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Landau-Lifshitz-Bloch equation for domain wall motion in antiferromagnets
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In this work, we derive the Landau-Lifshitz-Bloch equation accounting for the multidomain antiferromagnetic
(AFM) lattice at finite temperature, in order to investigate the domain wall motion, the core issue for AFM
spintronics. The continuity equation of the staggered magnetization is obtained using the continuum approxima-
tion, allowing an analytical calculation of the domain wall dynamics. The influence of temperature on the static
domain wall profile is investigated, and the analytical calculations agree well with the numerical simulations
on temperature-gradient-driven domain wall motion, confirming the validity of this theory. Furthermore, the
decrease of the acceleration and the increase of the saturation velocity of the domain wall with the increase of
temperature are uncovered for a fixed gradient. Moreover, it is worth noting that this theory could be also applied
to dynamics of various wall motions in an AFM system. The present theory represents a comprehensive approach
to the domain wall dynamics in AFM materials, a crucial step toward the development of AFM spintronics.
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I. INTRODUCTION

As promising materials for spintronics, antiferromagnets
have attracted significant attention recently because they show
fast magnetic dynamics and produce nonperturbing stray
fields [1–3], especially after the effective detection and manip-
ulation of antiferromagnetic (AFM) state were experimentally
realized [4–6]. Theoretically, the spin dynamics in an AFM
lattice can also be investigated using the Landau-Lifshitz-
Gilbert (LLG) equation based on the atomistic spin models,
and a number of driving mechanisms [7–16] have been pro-
posed to drive effectively the domain wall (DW) in an AFM
lattice. These important works not only contribute a great deal
to fundamental physics but also do provide useful information
for potential AFM spintronic devices.

Nevertheless, for a realistic spintronic device where the
lattice size under consideration is huge, atomistic spin models
are far from sufficient and an efficient computation based
on such atomistic models becomes nonrealistic due to the
computation capacity limit. Considering that an AFM DW
may have a spatial width as large as ∼10 nm, one sees
that the whole lattice used for the LLG-based micromagnetic
simulation must be at least as large as ∼100 nm if wall motion
is considered. This makes a computation impossible due to the
capacity limit, unless the lattice is cut down to ∼10 nm. At a
cost of physical reality, one has to set the axial anisotropies
two orders of magnitude stronger than realistic values, and
the DW becomes unreasonably narrow (∼1 nm). Moreover,
white-noise terms are usually included into the effective
field for the LLG dynamics in order to simulate temperature
(T)-dependent effects, which also add huge computation cost
to the simulations.
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As an alternative approximation, one may utilize the
coarse-grained scheme and use a macromoment mv/mk to
express the two sublattice magnetizations of a finite region
(called a grain) inside a AFM domain, and thus the LLG
equation on the macromoment mv/mk can be used without
increasing the computational cost much. However, the LLG-
based simulations fail to capture the fact that the magnetiza-
tion magnitude is a function of T: usually it decreases with
increasing T until the transition point TN . Thus, the AFM DW
dynamics at finite T especially near TN is hardly described
by the LLG simulations. Furthermore, the same problem
also exists in the derivation of the micromagnetic continuum
equations for staggered magnetization from the LLG equation
based on the coarse-grained scheme. Realistic appealing to
numerical approaches is thus raised in order to treat the
wall dynamics in an AFM system at finite T or T gradient,
noting that the T-relevant controls, e.g., T-gradient-driven wall
motions have been often taken in the AFM spintronic devices.

In short, there is an urgent need to develop an approach in
dealing with discrete and continuum models for AFM lattice
at elevated T. Compared to the LLG equation, the Landau-
Lifshitz-Bloch (LLB) equation introduces the longitudinal
relaxation to describe the T-dependent magnitude of the mag-
netization, making it possible to reasonably investigate the
DW dynamics at finite T even near TN . As a matter of fact,
it is noted that wall motion in a FM lattice under a T-gradient
field has been simulated using the LLB equation [17,18]. This
computation has been proven to be efficient in large-scale mi-
cromagnetic simulation of realistic spintronic devices at high
T and in short time. Reasonable results on the wall motion
and Walker breakdown in a multidomain FM lattice have been
obtained within the framework of the LLB equation. Most
recently, the results on the multidomain FM lattice suggested
a linear relation between the wall velocity and T gradient.
This relation was once applied to describe the domain wall
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motion in an AFM lattice. Unfortunately, this relation agrees
with numerical results under small T gradient, but deviates
seriously when the T gradient is large [14]. It is inconsistent
with the fact that the wall velocity should be limited by the
maximum spin-wave group velocity [9,10]. We would thus be
highly concerned and interested to ask if the LLB scheme can
be applied to track efficiently the domain wall motion in a
large and multidomain AFM lattice. Indeed, the LLB equation
on a ferrimagnetic monodomain lattice was recently proposed
[19,20], which becomes the basis for deriving a generalized
equation for a multidomain AFM lattice.

In this work, we perform a derivation of the LLB equation
for a multidomain AFM lattice at finite T; this equation would
be highly efficient for large-scale micromagnetic simulation
of realistic AFM spintronic devices. More importantly, a
continuity equation for the staggered magnetizations can be
derived from this equation using the continuum approxima-
tion, which allows an analytical calculation on the domain
wall motion in an AFM lattice (e.g., driven by a finite T
gradient or staggered magnetic field). It is found that the
theory’s predictions about several crucial issues agree well
with numerical results in literature.

II. DERIVATION OF THE LLB EQUATION

We start from an AFM lattice with two intercrossing FM
sublattices whose spin alignments are antiparallel. We apply
the coarse-grained scheme to the whole lattice divided into a
number of grains as shown in Fig. 1. The grain size should
be sufficiently large for high-efficiency computation but suffi-
ciently small in comparison with the concerned characteristic
scales in lattice, e.g., domain wall width or other anomalies in
the present case. The basic strategy is to track the magnetiza-
tion evolution of the two sublattices separately, which makes
it possible to investigate the AFM dynamics using a method
similar to that of ferromagnets [21,22]. For an arbitrary grain
(i) containing two FM sublattices (v,κ), if no interaction of
this grain with its neighbors is considered, the LLB equation
for magnetization mv of sublattice v is written as [19]

1

γν

dmv

dt
= mν × Hν + α‖

mν · Hν

m2
ν

mν

−α⊥
mν × (mν × Hν )

m2
ν

, (1)

FIG. 1. (Top) Spin configuration of atomistic regular AFM lat-
tice, where the whole AFM lattice is divided into many grains
(regions). (Bottom) Sublattice magnetization in a grain is described
by two antiparallel macrospins mv and mκ .

where γν is the gyromagnetic ratio, α||/α⊥ are the T-
dependent longitudinal/transverse damping constants, Hν =
H + HA,ν + Hνκ is the effective field including external field
H, anisotropy field HA,ν and internal exchange field Hνκ ,
assuming the z axis as the easy axis. The internal exchange
field Hνκ accounts for the interaction between the sublattices
v and κ . They are, respectively, given by [19]

HA,ν = − 1

χ̃ν,⊥
(mx,νex + my,νey),

mν = (mx,νex, my,νey, mz,νez ), (2)

and

Hνκ = −J0,νκ
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− 1

2

[
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(
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− 1
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(
τ 2
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τ 2
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− 1

)]
mν, (3)

where χν,⊥ is the transverse susceptibility, J0,νκ is the coupling
constant, μν is the saturation moment, me,ν is the equilibrium
magnetization, �νν and �νκ are the longitudinal rates, τκ =
mv (mv · mκ )/m2

ν , and τe,κ = |me,v · me,κ |/me,ν [19]. The first
and third terms on the right side of Eq. (1) have the same forms
as those in the LLG equation, and the second term describes
the longitudinal relaxation depicting the magnitude variation
of magnetization due to thermal fluctuations at finite T.

It is noted that the T-dependent parameters in the two sub-
lattices equal each other (e.g., γν = γκ = γ , me,ν = me,κ =
me, μν = μκ = μS , χν,⊥ = χκ,⊥ = χ⊥), and Hνκ has a more
compact form:

Hνκ = − J0

μS

mν × (mν × mκ )

m2
ν

− 1

2

[
1

χ̃‖

(
m2
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m2
e

− 1

)

+ |J0|
μS

m2
ν − τ 2

κ

m2
e

]
mν, (4)

where χ|| is the longitudinal susceptibility, J0,νκ = J0 = NDJ,
where J is the exchange coupling between the nearest-
neighbor atomistic spins and ND is the coordination number.
Following the earlier works [21–23], these parameters me, χ||,
and χ⊥ are reasonably estimated by numerical simulations
using the stochastic LLG equation based on the atomistic
model. As an example, we present the estimated parameters
(empty points) and corresponding fitted results (solid lines)
in Fig. 2, given the uniaxial anisotropy 0.02J. Their good
consistencies confirm the estimations.

Subsequently, we discuss the effect of T. It is noted that
thermal fluctuations are less dependent on spin structures,
and thus the stochastic fields for a FM system can be ap-
proximately applicable to an AFM system [24–26]. This
argument has been confirmed in earlier work which calculates
the stochastic fields strictly using the Fokker-Planck equation
[23]. When the stochastic fields are considered, the LLB
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FIG. 2. Stochastic LLG simulated (a) me and (b) χ|| and χ⊥ as
functions of temperature and the corresponding fitting results.

equation for grain (i) now reads

1

γ

dmv

dt
= mν × Hν + α‖

mν · Hν

m2
ν

mν

−α⊥
mν × [mν × (Hν + ξ⊥,ν )]

m2
ν

+ ξ‖,ν (5)

where ξ||,ν/ξ⊥,ν is the longitudinal/transverse stochastic field
with

〈
ξ a
η,ν (t, r)ξ b

η,ν (t ′, r′)
〉 = 2Dηδabδ(t − t ′)δ(r − r′), η = (‖,⊥),

(6)

where a, b are the Cartesian components (= x, y, z), and the
longitudinal and transverse diffusion constants D|| and D⊥
read, respectively,

D‖ = α‖γ kBT

MSV
, and D⊥ = (α⊥ − α‖)kBT

γ MSV α2
⊥

(7)

where kB is the Boltzmann constant, MS the saturation mag-
netization, and V the grain volume.

It is noted that in order to describe thermal fluctuations
and satisfy the fluctuation-dissipation theorem, fluctuating
torques and fluctuating fields are introduced into the damping
term of the LLB equation. Alternatively, fluctuating fields
are introduced into the precession and damping terms of
the LLG equation. As a result, the LLG equation cannot be
completely recovered from the LLB equation in the absence of
the longitudinal dynamics. Moreover, the calculations based
on the stochastic LLB equation and stochastic LLG equation
are expected to be consistent with each other at low T far
below the Néel temperature (TN ). However, the thermal effects
at rather high T cannot be well investigated based on the
stochastic LLG equation because it fails to capture the T-
dependent magnetization magnitude.

Actually, any grain must have coupling with its neighbors
and an inclusion of the coupling is a prerequisite to consider
a multidomain AFM system. We discuss the intergrain ex-
change field between grain (i) and grain ( j), using the same
approach as given in Ref. [22] to extend the LLB equation.
For two neighboring grains (i) and ( j), the intergrain exchange

interaction Hexi j reads

Hexi j = −J
∑
〈k,l〉

Sk · Sl

= −J
F

2a2
l

(
mν,i

mν,i
· mκ, j

mκ, j
+ mκ,i

mκ,i
· mν, j

mν, j

)
, (8)

where 〈k, l〉 sums all the nearest-neighbor pairs connecting
the two grains, S is the normalized atomistic spin, F is the
interface area, and al is the lattice constant, mv,i/mk, j is
the magnetization of sublattice v/κ in grain i/ j. Then, we
obtain the intergrain exchange field to sublattice v of grain
(i) imposed by sublattice κ in grain ( j):

Hex,ν,i = − 1

MSV/2

∂Hexi j

∂mν,i
= 2A(0)

aldMSm2
e

(mκ, j + mν,i ), (9)

where A(0) = J/2al is the exchange stiffness at zero T, and
d is the grain dimension. It is noted that Eq. (9) is ob-
tained on the assumption that the two sublattices’ magneti-
zations in grains (i) and ( j) can be described as macrospins
mv,i and mk, j . This would overestimate the intergrain ex-
change coupling. Following the earlier work, a correction
factor al/d should be taken into account to diminish the
overestimation [22].

Moreover, considering the thermal fluctuations, the ex-
change stiffness is also T dependent, given by A(T ) = A(0)m2

e
if the thermal average spin moment is equal to the equilibrium
magnetization me. Thus, the total intergrain exchange field of
sublattice ν in grain i reads

Hex,ν,i = 2A(T )

d2MSm2
e

∑
j

(mκ, j + mν,i ), (10)

where the sum is over all the nearest-neighboring grains.
To this stage, we have successfully obtained the LLB

equation applicable to a multidomain AFM lattice, in par-
ticular, to describe the domain wall dynamics. Certainly, a
more explicit form of the LLB equation using the continuum
approximation would be appreciated [16]. In proceeding, we
define the total magnetization mi = mν,i + mκ,i and staggered
magnetization ni = mν,i − mκ,i for grain (i) to replace mν,i

and mκ,i. The effective fields for grains (i) and ( j) are then
written as Hν,i = Hm,i + Hn,i, and Hκ,i = Hm,i − Hn,i, where
Hm,i and Hn,i are, respectively, the effective fields related to
mi and ni. Noting that the longitudinal relaxation of sublattice
magnetization is much faster than the transverse relaxation,
and the magnetization is nearly identical to the equilibrium
one, i.e., |mν,i| = me,i [18,19], one has the alternative expres-
sions of the LLB equations after necessary substitutions and
continuum approximation:

dm
dt

= γ (m × Hm + n × Hn) − α⊥
2m2

e

(
m × dm

dt
+n × dn

dt

)

+ γα‖
2m2

e

[(m · Hn)n + (n · Hm)n], (11)

and

dn
dt

= γ n × Hm, (12)
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with the effective fields Hm and Hn (see Ref. [27] for detailed
derivation). Here, Eq. (11) has been transformed into the
Gilbert form, and particular damping terms are safely omitted
as done in the LLG scheme [16,28,29], which hardly affects
our main results.

For an AFM system below TN , one has m · n ∼ 0, and
n2 ∼ 4m2

e which is also T dependent due to the fact that
the longitudinal relaxation is generally much faster than the
transverse one. Under zero applied field, m as a function of n
can be derived from Eq. (12) [16,29]:

m =
dn
dt × n

4γ m2
e

(
J0/μS + 2NDA/d2MSm2

e

) = Am
dn
dt

× n, (13)

where parameter Am is introduced for brevity. Substituting
Eq. (13) into Eq. (11) and taking the cross product with n,
we obtain

Amn × d2n
dt2

× n

= n ×
(

− γ

2χ̃⊥
nzez + γ A(T )

MSm2
e

∇2n + α⊥
2m2

e

dn
dt

)
× n, (14)

where nz is the z component of n. Specifically, all parame-
ters including exchange, magnetic anisotropy, and damping
parameters are T dependent in Eq. (14). More importantly,
the magnitude of n also depends on T by introducing the
longitudinal relaxation, which is basically different from the
equation derived from the LLG equation. We have obtained
an analytical expression of the staggered magnetization for an
AFM lattice, whose magnitude and orientation are spatially
inhomogeneous and T dependent. It thus allows one to track
various stimuli-driven domain structure evolution and wall
motion in a multidomain AFM system.

By using Eqs. (13) and (14), we can perform the analytical
calculations within the framework of the LLB equation for
an AFM system. Here, the second-order derivative of n with
respect to time is essential in distinguishing the magnetic
dynamics in an AFM system from that in a FM one [30].
In particular, the parameters and magnitude for the staggered
magnetization (n) are T dependent, allowing one to investigate
the magnetic dynamics at finite T, including the domain wall
motion in ultralarge scale. Furthermore, the domain wall
motion in an AFM lattice, as driven by various stimuli such as
temperature gradient [13–15], external field [28,31,32], and
Néel spin-orbit torque [10,33], can be similarly calculated
using Eq. (14).

III. APPLICATION OF THE LLB EQUATION

For the validity of this continuum LLB theory on AFM
lattice, one looks to several well-known facts for checking.
As an initial check, we discuss the static solutions. One of
the special solutions to Eq. (14) is the static Néel wall config-
uration with the polar angle of the staggered magnetization
θ = 2arctan[exp(z − z0)/λ], where z0 is the position of the
wall center, and λ is the T-dependent wall width:

λ(T ) =
√

2χ̃⊥|A(T )|
MSm2

e

. (15)

FIG. 3. (a) Numerical and analytical calculated λ as a function of
T, and the three components of the magnetization versus y coordinate
at (b) T = 0 and (c) T = 1.4 J/kB, and (d) the estimated hz and ht as
functions of T. The sketches of circular and elliptical DWs are also
presented, respectively, in the insets of (b) and (c).

One observes that λ(0) is exactly the same as that derived
from the LLG equation [16]. Moreover, λ increases with
increasing T and ultimately becomes divergent at TN , as shown
in Fig. 3(a), which gives the numerical and analytical calcu-
lated λ as a function of T. The analytical data well coincide
with the numerical results, both based on the LLB equation,
supporting the validity of this continuum theory.

It is noted that the AFM DW profiles have important
influence on the wall dynamics and relevant magnetoresis-
tance, while their T dependences are still unclear so far. We
numerically study the effect of temperature on the Bloch
DW profiles using Eq. (5) on an 8al × 8al × 200al sys-
tem. Similar to ferromagnets [34–36], three types of walls
including circular, elliptical, and linear walls are observed.
The circular wall emerges at zero T, as shown in Fig. 3(b)
which gives the three components of the magnetization
versus y coordinate. Figure 3(c) presents the components
at T = 1.4 J/kB, which clearly demonstrates an elliptical
wall. Similarly, the wall profiles can be described by the
hyperbolic functions nz(T ) = hz(T )tanh[(y − y0)/λ(T )] and
nt (T ) = ht (T )sech[(y − y0)/λ(T )], where nt is the trans-
verse component of n, and hz/ht is the amplitude of easy
axis/transverse magnetization. The estimated hz(T ) and ht (T )
are summarized in Fig. 3(d) where ht is smaller than hz at
finite T, demonstrating the existence of elliptical walls. In
addition, for Th < T < TN , the domain wall is linear with a
finite hz and zero ht . This effect can be understood from the
influence of thermal fluctuations on the DW. The spins in
the wall usually deviate from the easy axis and have large
exchange and anisotropy energies, and thus they are more
sensitive to thermal fluctuations than the spins inside the
domain, resulting in the fact that ht decreases more quickly
than hz as T increases, as confirmed in our simulations. Fur-
thermore, the difference between hz(T ) and ht (T ) increases
with the increasing anisotropy (the corresponding results are
not shown here), the same as in FM systems [34,35]. As a
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matter of fact, earlier work claimed that the FM and AFM
domain walls share common static properties at zero T [37].
Here, it is clearly demonstrated that this behavior also exists
at finite T even near TN .

Given the validity of the developed LLB theory, we intend
to solve Eq. (14) using the approach with polar coordinates
proposed in earlier work to investigate the thermally driven
DW motion for an AFM lattice in a finite T gradient [10,38].
As has been clarified in the earlier works [13–15], the compe-
tition between the entropy torque and Brownian force under
a T gradient determines the motion of AFM DW. Here, we
pay particular attention on the entropy torque-driven DW
motion where the stochastic field can be safely neglected.
Furthermore, we assume that T is rather below TN and the DW
structure is robust during its motion [9,38–40]. In this case,
the staggered magnetization is a function of the composite
variable Z = z − vt :

dnx

dt
= −vn′

x,
dnz

dt
= −vn′

z,
dθ

dt
= −vθ ′ = −v

sin θ

λ
,

(16)

where v is the wall velocity, θ is the angle between the
staggered magnetization and z axis, and the prime represents
the derivative with respect to Z. We obtain the velocity of wall
motion under a temperature gradient:

v =
− 1

α1
+

√
1
α2

1
+ 4α2

2α2
, (17)

where α1 and α2 are T-dependent variables (see Ref. [27] for
details). One may note that an anisotropy gradient could be
induced by the T gradient [see the χ⊥(T ) curve in Fig. 2(b)],
which also contributes to the DW motion [41,42]. However,
comparing with the effect of the strong exchange interaction,
the effect of the anisotropy term on the DW dynamics can be
safely ignored. More interestingly, it is also demonstrated that
the DW velocity is limited by

vmax = γ alJ
√

2ND

μS
me = c(T ), (18)

where c(0) is the group velocity of spin wave at zero T (see
Ref. [27] for details), further confirming the fact that the limi-
tation of the DW velocity originates from the emission of spin
wave [9,16]. With the increasing T, the enhanced thermal fluc-
tuations effectively weaken the exchange interaction and in
turn suppress c(T) and vmax. In Fig. 4(a), the LLG simulated,
the LLB simulated, and analytically calculated velocities are
presented, and the good coincidence of these results confirms
the validity of the effective theory. Interestingly, ∼1000 CPU
hours are needed for the LLG simulations performed on our
computer cluster, while only ∼2 CPU hours are needed for
the LLB simulations, demonstrating the high efficiency of the
theory in dealing with the antiferromagnetic dynamics.

More importantly, one may perform the LLB simulations
to investigate the AFM dynamics at high temperatures even
near TN . In Fig. 4(b), the LLB-simulated DW positions
as functions of t under ∇T = 0.003 J/kBal for various T0

(the lowest temperature of the system) are presented, which
demonstrates the difference of the DW dynamics for high T0

from low T0. On the one hand, the DW quickly accelerates

FIG. 4. LLG-simulated (empty triangles), the LLB-simulated
(empty circles), and analytically (solid line) calculated DW velocities
as functions of �T (a), and the LLB-simulated DW positions as
function of t for various T0 (b) under ∇T = 0.003 J/kBal , and (c)
under the effective staggered field HN = 0.0005 J/μS , and (d) the
LLB simulated (empty circles) and analytically calculated (solid
line) velocities as functions of T0 under HN = 0.0005 J/μS . The LLG
simulated results in (a) are reproduced from Ref. [14].

to the saturation velocity for low T0, and the accelerating
time significantly increases with the increase of T0, as clearly
shown in the movies in the Supplemental Material [27]. It
is noted that the exchange interaction between neighboring
spins is effectively reduced as T0 increases, contributing to
the decrease of the acceleration. On the other hand, higher
T0 generally results in stronger changes of the magnetization
and driving torque, resulting in a larger saturation velocity, as
shown in the simulations.

In order to better understand the temperature effect on the
DW dynamics, we also investigated the DW motion driven by
an effective staggered field HN along the z axis (HN and −HN

are applied on v and κ sublattices, respectively), which could
be induced by electric current in CuMnAs and Mn2Au. The
LLB-simulated DW positions as functions of t for various T0

are shown in Fig. 4(c), which clearly shows that both the ac-
celeration and saturation velocity are significantly suppressed
with the increase of T0, attributed to the reduction of the
effective exchange interaction. Similarly, the velocity of wall
motion under the staggered field could be also analytically
calculated:

vN = λHN

α⊥
me. (19)

Figure 4(d) gives the LLB-simulated and analytically calcu-
lated DW velocities. The results for T0 < 2TN/3 well coin-
cide with each other, while deviating from each other for
T0 > 2TN/3. It is noted that the divergence of the longitudinal
relaxation time at T ∼ TN is hardly captured by the approx-
imate condition n2 ∼ 4m2

e , resulting in the deviation of the

214436-5



CHEN, YAN, QIN, AND LIU PHYSICAL REVIEW B 99, 214436 (2019)

analytical results from the numerical results. However, the
physics has been clearly uncovered by the LLB simulations,
and the investigation is far beyond the capacity of the present
LLG method, which fails to describe the temperature depen-
dence of the magnetization magnitude.

IV. DISCUSSION AND CONCLUSION

So far, the validity of the dynamic equation for staggered
magnetization in an AFM lattice has been well confirmed by
checking the static domain wall profiles and T-gradient-driven
wall motion which are well consistent with the numerical
results. Thus, the two major issues (AFM wall motion at finite
T in large-scale system) which are hardly reached in the LLG-
based simulations have been removed if the LLB equation and
derived continuum equation are utilized. More importantly,
we would like to point out that this essential equation can
be also used to investigate the AFM dynamics driven by
other stimuli [43–45]. For example, a large-scale system is
needed to generate Gauss T field, which is hardly reached
by the conventional LLG simulations [46]. As a matter of
fact, the analytical calculation has been performed, and the
corresponding results will be reported elsewhere.

In conclusion, we have derived the LLB equation with
intergrain and stochastic fields for AFM systems, which

allows one to investigate the magnetic dynamics at finite
temperatures using multiscale approaches. Moreover, the con-
tinuity equation of the staggered magnetization has been also
derived using the continuum approximation. The derivations
have been used to investigate the influence of temperature
on the static AFM domain wall, which reveals a similar
behavior to FM systems. The analytical calculation of the
temperature-gradient-driven AFM domain wall motion well
agrees with the numerical results and reproduces successfully
the saturation velocity, well confirming the validity of our
derivations. More interestingly, physics-related DW dynamics
under temperature gradient has been predicted by the LLB
simulations. Importantly, this theory could be applied to other
wall driving mechanisms such as Néel spin-orbit torques and
spin-transfer torques as well.
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