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Emergence of long-range magnetic order stabilized by magnetic impurities in pnictides
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The Mermin-Wagner theorem prevents the stabilization of long-range magnetic order in two-dimensional
layered materials, such as the pnictide superconductors, unless the magnetism is associated with a discrete
symmetry breaking. A typical known example is the discrete row and column collinear magnetic state that
emerges in doped iron pnictide materials due to an order-by-disorder mechanism. In these compounds,
the magnetic state competes with superconductivity and the mechanism that stabilizes magnetism remains
controversial. In this work, we report the phase diagram of a doped frustrated Heisenberg model obtained through
Monte Carlo simulations combined with a parallel tempering simulation technique. The emergence of long-range
magnetic order is stabilized by interactions between the magnetic dopant impurities.
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I. INTRODUCTION

Since unconventional superconductivity occurs in the prox-
imity of magnetically ordered states in many materials [1,2],
understanding the magnetic phase of the parent compound
is an important step toward understanding the mechanism of
superconductivity. While for cuprates magnetism the underly-
ing electronic state is understood, there is still debate in the
case of the pairing mechanism in iron pnictides BaFe2As2

[3]. Many low-energy probes such as resistivity [4], scanning
tunneling microscopy [5], and angle-resolved photoemission
spectroscopy [6] have measured strong in-plane anisotropy
of the electronic states, but there is no consensus on its
physical origin. It was suggested from first-principles calcu-
lations [7] that the origin stems from orbital order, but the
obtained anisotropy in the resistivity is opposite to the one
found experimentally [8]. A more likely scenario supported
by recent neutron diffraction measurements [9] is related to a
spin density wave instability due to the presence of electron
and hole pockets around k = (π, 0) and k = (0, π ). The
resulting magnetic order is of nematic type and can be seen
as a helicoidal magnetic state with pitch vector Q = (0, π ) or
Q = (π, 0).

It has been suggested both experimentally [10,11] and the-
oretically [12] that impurities have a dramatic impact on the
magnetic and superconducting properties. Recent observation
of the collinear magnetic phase has been reported in Mn-
doped La1111 iron-based superconductors [13] induced by
the Mn impurities. The magnetic state induced by Mn and Fe
substitutions in F-doped LaFe1−xMnxAsO superconductors,
reveals a fast drop of superconductivity and the recovery of
a magnetic ground state at low doping, which have been
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attributed to Ruderman-Kittel-Kasuya-Yosida interactions
[14]. Furthermore, a new type of magnetic order due to the
presence of magnetic impurities in BaFe2As2 [15] emerges
in magnetic polarized x-ray measurements. Additionally, in
recent studies of optimally electron-doped CaKFe4As4 [16] a
novel magnetic order state, called spin-vortex crystal [17,18],
different from the stripe antiferromagnetic or nematic phase,
has been observed as the result of the magnetic fluctuations
near the (π, π ) Q vectors.

In this work we clarify the interaction of frustrated mag-
netic systems with impurities and in particular the double-Q
state of the canonical J1-J2 model.

To describe the low-energy magnetic properties of this
system, it has been suggested early on that a local moment
picture may become relevant in the presence of moderately
large electronic correlations [19], leading to the Heisenberg
model with both nearest (J1) and next-nearest (J2) exchange
couplings defined by

Ĥ = J1

∑

〈i, j〉
Ŝi · Ŝ + J2

∑

〈〈i, j〉〉
Ŝi · Ŝ j . (1)

In the collinear regime, both J1 and J2 are positive, and
2J2 > J1 [20]. In this expression, Ŝi are O(3) spins on a
periodic square lattice with N = L × L sites. 〈i, j〉 and 〈〈i, j〉〉
indicate the sum over nearest and next-nearest neighbors,
respectively.1

The first attempt at fitting the experimental spin density
wave excitation spectra with a Heisenberg model suggested
that one should use very anisotropic values of J1 [21] and
therefore it was argued [22] that to get a proper description of
magnetic interactions and spin fluctuations in ferropnictides,
additional biquadratic interactions might be important. How-
ever, it was later shown that the fits of the experimental data
included energy scales beyond 100 meV, which are not well

1J1 sets the energy scale, and in our work we use J2/J1 = 0.55 when
not specified otherwise, and both J1 > 0 and J2 > 0.
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described by magnon excitations [23]. A more careful study,
including the itinerant character of the electrons [24], led to
the conclusion that pnictides are indeed in the collinear regime
with [Q = (0, π ), (π, 0)] magnetic instabilities, a conclusion
supported by first-principles calculations for selenium-based
compounds (KFe2Se2) [25]. All these results call for an in-
depth investigation of the effect of impurities in this frustrated
Heisenberg model.

In this work we build upon our earlier results in Ref. [26]
by extending the calculations to samples doped with both
magnetic and nonmagnetic impurities, exploring highly doped
lattices (up to full doping). In particular, we focus on the
competing magnetic order at high doping, which corresponds
to optimally and overdoped pnictide samples. We address
the question of the interplay between the frustration induced
by the exchange couplings and the disorder induced by the
imperfections of the crystallographic structure. Increasing the
doping we expect the possibility of first-order phase transi-
tions driven by a percolation mechanism, where impurities
drive local fluctuating order parameters on short distances and
become long range at high dilutions.

II. METHOD

Since density functional calculations, and quite generally
quantum-based calculations, are limited to relatively small
unit cells and cannot tackle the issue of large supercell struc-
tures, we limit our calculations to a frustrated classical model
[27], and carry out Monte Carlo calculations of the Heisen-
berg J1-J2 model in the presence of impurities extending the
numerical approach in Refs. [28,29] with the implementation
of the parallel tempering simulation methods. Indeed this
replica exchange method has the key role in sampling the
phase space at low temperature preventing the systems from
being trapped in local minima. Further details are reported in
the Supplemental Material [30] (see Sec. B, and references
therein [31–34]).

In our calculations we consider samples doped with both
magnetic and nonmagnetic impurities, exploring highly doped
lattices. The doping is implemented in our algorithm replacing
a fraction of lattice sites with impurities. The concentration of
the doping is indicated by δ = Nimp/Ntot with Nimp being the
number of impurities and Ntot = L × L is the total number of
sites in the lattice. For a fixed doping value, the corresponding
fraction of sites in the lattice Slat are randomly selected
and replaced with impurities Simp. Hence we are consider-
ing a site dilution disorder type. An example of a different
type of disorder (bond dilution) is provided by Ref. [35].
We note, however, that the consequent magnetic phases de-
tected are different respectively to the type of disordered
imposed.

The magnetic moment of the impurities Simp is character-
ized by its ratio with the magnetic moment of the undoped
compound (e.g., SFe for iron), r = Simp/SFe.

The impurity spins are not quenched but instead are en-
ergetically optimized by the heatbath algorithm [36,37]. The
physical observables computed are averaged over a large num-
ber of disordered configurations (up to 5000 configurations)
by using a BlueGene/Q supercomputer facility.

We limit ourselves to L × L = 50 × 50 cluster size and we
impose periodic boundary conditions. Our system size selec-
tion follows from preliminary investigation of the finite size
effect on the order parameters reported in the Supplemental
Material Fig. S3.

III. MAGNETIC ORDER IN THE UNDOPED SYSTEM

In the absence of disorder and at zero temperature, the
magnetic vector is Q = (π, π ) for J2/J1 < 0.5, and for
J2/J1 > 0.5 the ground state is continuously degenerate and
is characterized by a bipartite lattice, with two distinct anti-
ferromagnetically ordered states on each sublattice, with θ the
angle between the two magnetic directions. At finite temper-
ature the entropy selection reduces the O(3) symmetry of the
ground state to Z2 selecting the states with antiferromagnetic
spin correlations in one spatial direction and ferromagnetic
correlations in the other [Q = (0, π ), (π, 0)]. This is the so-
called order-by-disorder entropic selection and the associated
discrete symmetry breaking drives a finite temperature Ising-
like phase transition [26,38]. We address how the presence of
disorder affects this transition.

IV. INVESTIGATION OF DOPED SYSTEM

In the following discussion we report the phase diagram of
a doped frustrated Heisenberg model obtained through Monte
Carlo simulations combined with a parallel tempering (replica
exchange) simulation technique. We introduce both magnetic
(r �= 0) and nonmagnetic disorder (r = 0) and we compare
the behavior of the emerging magnetic phases focusing on
whether a long-range magnetic order is stabilized by interac-
tions between the magnetic dopant impurities.

Effect of doping on the collinear order. In Fig. 1 we consider
the collinear order parameter constructed from the original
spin variables Ŝi,

M2(x) = (Ŝi − Ŝk ) · (Ŝ j − Ŝl ), (2)

where (i, j, k, l ) are the corners with diagonal (i, k) and ( j, l )
of the plaquette centered at the site x of the dual lattice [see
Supplemental Material Fig. S1(a)], and we define its normal-
ized counterpart as Z2(x) = M2(x)/|M2(x)|. In this way, the
two collinear states with Q = (π, 0) and Q = (0, π ) can be
distinguished by the value of the Ising variable, Z2(x) = ±1.

For impurities with a 50% larger magnetic moment [see
Fig. 1(b)], we observe that there exists a temperature range
T = (0.1, 0.2)J1 where the collinear order survives at all
dilutions. However, the transition from collinear to param-
agnetic (from region B to C) at high temperature increases
from 0.2 to 0.45. This can be explained by a very simple
argument; in the fully doped regime all spins are 1.5 times
larger and so the energy scales are rescaled by a factor 1.52,
increasing Tc in turn by a factor 2.25. A different behav-
ior of the collinear order is observed considering the same
temperature range, T = (0.1, 0.2)J1, either if we increase
(r = 2) or decrease (r = 0) the magnetic moment of the
dopant. Indeed the Ising-like order is rapidly suppressed by
doping with nonmagnetic r = 0 impurities [Fig. 1(a)] or im-
purities with a large magnetic moment r = 2 [Fig. 1(c)], with
no collinear magnetic order obtained beyond 8% dilution.
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FIG. 1. Color maps of the Ising (MZ2 ) order parameter as a
function of temperature and dilution for a L × L = 50 × 50 lattice.
The system is doped with vacancies (r = 0) (a) and with magnetic
impurities with r = 1.5 (b) and r = 2 (c) being r = Simp/Slat . Colors
range from blue (minimum) to yellow (maximum). From low to
high temperature different ordered regions can be distinguished: (A)
anticollinear, (B) collinear, and (C) paramagnetic. The white dotted
line is a guide to the eyes. (J2/J1 = 0.55.)

This is expected for the former case (nonmagnetic dopants
r = 0), where large dilutions prevents the propagation of
long-range magnetic order as the magnetic order propagates
by short-range correlations. The quenching of low-energy
fluctuations upon the introduction of nonmagnetic impurities
have been observed experimentally both in vanadates [39] and
pnictides [11].

For the latter case (magnetic dopants with r = 2) the drop
of the Ising order, for fixed temperature and increased dilution,
is driven by a different mechanism. Indeed as the collinear

FIG. 2. Color maps of the anticollinear (M90) order parameter as
a function of temperature and dilution for a L × L = 50 × 50 lattice.
The system is doped with vacancies (r = 0) (a) and with magnetic
impurities with r = 1.5 (b) and r = 2 (c) being r = Simp/Slat . Colors
range from blue (minimum) to yellow (maximum). From low to
high temperature different ordered regions can be distinguished: (A)
anticollinear, (B) collinear, and (C) paramagnetic. The white dotted
line is a guide to the eyes. (J2/J1 = 0.55.)

order disappears a new competing order appears [Fig. 2(b)].
The same observation is valid for r = 1.5 [Fig. 1(b)] at low
temperatures. Indeed if we look at fixed dilution, δ = 50%,
we observe that the collinear order is also suppressed at
T < 0.1[J1] (region A), and we obtain a reentrance transition
of the collinear order (region A to B). This is expected at
low temperature and low doping; indeed it has been shown
that around a single impurity the degeneracy of the ground
state of the J1-J2 model is lifted and the 90◦ magnetic order
is selected from the manifold by an energy optimization
process [40,41]. Note that this latter mechanism is driven by
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FIG. 3. Case of doping with single magnetic impurity with ratio r = Simp/Slat = 1.5. (a) Temperature dependence of M2 and M90 for a
lattice with L = 12. (b)–(d) Typical spin configuration obtained at three fixed temperatures, of panel (a), at T = 0.0008, 0.00181, 0.00281J1.
(e) and (f) are respectively the collinear MZ2 and anticollinear M90◦ order parameter values for fixed temperatures T = 0.0001, 0.001, 0.01J1

as a function of different lattices with linear dimension L. We fixed J2/J1 = 0.55 and δ = 1/L2.

an energy optimization and is not expected to survive to high
temperatures.

Effect of doping on the anticollinear order. In Figs. 2(a)
and 2(b) we report the anticollinear order parameter

M90(x) = |(Ŝi − Ŝk ) × (Ŝ j − Ŝl )|, (3)

where (i, j, k, l ) defines the same plaquette as in Eq. (2) [see
Fig. S1(a)]. Our results confirm that the order stabilized in
region A in Fig. 2(b) is the 90◦ order. Local fluctuations of
the 90◦ order around impurities percolate and form a stable
order at low temperature. At high temperature the entropic
contribution dominates and the Ising-like order is recovered
[Fig. 1(b)]. Note, however, that if the magnetic moment of the
dopant is large (r = 2), the entropic contributions are not able
to recover the collinear order and the 90◦ order surprisingly
stabilizes at high temperature until the paramagnetic phase
is obtained [Fig. 2(c)], leading to a suppression of the Ising
order in between the undoped and fully doped regions. This
has been observed in the superconducting pnictides doped
with Ir [15] where the collinear order is suppressed when the
dilution is greater than δ > 0.047. This is in agreement with
the quenching of the collinear phase observed with impurity
ratio r = 2 in the doping region δ = [0.2, 0.8]. Indeed in

Fig. 2(c) we can clearly see that at approximatively half
doping the low-temperature range is fully dominated by the
anticollinear order (M90) being the collinear order, (MZ2 ) equal
to zero [Fig. 1(c)]. Note that this mechanism is not obtained
by doping with nonmagnetic impurities [Figs. 1(a) and 2(a)],
as the suppression of the Ising-like order is not concomitant
with the stabilization of a competing order.

In the dilution range δ < 0.2 and δ > 0.8 (case r = 2),
the competition between the entropic and the energetic con-
tribution is restored and interestingly we observed that the
reentrance transition [region A to B, Figs. 1(b) and 2(a), low
dilution] is characterized by a sharp crossover.

V. ANALYSIS OF THE REENTRANCE
PHASE TRANSITION

The reentrance phenomena and the transition between the
collinear MZ2 and anticollinear M90 order can be explained on
the basis of the single-impurity results at finite temperature.
We observe in Fig. 3(a) that there is a sharp crossover between
M90 and MZ2 . This suggests that there is a crossing of the free
energies of the 90◦ and collinear orders at the transition, where
the competition in the free energies F = E − T ∗ S happens
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FIG. 4. Color maps of the specific heat as a function of temperature and dilution for a L × L = 50 × 50 lattice respectively for magnetic
impurities r = 1.5 (a), r = 2 (b), and r = 0 (c). Colors range from blue (minimum) to red (maximum). Black dashed lines are a guide to
the eyes to distinguish the three ordered states: A (anticollinear), B (collinear), and C (paramagnetic). (d) shows the temperature-dependent
behavior of the anticollinear (black dotted line), the collinear (red dotted line) order parameter, and specific heat (green dotted line in the inset)
for fixed dilution δ = 25% and r = 2. (J2/J1 = 0.55.)

between the energy term E and entropic contribution T ∗ S.
As this process is very much dependent on the local disor-
der configurations, the temperature associated with the sharp
crossover is also dependent on the disorder configurations. In
an experiment, or in our computed physical observables which
are averaged over large disorder samples, the transition is a
smooth crossover, hiding the physical explanation related to
the competition of energetic and entropic terms.

Remarkably, the mechanism which determines the energy
vs entropy competition is different respectively to vacancies
or magnetic doping. Indeed in the case of nonmagnetic impu-
rity the transition between the anticollinear and the collinear
phase is happening through a coexistent phase: it was shown
(Ref. [26]) that at finite temperature the anticollinear order
stabilizes locally around the impurity and with the collinear
states recovered outside this region. Instead, in the case of
magnetic impurities, we observe that the magnetic phase
which characterizes the crossover is not a coexistent phase of
collinear and anticollinear order. Indeed looking at Fig. 3(c)
we observe that there exists a magnetic phase different
from both the anticollinear [Fig. 3(b)] and the collinear case
[Fig. 3(d)]. This intermediate phase consists of two distinct
antiferromagnetically ordered states on two sublattices with

a relative angle α between their magnetization axis, which is
selected by the impurity spin direction.

The transition between the 90◦ and collinear order is ratio-
nalized with respect to the lattice size in Figs. 3(e) and 3(f),
where we show the order parameters at three different tem-
peratures, T = 10−4, 10−3, 10−2J1, for a single impurity em-
bedded in a lattice of size from L = 10 to 20. Note that
periodic conditions are used in this simple model, such that
the lattice size mimics the average distance between impu-
rities at high dilutions. At low temperature T = 10−4, as
entropic contributions are absent, we observe that the 90◦
order dominates as expected for all cases [analytic argument at
T = 0 in Supplemental Material Fig. S1(b)]. As temperature
is increased to T = 10−3 and T = 10−2, we observe that the
90◦ is stabilized at small L, but the collinear order wins in
larger lattices where the entropic contributions in turn become
larger. This illustrates the mechanism obtained around the
large dilution (small L), where the 90◦ order is stabilized, and
at low dilutions (large L), where the collinear order wins.

Further insights about the transition between the different
magnetic phases are shown in Fig. 4. For doping with mag-
netic impurities [Fig. 4(a)], we obtain as expected a large
peak in the specific heat at the transition associated with
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the loss of the collinear order [region B to C, Fig. 1(b)].
As we do not observe a drop in the specific heat along the
Ising-like transition in Fig. 4(a) (where r = 1.5), we conclude
that the transition remains second order along this line. Sur-
prisingly a continuous transition occurs also in Fig. 4(b) (with
r = 2) between the anticollinear and the paramagnetic phase,
even if the Ising-like order is zero for all T . In more detail
we observe in Fig. 4(d) that at fixed dilution δ = 25% the
melting of the anticollinear order occurs with a continuous
crossover associated with a nondivergent peak of the specific
heat (further details are shown in the Supplemental Material
Figs. S4 and S5). Note that the specific heat also indicates
weak fluctuations at the reentrance transition (region A to B)
which are, however, of a different nature since related to the
sharp crossover between the collinear and the anticollinear
phase (see Supplemental Material Fig. S5.)Thus for r = 2 we
individuate the crossing of the three different magnetic phases
[anticollinear (A), collinear (B), and paramagnetic (C)].

For doping with nonmagnetic impurities Fig. 4(c) we ob-
serve the irising of the peaks for the Ising-like transition (fixed
low doping), which is consistent with what is observed so far
in the case of magnetic impurities. A more interesting and
novel behavior is observed at fixed low temperature where
there exists a continuous pathway which does not involve any
sharp transition. This is crucial for applications because it
does not involve any energy cost. This was not observed in
the previous work because no fluctuations were considered.
At zero temperature, we observe that there are no energy
fluctuations associated with the percolation transition which
is instead indicated by the sudden disappearance of the sus-
ceptibility at 8% in Supplemental Material Fig. S6, typical of
a first-order transition.

VI. CONCLUSION

In conclusion we found that the order-by-disorder entropy
selection, associated with the Ising-like phase transition that
appears for J2/J1 > 1/2 in the pure spin model, is quenched at
low temperature due to the presence of impurities. Indeed, ir-
respective of the magnetic ratio of the dopant an anticollinear
order is stabilized around the impurities, which in turn induces
a reentrance of the Ising-like phase transition. The melting
of the collinear order occurs via two different mechanisms:
(i) through a percolation transition from increasing dilution
(at fixed temperature) and (ii) via a sharp crossover due to the
energetic versus entropic contribution increasing temperature
(at fixed doping). While the former exists irrespective to the
nature of the dopant the latter is highly affected by the ratio
of the magnetic impurities. Remarkably we identify a regime
where the anticollinear order is stabilized at finite temperature
without going through the collinear phase.
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