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Magnetic structure and magnetization of z-axis helical Heisenberg antiferromagnets with XY
anisotropy in high magnetic fields transverse to the helix axis at zero temperature
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A helix has a wave vector along the z axis with the magnetic moments ferromagnetically aligned within
xy planes with a turn angle kd between the moments in adjacent planes in transverse field H = Hx î = 0. The
magnetic structure and x-axis average magnetization per spin of this system in a classical XY anisotropy field
HA is studied versus kd , HA, and large Hx at zero temperature. For values of HA below a kd-dependent maximum
value, the xy helix phase transitions with increasing Hx into a spin-flop (SF) phase where the ordered moments
have x, y, and z components. The moments in the SF phase are taken to be distributed on either one or two xyz
spherical ellipses. The minor axes of the ellipses are oriented along the z axis and the major axes along the y
axis where the ellipses are flattened along the z axis due to the presence of the XY anisotropy. From energy
minimization of the SF spherical ellipse parameters for given values of kd , HA, and Hx , four kd-dependent SF
phases are found: either one or two xyz spherical ellipses and either one or two xy fans, in addition to the xy
helix/fan phase and the paramagnetic (PM) phase with all moments aligned along H. The PM phase occurs via
second-order transitions from the xy fan and SF phases with increasing Hx . Phase diagrams in the Hx-HA plane
are constructed by energy minimization with respect to the SF phases, the xy helix/fan phase, and the xy SF
fan phase for five kd values. One of these five phase diagrams is compared with the magnetic properties found
experimentally for the model helical Heisenberg antiferromagnet EuCo2P2 and semiquantitative agreement is
found.
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I. INTRODUCTION

A reformulation of the Weiss molecular field theory for
Heisenberg magnets containing identical crystallographically-
equivalent spins was developed recently, termed the unified
molecular field theory (MFT), which treats collinear and
noncollinear antiferromagnets on the same footing and is
expressed in terms of physically measurable parameters in-
stead of molecular-field or exchange coupling constants [1–3].
The influences of magnetic-dipole and single-ion anisotropies
and classical anisotropy fields on the magnetic properties of
such Heisenberg antiferromagnets were also studied within
unified MFT [4–6]. Of particular interest in the context of
this MFT are coplanar noncollinear magnetic structures such
as those of GdB4 and triangular antiferromagnets [1,3] and
of helical antiferromagnets (see Fig. 1) such as MnO2 [7]
and MnAu2 [8]. More recently the helical antiferromagnets
EuCo2P2 and EuCo2As2 have been studied for which the
MFT provides a good description of the anisotropic magnetic
susceptibility below their respective antiferromagnetic (AFM)
ordering temperatures TN [9–12]. Some rare-earth metals also
show AFM planar helix or related cone structures [13].

Previously, the magnetic structure and magnetization of
a planar helical antiferromagnet in a high applied magnetic
fields H perpendicular to the helix wave vector axis (z axis)
at temperature T = 0 was calculated where the ordered mag-
netic moments were restricted to lie in the xy plane [14,15].
This is the plane in which the ordered moments reside in zero
field as shown in Fig. 1. This situation corresponds to infinite
XY planar anisotropy. Continuous crossover, second-order,

and first-order transitions were found between the planar helix
and planar fan phases with increasing H [14,15], the nature of
which depends on the helix wave vector k. The influence of
a high z-axis field on the magnetic moment vectors for the
helix phase is shown in Fig. 2. The magnetization versus field
for this case was calculated in Ref. [2]. In Ref. [15], the ex-
perimental high xy-plane field data at low temperatures T for
a single crystal of the helical antiferromagnet EuCo2P2 [10]
containing Eu+2 spins S = 7/2 were fitted rather well by
the theory for kd = 6π/7, close to the value from neutron-
diffraction measurements [9]. However, the presence of a
field-induced out-of-plane component of the magnetic mo-
ments was not ruled out.

The T = 0 calculations were extended to the case of finite
XY anisotropy for fields applied perpendicular to the helix
axis, where phase transitions between the helix, a three-
dimensional spherical ellipse spin-flop (SF), xy fan, and
the paramagnetic (PM) phases were found for small turn
angles kd [14]. This work was later extended to include
study of the magnetic structures at finite temperatures using
molecular-field theory [16,17], where the influence of in-plane
anisotropy was also studied. Numerical solutions for the in-
plane structures at T = 0 were also obtained for arbitrary
interlayer interactions and arbitrary in-plane anisotropy and
applied fields [18]. These treatments are not straightforward
to apply to obtain fits of magnetization versus in-plane field
data for real materials.

Here we extend the previous T = 0 calculations to arbi-
trary rational kd values for finite classical XY anisotropy
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FIG. 1. Generic helical AFM structure [1]. Each arrow represents
a layer of moments perpendicular to the z axis that are ferromag-
netically aligned within the xy plane and with interlayer separation
d . The wave vector k of the helix is directed along the z axis. The
magnetic moment turn angle between adjacent magnetic layers is
kd . The nearest-layer and next-nearest-layer exchange interactions J1

and J2, respectively, within the J0-J1-J2 Heisenberg MFT model are
indicated. The top view is a hodograph of the magnetic moments.

using our formulation of the classical XY anisotropy field
HA that was originally developed within unified molecular
field theory [6]. We assume that for H aligned along the x
axis, transverse to the helix z axis, the moments can exhibit
a transition to one of two types of three-dimensional SF
spherical-ellipse phases with increasing Hx with the x axis in-
tersecting the center of each spherical ellipse. One type arises
for either ferromagnetic (FM, J1 < 0) or antiferromagnetic
(AFM, J1 > 0) nearest-layer interactions J1 in Fig. 1 and the
second type sometimes occurs for AFM J1 at low Hx and small
HA1. All helices have AFM J2 > 0 [2]. The spherical-ellipse
nature of the magnetic structures in the SF phase arises from
the XY anisotropy and the fixed magnitude of the moments at
T = 0.

The average energy per spin of a helical spin system
with the moments aligned in the xy plane versus Hx in the

Planar Helix Antiferromagnet
H

H = 0 z

FIG. 2. Hodograph of the magnetic moments in a planar helical
structure in the xy plane with applied field (left) H = 0, and (right)
with a large H applied along the helix wave-vector z axis [2].

case of infinite XY anisotropy field HA was calculated for
T = 0 in Ref. [15]. Here we calculate the average energy
per spin at finite HA, minimized at fixed kd and HA with
respect to the spherical ellipse parameters for the two types
of spherical-ellipse SF phases, and compare its energy at each
field with that of the planar xy helix/fan phase at the same Hx

to determine the stable phase. The PM phase arises naturally
from the SF → xy fan → PM and xy helix → xy fan →
PM phase progression with increasing Hx. This allows the
magnetic phase diagram in the Hx–HA plane at T = 0 to be
constructed, which we carry out for five values of the turn
angle kd . As part of these calculations, we obtain and present
the x-axis average magnetic moment per spin μx ave versus Hx

and HA for the same five values of kd which also reveal the
phase transitions as well as their first- or second-order nature.

The unified MFT used in the present work for both zero
and finite temperatures is described in the Appendix, where
the general aspects of the theory are reviewed in Sec. A 1
and the application of those to the one-dimensional J0-J1-J2

model (see Fig. 1) is given in Sec. A 2. The model for
the SF phase is presented in Sec. II. From minimization of
the energy with respect to the SF, xy helix/fan and SF fan
phases for five values of kd , the resulting five T = 0 phase
diagrams in the Hx-HA plane are presented in Sec. III and
Ref. [19], where our previous calculations for the energies of
the xy helix/fan phases in Ref. [15] are utilized. The methods
needed to interface our theoretical T = 0 phase diagrams
with experimental low-T magnetization versus field M(H )
isotherms and magnetic susceptibility measurements versus
T for helical Heisenberg antiferromagnets are presented in
detail in Secs. IV A and IV B. A comparison of the phase
diagram for kd = 5π/6 rad with the properties obtained
from M(H ) isotherm data at T = 2 K for EuCo2P2 with
kd ≈ 0.85π rad [10] is given in Sec. IV C, and reasonable
agreement is found. The results of the paper are summarized
and discussed in Sec. V.

II. MODEL FOR THE SPIN-FLOP PHASE

The reduced applied magnetic field h∗∗
x and reduced

anisotropy field h∗∗
A1 discussed here are defined in Eqs. (A19).

Values of the average energy per spin and the average x-
axis magnetic moment per spin versus the reduced field h∗∗

x
when the moments in a zero-field helix and high-field fan
are confined to the xy plane were calculated for T = 0 in
Ref. [15]. Here we calculate these T = 0 properties for the
SF phase where the moments flop out of the xy plane due to a
nonzero h∗∗

x . A comparison of the average energy per spin in
the helix and SF phases versus h∗∗

x and h∗∗
A1 will be needed for

the construction of the T = 0 phase diagrams in the h∗∗
x -h∗∗

A1
plane.

In the absence of an anisotropy field, in zero applied field a
hodograph of the moments in a helix is a circle in the xy plane
as shown in Fig. 1. For an infinitesimal h∗∗

x , the moments flop
by 90◦ into the yz plane, thus forming a circular hodograph in
the yz plane with an infinitesimal tilt of each spin towards the
x axis. However, in the presence of a finite XY anisotropy field
h∗∗

A1, we assume that the latter circle is flattened into an ellipse
in the yz plane where the semimajor axis a of the ellipse is
along the y axis and the semiminor axis b is along the z axis,
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as found analytically for a special case in Ref. [14]. Due to the
fact that we only consider T = 0, the moment magnitude μ is
fixed at the value given in Eq. (A1c). Hence a hodograph of
the moment unit vectors μ̂ in the presence of a nonzero h∗∗

x is
a spherical ellipse of radius unity, which is the projection of a
two-dimensional ellipse in the yz plane onto a sphere of radius
unity. The magnitude μ of the magnetic moments is taken into
account in the reduced fields h∗∗

x and h∗∗
A1.

In the spin-flop phase with finite h∗∗
x and h∗∗

A1, one expects
at least for the case of AFM J12 > 0 with the applied field
in Eq. (A11), that two spherical elliptic paths (hodographs) A
and B traversed by the magnetic-moment unit vectors could
occur in which the x components have opposite signs in order
to decrease the value of exchange interaction energy between
spins in adjacent layers. Then the reduced moments with even
n in sublattice A are described by

μ̂An = μ̄Anx î + μ̄Any ĵ + μ̄Anz k̂ (n even), (1a)

μ̄Any = aA cos(nkd ), (1b)

μ̄Anz = bA sin(nkd ), (1c)

μ̄Anx =
√

1 − (
μ̄2

Any + μ̄2
Anz

)
, (1d)

and the moments in sublattice B with odd n are described by

μ̂Bn = μ̄Bnx î + μ̄Bny ĵ + μ̄Bnz k̂ (n odd), (1e)

μ̄Bny = aB cos(nkd ), (1f)

μ̄Bnz = bB sin(nkd ), (1g)

μ̄Bnx = c
√

1 − (
μ̄2

Bny + μ̄2
Bnz

)
, (1h)

where c = ±1, n = 1, 2, . . . , nλ, and for each n within each
sublattice Eq. (A1f) is satisfied. The moments are distributed
in equal numbers between sublattices A and B, labeled by
consecutive odd and even integers n, respectively, so the total
number of moments nλ per wavelength λ = nλd along the z
axis is even. An illustration of the spherical ellipse paths of
the moments on sublattices A and B described by Eqs. (1) is
shown in Fig. 3 for c = −1, aA = aB = 0.8 and bA = bB =
0.2. The value c = −1 corresponds to two spherical-elliptic
paths on opposite sides of μ̄x = 0 for sublattices A and B
as shown in the figure. This may be expected at small h∗∗

x
for AFM J1 > 0, whereas when c = 1, the paths are on the
same side of the positive μ̄x axis towards which the applied
magnetic field H points, as expected for all moments for large
h∗∗

x with either AFM or FM J1.
The spherical-ellipse parameters c, aA, bA, aB, bB are

all determined at the same time by minimizing the normal-
ized average energy per spin Eave/(S2J2) in Eq. (A20b) with
respect to these parameters in Eqs. (1) when inserted into
Eq. (A20a) for fixed values of h∗∗

A1 and h∗∗
x . If the obtained

values satisfy c = −1 or c = 1 with aA �= aB, bA �= bB, then
there are two spherical ellipses, one on each side of μ̄x = 0
if c = −1 and both on the μ̄x > 0 side if c = 1. On the other
hand, if bA and bB satisfy bA = bB = 0 (no z-axis component
to the moments), either one (aA = aB) or two (aA �= aB) xy
fan phases are found. Finally, if aA = aB = bA = bB = 0, the
moments all point in the direction of the applied field in the
+x direction and the system is in the PM state.

FIG. 3. Spherical-ellipse paths (hodographs) of the magnetic
moment unit vectors �μ/μ in sublattices A and B in the spin-flop
(SF) phase according to Eqs. (1) with the parameter c = −1. These
paths are elliptical in the yz plane with a constant radius of unity from
the origin of the Cartesian coordinate system. In this illustration, the
semimajor and semiminor axes of the elliptic paths in the yz plane
are set to aA = aB = 0.8, bA = bB = 0.2, but the equalities aA = aB

and bA = bB are generally not obtained for the SF phase from energy
minimization even when c = 1 and the spherical ellipses are both on
the positive side of x = 0 towards which the applied magnetic field
H points.

Once the spherical-ellipse parameters are determined, the
average value of x component of the magnetic moment unit
vector in the direction of the applied field for the given values
of h∗∗

x and h∗∗
A1 is obtained from

μ̄xave ≡ μxave

μ
= 1

nλ

nλ∑
n=1

μ̄nx (2)

using Eqs. (1d) and (1h).
The fitted values of Eave/(S2J2), μ̄xave, and of

c, aA, bA aB, bB are shown for representative values
kd = π/6 and π/4; π/3 and 3π/7; 13π/25 and 5π/9;
and 9π/11 and 5π/6; in Ref. [19]. One sees a variety of
possible SF phases for different values of h∗∗

A1 and of h∗∗
x ,

including a single spherical ellipse, a single xy fan, two
spherical ellipses, two xy fans, and at high fields, the PM
phase in which all moments are FM-aligned in the direction î
of the applied field. There is no clear monotonic dependence
versus kd in the order in which the first four phases occur.
A nonmonotonic behavior versus kd was previously found
in the range 4π/9 � kd < π for the phases occurring at
T = 0 versus applied x-axis field for the xy helix and xy fan
phases when the moments are confined to the xy plane [15].
The stable phases for 0 < kd < π/2 with FM (negative) J12

all have c = 1 for all h∗∗
x as anticipated, whereas two of the

stable phases for π/2 < kd < π with AFM (positive) J12
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have c = −1 at low fields, as also anticipated, and c = 1 at
high fields.

First-order transitions versus h∗∗
x occur when c discontinu-

ously changes with increasing h∗∗
x from −1 to 1 in Ref. [19]

for kd = 9π/11 and kd = 5π/6. The first-order nature of the
transitions is also revealed in the h∗∗

x dependencies of Eave,
μ̄x ave and the other four spherical ellipse parameters. The
transitions versus h∗∗

x for the other six kd values in Ref. [19]
are seen to be second order. When kd increases from 9π/11
to 5π/6, both with h∗∗

A1 = 1 in Ref. [19], a new second-order
transition at h∗∗

1 = 1.0 occurs for kd = 5π/6, whereas for
kd = 9π/11 the transition is instead a smooth crossover.

The reduced critical field h∗∗
c versus kd is the value at

which the system becomes PM with increasing h∗∗
x . These

second-order transition fields are listed for each of the eight
kd values and the specified values of h∗∗

A1 in Ref. [19]. We find
that h∗∗

c depends only on kd (not on h∗∗
A1), when nλ is even as

assumed in this paper. For h∗∗
x → h∗∗−

c , the stable phase for all
values of kd is a single fan in the xy plane, which was studied
in detail in Ref. [15]. The approximate values of h∗∗

c versus
kd listed in the figures in Ref. [19] are in agreement with the
respective exact values given for the xy fan by [15]

h∗∗
c = 16 sin4

(
kd

2

)
. (3)

III. PHASE DIAGRAMS IN THE h∗∗
x -h∗∗

A1 PLANE FOR
REPRESENTATIVE kd VALUES

As discussed above, the phases that can occur within MFT
are the xy helix phase with moments aligned in the xy plane
(xy helix/fan), the spin-flop (SF) phase with moments that
have three-dimensional components (xyz spin flop), the xy
fan phase with moments oriented within the xy plane (SF xy
fan) and the paramagnetic (PM) phase where the moments
are ferromagnetically aligned in the direction of the x-axis
reduced field h∗∗

x .
The phase boundary between the xy helix phase and the

xy fan phase of the helix when it occurs was determined
previously in Ref. [15], where the energies of the xy helix and
higher-field xy fan phases were determined versus h∗∗

x . How-
ever, here one needs to determine the influence of h∗∗

A1 on those
energies. Since these moments are confined to the xy plane,
the reduced energy of moment layer n for the xy helix and
associated high-field xy fan phases is given by Eq. (A20a) as

Ehelix/fan
n

S2J2
= 1

2
[J12(μ̂n · μ̂n+1 + μ̂n · μ̂n−1)

+ (μ̂n · μ̂n+2 + μ̂n · μ̂n−2)]

−(h∗∗
A1 + μ̄nxh∗∗

x ) (4a)

= Ehelix/fan
n

S2J2
(h∗∗

x , h∗∗
A1 = 0) − h∗∗

A1, (4b)

where the first term on the right-hand side of the bottom
equality was calculated for a variety of turn angles kd in
Ref. [15].

One anticipates that when h∗∗
A1 = 0, in order for the system

to minimize its energy an infinitesimal h∗∗
x causes the xy

helix to immediately spin-flop to a perpendicular orientation
in the yz plane. With further increases in h∗∗

x , the moments

all tilt by the same angle towards the x axis as shown in
Fig. 2 where the z axis in that figure is replaced by the x
axis here. When h∗∗

A1 increases to a finite value, one expects
a finite field to be required to cause the moments to flop out
of the xy plane to enter the SF phase. However, if h∗∗

A1 is
sufficiently large, this xy helix to xyz spin-flop transition is
expected to be replaced by the previously studied xy helix
to xy fan phase transition. These expectations are borne out
by the phase diagrams shown in Ref. [19] and Fig. 4(c)
below.

The reduced phase transition field h∗∗
x between the xy

helix phase and the xyz spin-flop phase for a given value
of reduced XY anisotropy field h∗∗

A1 was determined by the
crossover in average energy between these two phases, where
at low fields the xy helix phase has the lower energy and at
higher fields the xyz spin-flop phase energy is lower. This is
a first-order transition. The transition between the xy helix
phase and the high-field xy helix fan phase can be first-order,
second-order, or a smooth crossover [15]. The phase transition
field between the xyz SF and the PM phases or between the
xy SF fan phase and the PM phase are determined by the
criterion that the x component of the calculated average mo-
ment unit vector per spin μ̄x ave ≡ μx ave/μ becomes equal to
unity with increasing h∗∗

x . This is a continuous (second-order)
transition.

The phase diagrams in the h∗∗
x − h∗∗

A1 plane at T = 0 cal-
culated for the four turn angles kd = π/6, π/4, π/3, and
3π/4 rad are shown in Ref. [19]. The first three turn angles
correspond to FM nearest-layer couplings J1 < 0 whereas the
fourth one is for an AFM J1 > 0. One sees that the phase
diagrams follow the above expectations. The first three phase
diagrams with FM kd < π/2 have common forms, where
approximately the same phase diagram is obtained but with a
rescaling of the h∗∗

x and h∗∗
A1 axes. In all three phase diagrams

the phase transition line between the xyz spin flop and the xy
fan phases is linear or nearly so. Another interesting feature
is that all three phase diagrams show a horizontal first-order
xy helix to xy fan phase boundary at large h∗∗

A1 values. This
occurs at the respective first-order transition fields h∗∗

t be-
tween these two xy phases reported previously in Ref. [15].
These three phase diagrams are similar in form to the T = 0
phase diagram in Fig. 4 of Ref. [14] for small values of kd .
The phase diagram for kd = 3π/4 in Ref. [19] for kd > π/2
corresponding to AFM J1 > 0 is different from the other
figures where the nearest-layer coupling is FM. In Fig. 4, the
phase diagram and other data for kd = 5π/6 are shown which
will be compared with experimental data for EuCo2P2 in the
following section.

We emphasize that the transitions versus h∗∗
x at fixed h∗∗

A1
for the SF phase shown in Ref. [19] and Fig. 4(c) for particular
values of kd are only observed in a real helical Heisenberg
AFM compound if the SF phase has a lower energy than
each of the xy helix and xy helix fan phases for the particular
values of kd , h∗∗

A1 and range of h∗∗
x that are associated with

the compound. Indeed, we show that for the model helical
Heisenberg antiferromagnet EuCo2P2 discussed in Sec. IV C
below, the values of kd and h∗∗

A1 do not allow the SF phase to
have a lower energy than the xy helix or xy helix fan phases
for any value of h∗∗

x . Hence only the xy helix, xy helix fan, and
PM phases occur with increasing h∗∗

x .
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FIG. 4. (a) Phase angles φn (n = 2, 7, 0, 5, 10, 3) with respect
to the positive x axis of the six inequivalent moments in a helix
with kd = 5π/6 confined to the xy plane at T = 0 in the notation
of Ref. [15]. (b) Average x-axis moment vs h∗∗

x calculated from the
data in (a). The data in (a) and (b) were not presented in Ref. [15].
(c) Phase diagram in the h∗∗

x -h∗∗
A1 plane at T = 0.

IV. COMPARISON OF THE THEORY WITH EXPERIMENT

A. Expressing h∗∗
A1 and h∗∗

x in terms of experimental values of
hA1 and hx

In order to compare experimental magnetic data for helical
Heisenberg antiferromagnets with the above theory, one needs
to determine which region of the phase diagram (xy helix
phase, xy helix fan phase, xyz SF phase, xy SF fan phase, or
PM phase) a material lies for the material’s values of h∗∗

x and
h∗∗

A1. Then one can compare the experimental M(H ) data for
the compound at low T with the theoretical phase diagrams to
determine what phase transitions are predicted versus x-axis
field for comparison with the experimental M(H ) data.

To accomplish this comparison, one must first determine
how the value of the reduced applied field h∗∗

x and anisotropy
field h∗∗

A1 in this paper are expressed in terms of the reduced
applied field hx and reduced anisotropy field hA1 defined in
Ref. [6] that can be obtained from experimental magnetic
susceptibility data (see following section). From Ref. [6], one
has

hA1 ≡ gμBHA1

kBTNJ
, (5a)

where kB is Boltzmann’s constant and TNJ is the Néel tem-
perature that would be obtained from Heisenberg exchange
interactions alone with no anisotropy contributions. A com-
parison of this definition with that for h∗∗

A1 in Eq. (A19b) gives
the conversion

h∗∗
A1 =

[
3

2S(S + 1)

](
kBTNJ

J2

)
hA1. (5b)

Similarly, a comparison of the definition [6]

hx ≡ gμBHx

kBTNJ
(5c)

with that for h∗∗
x in Eq. (A19a) yields

h∗∗
x = 1

S

(
kBTNJ

J2

)
hx. (5d)

These conversions require the spin S to be known and
also the material-specific ratio kBTNJ/J2 within the J0-J1-J2

MFT model to be computed from magnetic susceptibility data
for single crystals of the material. The latter calculation also
yields J0 and J1 as discussed in the following section.

B. Extracting values of hA1, TNJ , J0, J1, ad J2 from experimental
magnetic susceptibility data within unified

molecular-field theory

The value of the experimental XY anisotropy parameter
hA1 is estimated from the anisotropy in the experimental Weiss
temperatures θpα in the Curie-Weiss law fitted to magnetic
susceptibility data in the PM state of uniaxial single crystals
according to [6]

θp ab − θp c = TN

(
hA1

1 + hA1

)
, (6)

where the ab crystal plane corresponds to the xy plane in the
theory and the c axis to the z axis, and TN is the measured
Néel temperature including both exchange and anisotropy
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contributions. Then the Néel temperature TNJ due to exchange
interactions alone is found from

TNJ = TN

1 + hA1
. (7)

The Weiss temperature θpJ in the Curie-Weiss law due to
exchange interactions alone is the spherical average

θpJ = 2θp ab + θp c

3
(8)

of the measured values θp ab and θp c.
Once TNJ and θpJ are determined for a particular com-

pound, one can determine the parameters J0, J1, and J2 within
the J0-J1-J2 MFT model by solving for them from the three
simultaneous equations [2]

cos(kd ) = − J1

4J2
,

θpJ = −S(S + 1)

3
(J0 + 2J1 + 2J2), (9)

TNJ = −S(S + 1)

3
[J0 + 2J1 cos(kd ) + 2J2 cos(2kd )],

where J2 > 0, the Ji are expressed here in temperature units,
and the turn angle kd is assumed to be known from neutron
diffraction measurements and/or from fitting the xy-plane
magnetic susceptibility below TN by MFT [1–3]. The solu-
tions for J0, J1, and J2 obtained from Eqs. (9) are

J0 = −3 csc4(kd/2)

8S(S + 1)
{TNJ [1 − 4 cos(kd )]

+ θpJ [2 + cos(2kd )]}, (10a)

J1 = −3 csc4(kd/2)

4S(S + 1)
(TNJ − θpJ ) cos(kd ), (10b)

J2 = 3 csc4(kd/2)

16S(S + 1)
(TNJ − θpJ ). (10c)

C. Application to the model molecular-field helical Heisenberg
antiferromagnet EuCo2P2

EuCo2P2 is a model MFT helical Heisenberg antiferromag-
net with the Eu+2 spins situated on a body-centered-tetragonal
sublattice with properties given by [10]

S = 7/2, (11a)

TN = 66.6 K, (11b)

kd = 0.852π rad, (11c)

θp ab = 23.0 K, (11d)

θp c = 18.2 K (11e)

where the value of kd was obtained by neutron diffraction
measurements at T = 15 K 	 TN [9] and is close to the value
kd = 5π/6 = 0.833π in Fig. 4. Using g = 2 and Eqs. (5c)
and (7) to (10), one obtains

hA1 = 0.078, (12a)

TNJ = 61.8 K, (12b)

J0/kB = −9.0 K, (12c)

FIG. 5. High-field magnetization Mab vs magnetic field H ap-
plied in the crystallographic ab plane (the xy plane in the theory here)
perpendicular to the helix c (z) axis [10]. The saturation moment is
Msat = gSμB, where the spectroscopic splitting factor is taken to be
g = 2, the Eu+2 spin to be S = 7/2, and μB is the Bohr magneton.

J1/kB = 1.92 K, (12d)

J2/kB = 0.54 K, (12e)

h∗∗
A1 = 11.0hA1 = 0.85, (12f)

h∗∗
x = 32.9hx = 0.72Hx[T], (12g)

h∗∗
c = 32.9hc

= 0.72Hc[T], (12h)

where 1 T = 104 Oe. The negative value of J0 is consistent
with the FM alignment of the moments in each helix layer,
and the positive values of J1 and J2 indicate AFM interlayer
couplings with J2 < J1 as would be expected. A positive AFM
value of J2 is required to form a helix structure. Using Eqs. (3)
and (12h) and the value of kd in Eq. (11c), one obtains
predictions for the reduced and actual critical fields as

h∗∗
c = 15.6, (13a)

Hc = 21.7 T (13b)

The value for Hc is close to the fitted value of 25.4 T obtained
in the following.

The value h∗∗
A1 = 0.85 in Eq. (12f) places EuCo2P2 near the

right edge of the phase diagram in Fig. 4(c) where a weakly
first-order transition from the xy helix phase to the xy fan
phase occurs at a field of 58.5% of the critical field. We first
fit the experimental Mab(H ) data for a single crystal with the
applied field in the ab (i.e., xy) plane shown in Fig. 5 to obtain
an estimate of the critical field Hc. Using the prediction of
M(H ) for kd = 5π/6 = 0.833π in Fig. 4(b), the fit shown in
Fig. 5 is obtained with the fitted value

Hc = 25.4 T. (14)

The fit semiquantitatively reproduces the overall upward cur-
vature of the data, although the S-shape centered in the data
at ≈7 T occurs at a somewhat higher field than the value
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of ≈5 T in the fit. Not surprisingly, a similar-quality fit was
previously obtained assuming kd = 6π/7 ≈ 0.857π for the
helix/fan phase confined to the xy plane [15].

V. SUMMARY AND DISCUSSION

The present work is a continuation of the development and
use of the unified molecular field theory for systems con-
taining identical crystallographically-equivalent Heisenberg
spins [1–3]. This MFT has significant advantages over the pre-
vious Weiss MFT because it treats collinear and noncollinear
AFM structures on the same footing and the variables in
the theory are expressed in terms of directly measurable
experimental quantities instead of ill-defined molecular-field
coupling constants or Heisenberg exchange interactions.

As part of this development, the influences of several
types of anisotropies on the magnetic properties of Heisenberg
antiferromagnets were calculated [4–6], including a classical
anisotropy field [6] that was used to good advantage in the
present work. This allowed the transverse-field dependence of
the spin-flop phases of helical antiferromagnets to be easily
calculated in the presence of finite XY anistropy. The present
work allowed the possibility of either one or two coexisting
spherical elliptical hodographs of the moments in the spin-flop
phase that enhanced the flexibility for the system to attain a
minimum energy versus applied and anisotropy fields.

Together with the previous work on the xy helix and xy fan
phases that occur under x-axis fields and their corresponding
energies at T = 0 [15], the present results on the spin-flop
and associated fan energies were utilized to construct x-axis
field Hx versus anisotropy field HA1 phase diagrams that can
be compared directly with low-T experimental magnetization
versus transverse field data for helical antiferromagnets. Care
was taken to explain how to do this. Then a comparison of
the theory with the magnetic behavior of the model MFT
helical Heisenberg antiferromagnet EuCo2P2 was carried out.
Semiquantitative agreement was found and the value of the
extrapolated critical field Hc was determined.

A previous theoretical study was reported of the helix-
to-fan transition at T = 0 that occurs with increasing x-axis
magnetic field transverse to the helix z axis when the local
moments are confined to the xy plane [14]. These authors also
calculated the transverse field versus XY anisotropy phase
diagram as in our Fig. 4(c) and Ref. [19] but for small values
of the helix turn angle kd where the moments spin-flop out
of the xy plane into a single spherical ellipse phase with the
axis of the spherical ellipse parallel to the applied transverse
field [14]. In the present work the range of kd was extended
and the SF phase contained either one or two spherical ellipses
instead of one. For 0 < kd < π/2 rad, the topology of our
phase boundaries and the phases themselves are similar to
theirs. However, we found significant differences between
the phase diagrams for kd = 3π/4 and 5π/6 and the phase
diagrams for kd < π/2 rad.

Since the theoretical predictions were obtained using MFT,
quantum fluctuations are not taken into account and hence
the predictions are expected to be most accurate for helical
Heisenberg antiferromagnets containing large spins such as
Mn+2 ions with spin S = 5/2 and Gd+3 and Eu+2 ions with
S = 7/2. Although the calculated phase diagrams are for T =

0, in practice this means that experimental data with which the
theoretical phase diagrams are compared should include data
at temperatures much lower than the AFM ordering (Néel)
temperature, a restriction that is often easy to accommodate
as in the presently-examined case of EuCo2P2. Future work
could profitably include classical ground-state Monte Carlo
simulations to test our model for the spin-flop phase and
associated field-dependent magnetization.
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APPENDIX: THEORY

1. General theory

All spins are assumed to be identical and crystallograph-
ically equivalent which means that they each have the same
magnetic environment. The magnetic moment �μn of spin n is

�μn = −gμBSn (A1a)

where the negative sign arises from the negative charge on
an electron, g is the spectroscopic splitting factor of each
moment, μB is the Bohr magneton, and Sn is the spin angular
momentum of �μn in units of h̄ which is Planck’s constant h
divided by 2π . One can also write

�μn = μ μ̂n, (A1b)

where μ = |�μ|. At T = 0 as considered in this paper, μ is the
saturation moment given from Eq. (A1a) as

μ = gμBS. (A1c)

In Cartesian coordinates, the unit vector μ̂n in the direction of
�μn is written as

μ̂n = μ̄nx î + μ̄ny ĵ + μ̄nz k̂, (A1d)

where the Cartesian unit vectors pointing towards the positive
x, y, and z directions are î, ĵ, and k̂, respectively, and

μ̄nx,ny,nz ≡ μnx,ny,nz

μ
. (A1e)

Therefore

μ̂n · μ̂n = 1 = μ̄2
nx + μ̄2

ny + μ̄2
nz. (A1f)

The energy per spin En of a representative spin Sn inter-
acting with its neighbors Sn′ and with the classical anisotropy
field HAn and applied magnetic field H is

En = Eexchn + EAn + EHn. (A2)

The Heisenberg exchange energy per spin Eexchn is [2]

Eexchn = 1

2
Sn ·

∑
n′

Jnn′Sn′ , (A3)
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where the prefactor of 1/2 is due to the fact that the exchange
energy from interaction between a pair of spins is equally
shared between the members of the pair, and Jnn′ is the
Heisenberg exchange interaction between spins Sn and Sn′ .
Writing the classical expression

Sn · Sn′ = S2 cos αnn′ , (A4)

where αnn′ is the angle between �μn and �μn′ , Eq. (A3) becomes

Eexchn = S2

2

∑
n′

Jnn′ cos αnn′ . (A5)

In terms of the magnetic moments, this can be written

Eexchn = S2

2

∑
n′

Jnn′μ̂n · μ̂n′ . (A6)

The anisotropy energy EAn is assumed to arise from a
classical anisotropy field HAn originating fundamentally from
two-spin interactions (i.e., not from single-ion anisotropy) that
is given by [6]

EAn = −1

2
�μn · HAn = −μ

2
μ̂n · HAn, (A7)

where the prefactor of 1/2 arises for the same reason as in
Eq. (A3). The HAn seen by �μn is proportional to the projection
of μ̂n onto the xy plane according to [6]

HAn = 3HA1

S + 1
(μ̄nx î + μ̄ny ĵ), (A8)

where HA1 is the so-called fundamental anisotropy field.
Inserting Eqs. (A1d) and (A8) into (A7) and using Eq. (A1c)
gives

EAn = − 3S

2(S + 1)
gμBHA1

(
μ̄2

nx + μ̄2
ny

)

= − 3S

2(S + 1)
gμBHA1

(
1 − μ̄2

nz

)
, (A9)

where the second equality was obtained using Eq. (A1f).
The Zeeman energy EHn of �μn in the applied magnetic field

H is

EHn = −�μn · H = −μμ̄nxHx = −gμBSμ̄nxHx, (A10)

where Eqs. (A1c) and (A1d) were used and H is assumed to
be applied in the î direction, transverse to the helix z axis, i.e.,

H = Hx î. (A11)

Inserting Eqs. (A6), (A9), and (A10) into (A2) gives the
energy per spin as

En = S2

2

∑
n′

Jnn′μ̂n · μ̂n′ − 3S

2(S + 1)
gμBHA1

(
1 − μ̄2

nz

)

− μ̄nxSgμBHx. (A12)

2. J0-J1-J2 one-dimensional MFT model for the exchange energy
of helical antiferromagnets

The J0-J1-J2 unified MFT model for the Heisenberg ex-
change interactions [1,2] is utilized to treat helical structures

such as illustrated in Fig. 1, where J0 is the sum of all Heisen-
berg exchange interactions between a representative spin Sn

in a FM-aligned layer with all other spins in the same layer,
J1 is the sum of the interactions of that spin with all spins in
a nearest-neighbor layer, and J2 is the sum of the interactions
of that spin with all spins in a next-nearest-neighbor layer, as
shown in Fig. 1. Within this MFT model, the exchange energy
of a representative spin Sn with magnitude S interacting with
its neighbors is given by Eq. (A5) for Hx = 0 and with spins
confined to the xy plane as

Eexchn = S2

2
[J0 + 2J1 cos(kd ) + 2J2 cos(2kd )], (A13)

where Jnn′ and α ji in Eq. (A5) are defined as J1 and kd
for a nearest-neighbor layer and by J2 and 2kd for a next-
nearest-neighbor layer, respectively, k is the magnitude of
the helix wave vector along the z axis and d is the distance
between layers as shown in Fig. 1. The prefactors of two in
the last two terms occur because each layer has two nearest-
layer neighbors and two next-nearest-layer neighbors. The
turn angle kd between adjacent FM-aligned layers in the
helix in zero applied field is given in terms of J1 and J2

by [2]

cos(kd ) = − J1

4J2
, (A14)

which we utilize in subsequent calculations in this paper.
This paper is particularly concerned with spin-flop phases

that can arise from an external field Hx that is perpendicular
to the helix z axis for which the moments are not confined to
the xy plane but also have z components. In that case, we still
assume that all moments in a layer perpendicular to the helix
z axis are FM aligned, but that the z component can vary from
layer to layer. Therefore, for the spin-flop phase, the exchange
energy per spin in Eq. (A13) is generalized to read

Eexchn = S2

2
[J0 + J1μ̂n · (μ̂n+1 + μ̂n−1)

+ J2μ̂n · (μ̂n+2 + μ̂n−2)]. (A15)

This equation reduces to Eq. (A13) if the z components of
the μ̂i are zero and the turn angle between the moments in
adjacent layers is kd as in the helix in Fig. 1 when the external
applied field is Hx = 0.

It is convenient to normalize all exchange constants by J2

because J2 > 0 for a helix [2]. Defining the dimensionless
ratios

J02 ≡ J0

J2
, J12 ≡ J1

J2
, J22 ≡ J2

J2
≡ 1, (A16)

Eq. (A15) becomes

Eexchn = S2J2

2
[J02 + J12μ̂n · (μ̂n+1 + μ̂n−1)

+ μ̂n · (μ̂n+2 + μ̂n−2)]. (A17)
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Then normalizing all energies by S2J2 [15], Eq. (A12) for
the energy per spin now reads

En

S2J2
= 1

2
[J02 + J12μ̂n · (μ̂n+1 + μ̂n−1)

+ μ̂n · (μ̂n+2 + μ̂n−2)] − 3S

2(S + 1)

gμBHA1

S2J2

(
1 − μ̄2

nz

)

− μ̄nxS
gμBHx

S2J2
. (A18)

Dimensionless reduced magnetic fields are defined as

h∗∗
x = gμBHx

SJ2
, (A19a)

h∗∗
A1 = 3S

2(S + 1)
h∗

A1, (A19b)

h∗∗
c = gμBHc

SJ2
(A19c)

where the last expression is the reduced critical field dis-
cussed in Sec. II. Using Eqs. (A19), the normalized energy
in Eq. (A18) becomes

En

S2J2
= 1

2
[J02 + J12μ̂n · (μ̂n+1 + μ̂n−1) + μ̂n · (μ̂n+2

+ μ̂n−2)] − [
h∗∗

A1

(
1 − μ̄2

nz

) + μ̄nxh∗∗
x

]
. (A20a)

Thus a nonzero out-of-plane component μ̄nz of a moment
unit vector μ̂n in Eq. (A1d) increases the energy of that
moment, as expected for XY anisotropy. However, we find
that the negative contribution of the h∗∗

x term can offset the
former positive contribution, leading to a net decrease in the
normalized average energy per moment

Eave

S2J2
= 1

nλ

nλ∑
n=1

En

S2J2
, (A20b)

where nλ is the integer number of moment layers per com-
mensurate wavelength that is assumed for the in-plane helix.

In order to compare the value of Eave/(S2J2) with that
calculated at T = 0 for an in-plane helix/fan for the same
h∗∗

x [15], in Eq. (A20a), we set

J12 = −4 cos(kd ) (A21a)

according to Eq. (A14), where

kd = 2πm/nλ (A21b)

is the turn angle in Fig. 1 between adjacent layers of a helix in
zero applied field with integer m < nλ, and is assumed to be
independent of both the applied and anisotropy fields. For this
comparison, we also set

J02 = 0. (A22)
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