted. The function

f (r, t ) = η

∫
d2r′

∫ t

−∞
dt ′ e−(r−r′ )2/4D(t−t ′ )

4π (t − t ′)
∇ · E(r′, t ′)

defines the strength of the diffusive spin-orbit torque (4) in
real space and time.
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FIG. 3. The projection mH(t ) as simulated from Eq. (18) for f0 =
0.1 ω0. The top panel illustrates the behavior at different frequencies
for αG = 0.005. The lower panel illustrates the resonant behavior
at different values of αG. The dashed horizontal line corresponds
to mH = 1/

√
2. Dots indicate the asymptotic solution for αG = 0 as

given by Eq. (19).

IV. RESONANT MAGNETIZATION DYNAMICS

Resonant magnetization dynamics defined by Eq. (18) is
illustrated in Fig. 3 for H directed at the angle χ = π/4 with
respect to ẑ and for frequencies that are close to the resonant
frequency ω0 = γ H . The time evolution of magnetization
projection mH = m · H/H is induced by the diffusive torque
with f (t ) = f0 cos ωt (magnetization at different r is simply
different by a phase).

Resonant dynamics at ω = ω0 in Eq. (18) consists of a
precession of m around the vector H such that the azimuth
(precession) angle is changing linearly with time, φ(t ) =
ω0t − π/2 (for f0 � ω0 and αG � 1). In addition, the projec-
tion mH oscillates between 1 and 0 on much larger time scales.
Such oscillations are damped by a finite αG to the limiting
value mH = 1/

√
2.

In the limit of vanishing Gilbert damping, αG = 0, one
simply finds the result

mH(t ) = {
cosh

[
1
4 f0t sin(2χ )

]}−1
, (19)

which clearly illustrates the absence of the effect for both
perpendicular-to-the-plane (χ = 0) and in-plane (χ = π/2)
magnetization. The qualitative behavior at the resonance (ω =
ω0) is illustrated in the lower panel of Fig. 3 for different
values of αG.

V. CONCLUSIONS

In conclusion, we consider magnetization dynamics in a
model TI/FM system at a finite frequency ω and q vector.
We identify diffusive antidamping spin-orbit torque that is
specific to the TI/FM system. Such a torque is absent in
usual (nontopological) FM/metal systems, where the diffu-

sive response of conduction electron spin density is always
aligned with the magnetization direction of the FM. In con-
trast, the electrons at the TI surface give rise to a singular
diffusive response of the conduction electron spin density in
the direction perpendicular to the TI surface, irrespective of
the FM magnetization direction. Such a response leads to
strong nonadiabatic antidamping spin-orbit torque that has
a diffusive nature. This response is specific for a system
with an ultimate spin-momentum locking and gives rise to
abnormal antidamping diffusive torque that can be detected
by performing spin-torque resonance measurements. We also
show that, in realistic conditions, the anti-damping-like dif-
fusive torque may become orders of magnitude larger than
the usual fieldlike spin-orbit torque. We investigate the pecu-
liar magnetization dynamics induced by the diffusive torque
at the frequency of the ferromagnet resonance. Our theory
also predicts the ultimate anisotropy of the Gilbert damping
in the TI/FM system. In contrast to the phenomenological
approaches [43,44], our microscopic theory is formulated in
terms of very few effective parameters. Our results are com-
plementary to previous phenomenological studies of Dirac
ferromagnets [45–67].
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APPENDIX A: KUBO FORMULA

The linear-response formula used in the main text can be
obtained in a Keldysh framework. We start by introducing
the Green function G in rotated Keldysh space (see, e.g.,
Ref. [68]),

G =
(

GR GK

0 GA

)
, (A1)

where R, A, and K denote retarded, advanced, and Keldysh
Green functions, respectively. In this notation, a perturbation
to a classical field V (x, t ) is given by

δG(x1, t1; x2, t2) =
∫

dx3

∫
dt3 G (0)(x1, t1; x3, t3)V̂ (x3, t3)

×G (0)(x3, t3; x2, t2) + O(V 2) (A2)

with G (0) equilibrium Green functions. The Wigner transform
of a function F (x1, t1; x2, t2) is given by

F (x1, t1; x2, t2) =
∫

d2 p
(2π h̄)2

∫
dε

2π h̄
e−iε(t1−t2 )/h̄eip·(x1−x2 )/h̄

× F (ε, p, R, T ) (A3)

with energy ε, momentum p, time T = t1+t2
2 , and position R =

x1+x2
2 . In equilibrium, the Green functions G (0) do not depend

on R and T , so that the momentum-frequency representation
of Eq. (A2) becomes δG(ε, ω, p, q) = G (0)

ε+,p+
Vω,qG (0)

ε−,q−
, with
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subscripts ε± = ε ± h̄ω/2 and p± = p ± h̄q/2, and Vω,q is the
Fourier transform of V (R, T ).

The spin density sω,q is given by

sω,q = ih̄
∫

dε

2π h̄

∫
d2 p

(2π h̄)2
Tr[δG<(ε, ω, p, q, T )σ], (A4)

where

δG<(ε, ω, p, q) = 1/2[δGK (ε, ω, p, q) − δGR(ε, ω, p, q)

+ δGA(ε, ω, p, q)]. (A5)

In equilibrium we have the fluctuation-dissipation theorem
GK

ε±,p±
= (1 − 2 fε± )(GR

ε±,p±
− GA

ε±,p±
) with fε± the Fermi dis-

tribution, so that the spin density now becomes

sω,q = ih̄
∫

dε

2π h̄

∫
d2 p

(2π h̄)2

× Tr
〈 − ( fε+ − fε− )σGR

ε+,p+
Vω,qGA

ε−,p−

− fε+σGR
ε+,p+

Vω,qGR
ε−,p−

+ fε−σGA
ε+,p+

Vω,qGA
ε−,p−

〉
,

(A6)

where the angular brackets stand for impurity averaging. The
latter amounts to the replacement of the Green’s functions
with the corresponding impurity-averaged Greens functions
(in the Born approximation) and to the replacement of one
of the spin operators with the corresponding vertex-corrected
operator (in the noncrossing approximation). The corrections
beyond the noncrossing approximation are important for those
tensor components that lack a leading-order contribution [36].
To keep our notations more compact, we ignore here the
fact that the Green’s functions before disorder averaging lack
translational invariance, i.e., they depend on both Wigner
coordinates: momentum and coordinate.

In the limit of small frequency, i.e., h̄ω � ε, we obtain
sα = sI

α + sII
α ,

sI
α = iω

2h̄

∫
dε

2π

∫
d2 p

(2π )2

(
−∂ f

∂ε

)
Tr

〈
2σαGR

ε+,p+
Vω,qGA

ε−,p−

− σαGA
ε+,p+Vω,qGA

ε−,p− − σαGR
ε+,p+Vω,qGR

ε−,p−

〉
, (A7)

sII
α = i

h̄

∫
dε

2π

∫
d2 p

(2π )2
fε Tr

〈
σαGA

ε+,p+
Vω,qGA

ε−,p−

− σαGR
ε+,p+

Vω,qGR
ε−,p−

〉
, (A8)

where sI and sII are the Kubo and Streda contributions, re-
spectively. The Streda contribution is subleading in powers of
weak disorder strength α � 1 as long as the Fermi energy
lies outside the gap. Similarly, the AA and RR bubbles in
the expression of sI

α are subleading and may be neglected.
Furthermore, we work in the zero-temperature limit.

The linear response to the electric field and the time
derivative of magnetization corresponds to Vq,ω = − ĵ · A −
�sdm · σ, so that we obtain

sq,ω = 1

v2h
K̂ (q, ω)[ev(Eq,ω × ẑ) − iω�sdmω], (A9)

where the components of the tensor K̂ are given by

K̂αβ (q, ω) = v2
∫

d2 p
(2π )2

Tr
〈
σαGR

p+h̄q,ε+h̄ωσβGA
p,ε

〉
. (A10)

Equations (A9) and (A10) correspond to Eqs. (6) and (7) of
the main text. Here we used the expression for the current
operator ĵ = v f (σ × ẑ) and electric field Eq,ω = iωAq,ω.

APPENDIX B: CALCULATION OF THE SPIN-SPIN
CORRELATOR

We shall compute the matrix M̂ to second order in powers
of ω and q. The result is represented as

M = M0 + Mω + Mω2 + Mqω + Mq2 , (B1a)

M0 = 1

πα
(
ε2 + �2

z

)
⎛
⎜⎜⎜⎝

ε2 0 0 −ε�z

0
(
ε2 − �2

z

)
/2 παε�z 0

0 −παε�z
(
ε2 − �2

z

)
/2 0

−ε�z 0 0 �2
z

⎞
⎟⎟⎟⎠, (B1b)

Mω = iωε[
πα

(
ε2 + �2

z

)]2

⎛
⎜⎜⎜⎝

ε2 0 0 −ε�z

0
(
ε2 − �2

z

)
/2 πα

(
ε2 − �2

z

)
�z/2ε 0

0 −πα
(
ε2 − �2

z

)
�z/2ε

(
ε2 − �2

z

)
/2 0

−ε�z 0 0 �2
z

⎞
⎟⎟⎟⎠, (B1c)

Mω2 = (iωε)2[
πα

(
ε2 + �2

z

)]3

⎛
⎜⎜⎜⎝

ε2 0 0 −ε�z

0
(
ε2 − �2

z

)
/2 πα

(
ε2 − �2

z

)
�z/2ε 0

0 −πα
(
ε2 − �2

z

)
�z/2ε

(
ε2 − �2

z

)
/2 0

−ε�z 0 0 �2
z

⎞
⎟⎟⎟⎠, (B1d)

Mqω = v
(
ε2 − �2

z

)
[
πα

(
ε2 + �2

z

)]2

(
−i

2
+ εω[

πα
(
ε2 + �2

z

)]
)⎛

⎜⎜⎜⎝
0 εqx εqy 0

εqx 0 0 −�zqx

εqy 0 0 −�zqy

0 −�zqx −�zqy 0

⎞
⎟⎟⎟⎠, (B1e)
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Mq2 = v2
(
ε2 − �2

z

)
2
[
πα

(
ε2 + �2

z

)]3

⎛
⎜⎜⎜⎝

ε2q2 0 0 −ε�zq2

0 −(
ε2 − �2

z

)(
3q2

x − q2
y

)
/4 −(

ε2 − �2
z

)
qxqy/2 0

0 −(
ε2 − �2

z

)
qxqy/2 −(

ε2 − �2
z

)(
3q2

y − q2
x

)
/4 0

−ε�zq2 0 0 �2
z q2

⎞
⎟⎟⎟⎠, (B1f)

from which the components of K̂ are obtained. Complete expressions for the components are cumbersome, therefore we proceed
by first analyzing their denominator, which is proportional to det[1 − παM],

det[1 − παM] = − ε
(
ε2 + 3�2

z

)2

4πα
(
ε2 + �2

z

)3

[
iω

(
1 − iωτtr

ε2 − 5�2
z

ε2 − �2
z

+ O[(ωτtr )
2]

)
− Dq2

(
1 + iωτtr

13�4
z + 10�2

z ε
2 + ε4(

ε2 − �2
z

)(
ε2 + �2

z

)
− (iωτtr )

2 (ε2 + 3�2)
(
ε4 − 14ε2�z − 35�4

z

)
(
ε2 − �2

z

)(
ε2 + �2

z

) + O[(ωτtr )
3]

)
+ O[(Dq2)2τtr]

]
. (B2)

By restricting ourselves to perturbations that vary slowly in time compared to the transport time τtr, and smoothly in space
compared to the diffusion length LD = √

Dτtr, i.e., ωτtr, Dq2τtr � 1, we are able to extract the diffusion pole (iω − Dq2)−1.
The components of the conductivity tensor σ̂ at finite ω and q are given by

σxx = σ0 + Dq2

iω − Dq2

[
q2

y

q2
σ0 − iωτtr

(
2

πα

ε2 + 2�2
z

ε2 + �2
z

+ 3

πα

q2
x − q2

y

2q2

)]
, (B3a)

σyy = σ0 + Dq2

iω − Dq2

[
q2

x

q2
σ0 − iωτtr

(
2

πα

ε2 + 2�2
z

ε2 + �2
z

− 3

πα

q2
x − q2

y

2q2

)]
, (B3b)

σxy = σH + Dq2

iω − Dq2

(
−qxqy

q2
σ0 − iωτtr

3

πα

qxqy

q2

)
, (B3c)

σyx = −σH + Dq2

iω − Dq2

(
−qxqy

q2
σ0 − iωτtr

3

πα

qxqy

q2

)
, (B3d)

where σ0 and σH are given in Eq. (9) of the main text. The
remaining components of K̂ are given by

Q = �z

v

iDq
iω − Dq2

(
1 + iωτtr

(
ε2 + 7�2

z

)
ε2 + �2

z

)
, (B4a)

ζ = �2
z

ε

1 − iωτtr
(
ε2 − 5�2

z

)
/
(
ε2 − �2

z

)
iω − Dq2 + ω2τtr

(
ε2 − 5�2

z

)/(
ε2 − �2

z

) , (B4b)

where the ω2 term was included in the denominator of ζ

because of its importance when taking the limit q → 0.
The leading contributions to Eq. (B4a) in the limit ωτtr � 1
together with Eq. (B4b) in the limit q → 0 correspond to
Eqs. (8), (9), and (15) of the main text.

It is convenient to rotate the coordinate system such that
the new x̂ axis lies along q. Let us introduce a rotation matrix
U to transform the tensor K̂ ,

U =

⎛
⎜⎝

qx/q −qy/q 0

qy/q qx/q 0

0 0 1

⎞
⎟⎠, K̃ = U �K̂U, (B5)

so that the new components of Eqs. (B3) become

σ̃xx = σ0 − Dq2

iω − Dq2
iωτtr

7ε2 + 11�2
z

2πα
(
ε2 + �2

z

) , (B6a)

σ̃yy = σ0 + Dq2

iω − Dq2

(
σ0 − iωτtr

ε2 + 5�2
z

2πα
(
ε2 + �2

z

)
)

, (B6b)

σ̃yx = −σ̃xy = σH, (B6c)

and the rotated tensor, K̃ , is conveniently written as

K̃ =

⎛
⎜⎝

σ̃xx σH 0

−σH σ̃yy Q

0 Q ζ

⎞
⎟⎠. (B7)

APPENDIX C: LIMITING BEHAVIOR OF m(t )

To illustrate the behavior of m(t ), we consider f =
f0 cos(ωt ) at a particular point r. It is also convenient to let
the field Heff lie in the x̂-ẑ plane and rotate the coordinate
system such that Heff lies along the new z direction. This is
achieved by introducing the rotation matrix R̂,

R̂ =

⎛
⎜⎝

cos χ 0 − sin χ

0 1 0

sin χ 0 cos χ

⎞
⎟⎠, (C1)
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where χ is the angle between ẑ and Heff . Furthermore,
introducing the frequency ω0 = |γ Heff | and the unit vector
h̄ = (− sin χ, 0, cos χ )�, we can write the equation of motion
in the rotated coordinate frame as

∂t m = −ω0 m × ẑ + f (r, t ) (m · h̄) [m × h̄]

+αG [m × (∂t m)] − αG (∂t m) · ẑ [m × ẑ], (C2)

where the vector ẑ is defined now as the unit vector along Heff ,
hence the magnetization projection mH = m · h is simply
given by mz.

In the regime of αG � f0 �� ω0 we can find the asymp-
totic behavior of mH at sufficiently small times. To do so, it
is convenient to represent m in spherical coordinates: m =
(sin θ cos φ, sin θ sin φ, cos θ )�, where θ is the polar angle
between m and ẑ, and φ is the azimuth. In the limit αG → 0,
we find the equations of motion on θ and φ:

∂tθ = sin χ sin φ f (r, t )(sin χ sin θ cos φ − cos χ cos θ ),

(C3)
∂tφ = ω0 + f (r, t ) cos θ

[
cos2 χ cos2 φ − sin2 φ

− 1
2 sin χ (cot θ − sin θ )

]
. (C4)

We take f (r, t ) = f0 cos ωt and assume that f0 � ω0, so that
we find φ = ω0t − φ0. It is convenient to choose φ0 = π/2 so
that

∂tθ = − f0 sin χ cos2 ω0t (sin θ sin χ sin ω0t − cos θ cos χ ).

(C5)

Because we assumed that f0 � ω0, the dynamics of φ is much
faster than the dynamics of θ . Therefore, we average Eq. (C5)
over φ and obtain

∂tθ = f0

4
cos θ sin 2χ. (C6)

This equation is readily solved by means of the substi-
tution cos θ = 1/ cosh x, sin θ = − tanh x. Using the initial
condition θ (0) = 0, one finds

cos θ (t ) = 1

cosh
(

1
4 f0t sin 2χ

) , (C7)

which gives the result of Eq. (19) of the main text.
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