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Dynamic long range interaction induced topological edge modes in dispersive gyromagnetic lattices
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We study the dynamic long range interaction induced topological photonic bands and edge modes in a one-
dimensional (1D) array of strongly dispersive gyromagnetic resonant cylinders. We propose a 1D topological
model for such a dispersive gyromagnetic system and demonstrate that the dynamic long-range interaction can
lead to localized topological edge modes, while the quasistatic interaction alone does not. Different from the
conventional Su-Schrieffer-Heeger model that has only nearest-neighbor interactions, we find that the normal
modes of the system coupled strongly to the photon mode of the background medium and the dynamic effects
create a different band gap. Our results indicate the importance of the dynamic long-range interactions on the
band structures and topological edge modes in strongly dispersive gyromagnetic systems.
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I. INTRODUCTION

In the past decade, topological photonics [1,2] has be-
come a rapidly growing field of research since the analogs
of quantum Hall edge states were theoretically proposed
[3–5] and experimentally realized [6] in two-dimensional
(2D) gyromagnetic photonic crystals. The bulk-boundary cor-
respondence predicts edge modes existing at the boundary
between systems with distinct topological phases, which are
backscattering-immune and robust against local perturbations
[1,2]. Topological edge modes can be supported in many
photonic systems, such as coupled resonator arrays [7–9],
bi-anisotropic metamaterials [10], photonic crystals made of
dielectric cylinders [11], radiofrequency circuits [12], cav-
ity and circuit quantum electrodynamics systems [13,14],
and three-dimensional Weyl points and nodal lines systems
[15], or in even higher synthetic dimensions [16,17]. The
enhanced light-matter interactions associated with topological
edge modes may lead to many potential applications, such as
efficient and robust lasers [18–23].

Recently, it has been shown that topological modes can
be realized in one-dimensional (1D) photonic crystals [24,25]
and 1D arrays of plasmonic [26–32] and dielectric nanopar-
ticles [33–35]. In particular, the Majorana states are found in
the zigzag chains of plasmonic nanoparticles [26], and lasing
topological edge states are reported in the photonic analogs of
the Su-Schrieffer-Heeger (SSH) model [18,20,21]. The SSH
model [36] describing electrons in a 1D lattice with staggered
hopping is one of the simplest systems exhibiting nontrivial
topological bands, which has stimulated a variety of efforts
to search for robust topological modes in different photonic
structures. In the SSH model, the chiral symmetry ensures
the spectral position of the edge state lies at the zero-energy
state associated with the isolated site, and the band structure
is symmetric with respect to it [37]. This was validated in a
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variety of analogous photonic systems under the tight-binding
approach [27,33,35].

In the present work, we investigate the effects of dynamic
long-range interactions on the photonic band structures and
the topological edge modes in 1D arrays of dispersive gy-
romagnetic resonators beyond the SSH model. We use the
eigenresponse theory [38–41], which was extensively used in
the studying of coupled plasmonic resonators, to account for
the dynamic long-range interactions and, meanwhile, to create
mapping to a non-Hermitian eigenvalue problem. The electro-
magnetic resonances of gyromagnetic lattices are then stud-
ied. We found that the normal modes of the system coupled
strongly to the photon mode of the background medium. The
dynamic long-range interaction plays a crucial role in opening
a band gap and supporting the topological edge modes in
the dimer lattices, which is in contrast with the conventional
SSH systems, such as in arrays of plasmonic [27,29] and in
dielectric nanoparticles [33,35]. Using a dipole model, the
topological phase transition associated with band inversion
[42] is illustrated. We demonstrated that the dynamic long-
range interactions lead to localized topological edge modes,
which is different from the SSH model and cannot be pre-
dicted with a tight-binding approach with only short-range
interactions being considered. Because chiral symmetry of the
system is broken due to the dynamic long-range interactions,
the topological edge modes redshifted from the zero-energy
mode associated with a single resonator, and the band struc-
tures are not symmetric with respect to it. Our results indicate
the importance of the dynamic long-range interactions on the
band structure and topological edge modes in gyromagnetic
systems, and they deepen our understanding of the topology
in nonreciprocal photonic systems.

This article is organized as follows. In Sec. II, we describe
the coupled-dipole method and introduce the eigenresponse
theory by considering a regular chain of dispersive gyromag-
netic cylinders. In Sec. III, we illustrate the formation of
nontrivial band gaps in a dimerized chain, and we demonstrate
topological edge modes supporting in a finite lattice.
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FIG. 1. (a) Illustration of gyromagnetic cylinders on a 1D infinite
lattice. The lattice constant is given by a1. The unit cell is indicated
by the dashed box. (b) The photonic band structure with short-
and long-range interactions in the quasistatic limit. The blue line is
the dispersion relation with nearest-neighbor interactions only.
(c) The photonic band structure with dynamic long-range interac-
tions. The white dotted lines are the light lines, and the region within
the light lines is the light cone. The cyan dashed line indicates the
resonant frequency of a single gyromagnetic cylinder ω0.

II. REGULAR CHAIN

A. Coupled-dipole method

We begin by considering a 1D lattice with lattice constant
a1 = 9.375 mm in the x direction as depicted in Fig. 1(a). The
unit cell consists of one gyromagnetic cylinder with radius
r = 2.5 mm and the axis of the cylinder in the z direction. The

parameters are chosen with a1 � 3r, such that the cylinders
are not too close to each other. For frequencies near the dipole
resonance, we take the dipole approximation, in which each
cylinder is treated as a point dipole [43]. We are interested
in the fields perpendicular to the axis of the cylinder in the
xy plane. A magnetic dipole moment m(ρ) = α(ω)B(ρ) will
be induced when the cylinder at ρ is in a magnetic field
B(ρ), where α(ω) is the polarizability of the cylinder. The
polarizability of a cylinder is given by [44]

α−1(ω) = 4π

A
([μ(ω) − I]−1 + L) − i

πk2
0

2
I, (1)

where A = πr2, I is the 2 × 2 identity matrix, L = (1/2)I
is the demagnetization factors for the cylinder, k0 = ω/c is
the wave number in the background medium, and μ(ω) is
the permeability tensor of the gyromagnetic medium. The
radiative correction term −i(πk2

0/2)I is included to satisfy
the optical theorem. For the case in which the applied static
magnetic field H and the saturation magnetization M are
parallel to the axis of the cylinder in the +z direction, the
permeability tensor is given by [45]

μ(ω) =
(

μ1 −iμ2

iμ2 μ1

)
, (2)

with

μ1 = 1 + ωm(ωh − iβω)

(ωh − iβω)2 − ω2
, (3a)

μ2 = ωmω

(ωh − iβω)2 − ω2
, (3b)

where ωh = γ H and ωm = γ 4πM, in which γ is the gyro-
magnetic ratio and β is the damping factor. We consider that
the cylinders are made of yttrium iron garnet (YIG), which is
a ferrimagnetic material with very low loss. The parameters
for YIG are H = 500 Oe, 4πM = 1750 G [46,47], and β =
3 × 10−4 [48]. From these expressions, we have

α−1(ω) =
⎛
⎝ 4

r2

(
ωh
ωm

+ 1
2 − iβ ω

ωm

) − i πk2
0

2 i 4
r2

(
ω
ωm

)
−i 4

r2

(
ω
ωm

)
4
r2

(
ωh
ωm

+ 1
2 − iβ ω

ωm

) − i πk2
0

2

⎞
⎠. (4)

The resonant frequency of a single gyromagnetic cylinder ω0

is found by solving Re[det α−1(ω0)] = 0, which gives

ω0 = ωh + ωm

2
. (5)

It is equal to f0 = ω0/(2π ) = 3.853 GHz, which is in the
microwave regime. ω0 can be interpreted as the spectral
position of the zero-energy state in the SSH model.

The field at ρ due to the induced dipole moment at ρ′ is
given by B(ρ) = 4πk2

0G(ρ, ρ′)m(ρ′) [49], where G(ρ, ρ′) is
the 2D Green’s tensor. For our system, we have [50]

G(ρ, ρ′) =
(

Gxx 0
0 Gyy

)
, (6)

with

Gxx = i

4

(
1

k0R

)
H (1)

1 (k0R), (7a)

Gyy = i

4

(
H (1)

0 (k0R) − 1

k0R
H (1)

1 (k0R)

)
, (7b)

where R := ρ′ − ρ is the relative displacement between the
source and the observation points, and H (1)

i is the Hankel
function of the first kind. In the quasistatic limit k0 → 0, the
field varies inversely as the square of the distance B ∼ 1/R2

(see Appendix A). For an array of cylinders, the local field
at a dipole is given by the sum of the external field and the
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fields from all the other dipoles. The dipole-dipole interaction
between cylinders leads to the following coupled-dipole equa-
tions:

m(ρ) = α(ω)

⎛
⎝4πk2

0

∑
ρ′ �=ρ

G(ρ, ρ′)m(ρ′) + B0(ρ)

⎞
⎠, (8)

where the sum includes all the dipole moments except the self-
interaction term, and B0(ρ) is the external excitation magnetic
field. For example, B0 can be the field of a plane wave.

B. Eigenresponse theory

Instead of solving Eq. (8) directly, which involves numer-
ical complex root-finding, we use an eigenresponse theory to
study the spectral response of the system. To do so, we define

M(ω) := α−1(ω) − 4πk2
0

∑
ρ′ �=ρ

G(ρ, ρ′). (9)

For a system with N gyromagnetic cylinders, M(ω) is a 2N ×
2N matrix. Then Eq. (8) can be rewritten as

M(ω)m = B0. (10)

This relates the dipole moments m with the external excita-
tion field B0. In the eigenresponse theory [38–41], which is
based on spectral decomposition, we consider the eigenvalue
problem

M(ω)mi = λi(ω)mi, (11)

where λi(ω) is the eigenvalue corresponding to the eigenmode
mi. We define the quantity

αeig := 1

λ
(12)

as the eigenpolarizability, which has the dimension cm2, the
same as that of the polarizability α. The eigenpolarizability
can be interpreted as the response function of the correspond-
ing eigenmode for an external excitation field, and the peaks
of Im(αeig) represent resonances.

For a 1D infinite lattice, the translational symmetry leads
to Bloch’s theorem,

m(ρ + R) = eik·Rm(ρ), (13)

where the displacement R = na1x̂, with integer n and lat-
tice constant a1, and the wave vector k = kx̂, with the first
Brillouin zone k ∈ [−π/a1, π/a1]. Also, we have G(ρ, ρ′) =
G(0, R). The coupled-dipole equation for an infinite lattice is
given by

m(ρ) = α(ω)

⎛
⎝4πk2

0

∑
R �=0

G(0, R)eik·Rm(ρ) + B0(ρ)

⎞
⎠, (14)

and we define

M(k, ω) := α−1(ω) − 4πk2
0

∑
R �=0

G(0, R)eik·R. (15)

The translational symmetry reduces M to a 2 × 2 matrix. Then
Eq. (14) can be rewritten as

M(k, ω)m = B0. (16)
Then the eigenvalue problem for an infinite lattice is

M(k, ω)mi = λi(k, ω)mi. (17)

It should be noted that M is non-Hermitian due to the loss
and dynamic effects. From now on, we set B0 = 0 so as to
study the normal modes of the system.

C. Infinite lattice

1. Quasistatic limit

We calculate the band structure of the gyromagnetic system
described in Sec. II A in an infinite lattice. Before studying the
more general case, we consider the system in the quasistatic
limit k0 → 0. The coupled-dipole equations in the quasistatic
limit are described in Appendix A. From Eq. (A10), we have

M ′(k, ω) =

⎛
⎜⎝

4
r2

(
ωh
ωm

+ 1
2 − iβ ω

ωm

) − ∑
R �=0

2
R2 eik·R i 4

r2

(
ω
ωm

)
−i 4

r2

(
ω
ωm

)
4
r2

(
ωh
ωm

+ 1
2 − iβ ω

ωm

) + ∑
R �=0

2
R2 eik·R

⎞
⎟⎠. (18)

Then, the system is described by

M ′(k, ω)m = 0. (19)

Now, we take the tight-binding approach, in which only short-
range interactions are being considered. By including only
the nearest-neighbor interactions, the dispersion relation and
the normal mode can be obtained analytically by solving the
nontrivial solution of Eq. (19). From Re[det M ′(k, ω)] = 0,
we obtain the dispersion relation

ω(k) = ω0

√
1 − f (k)2, (20)

with

f (k) :=
(

r

a1

)2
ωm

ω0
cos(ka1). (21)

It is plotted with a blue line in Fig. 1(b). We observe a
single narrowband. The normal mode of the system does not
couple to the photon mode of the background medium. At
k = ±π/(2a1), the resonant frequency of the system is equal
to that of a single gyromagnetic cylinder ω0, while at other
k, the band is below ω0. The group velocity vg = dω/dk of
the normal mode is zero, vg = 0, at k = 0,±π/(2a1),±π/a1.
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We will soon show that the results obtained in the quasistatic
limit do not correctly describe the qualitative features of the
system. Nevertheless, we see that only one nontrivial solution
is obtained from the 2 × 2 matrix problem of Eq. (19). The
normalized normal mode is given by

m = 1√
2

(√
1 + f (k)e−i π

2√
1 − f (k)

)
. (22)

We find that the longitudinal mode and the transverse mode
are coupled, such that the magnetic dipole moments rotate
counterclockwise elliptically. This is different from the analo-
gous plasmonic system, where two nontrivial solutions, which
correspond to the longitudinal mode and the transverse mode,
will be obtained.

2. Dynamic long-range interaction

Now, we extend our calculation to include the dynamic
long-range interactions. We consider the non-Hermitian
eigenvalue problem of Eq. (17) with eigenresponse the-
ory. The band structure can be obtained from the peaks of
max |αeig|, and it is shown in Fig. 1(c). Different from the
result calculated with quasistatic short-range interactions, we
observe a single broadband. The normal modes of the system
coupled strongly to the photon mode of the background
medium. The band forms outside the light cone with |k| >

ω/c, which represent guided modes, and any mode in the
light cone with |k| < ω/c is the radiation mode [51]. There
is a blueshift near the Brillouin zone boundary, such that the
band is above the resonant frequency of a single gyromagnetic
cylinder ω0. All of these features are different from the results
in the quasistatic limit.

To show that the differences are due to the dynamic effects,
we consider the system in the quasistatic limit again, but in-
cluding long-range interactions. Now, we have the eigenvalue
problem

M ′(k, ω)mi = λi(k, ω)mi, (23)

where M ′(k, ω) is given by Eq. (18). The band structure is
shown in Fig. 1(b). We see that, without the dynamic effects,
the general features of the band are similar to the blue line,
which is the dispersion relation obtained with only short-range
interactions, except at the Brillouin zone center k = 0, where
the group velocity vg becomes discontinuous.

III. DIMERIZED CHAIN

A. Model

To further demonstrate the importance of dynamic long-
range interactions in gyromagnetic systems, we consider a
dimer model of gyromagnetic cylinders on 1D infinite lattices.
In this dimer model, the lattice constant is given by a2 =
2a1 = 18.75 mm. The unit cell consists of two gyromagnetic
cylinders, labeled as A and B, with the same radius r =
2.5 mm. The displacement from cylinder A to cylinder B is
given by b = bx̂, with

b = a2

2
(1 − δ), (24)

where δ is a dimensionless parameter with |δ| � 0.2 and
hence b � 3r. The system is depicted in Fig. 2(a). The po-

FIG. 2. (a) Illustration of the dimer model of gyromagnetic cylin-
ders on a 1D infinite lattice. The lattice constant is given by a2.
The unit cell is indicated by the dashed box. The distance between
cylinder A and cylinder B is given by b = (1 − δ)a2/2. (b)–(e) The
photonic band structure for the dimer model in the quasistatic limit
and in general, with dynamic effects. All results include the long-
range interactions. The white dotted lines are the light lines, and the
region within the light lines is the light cone. The cyan dashed line
indicates the resonant frequency of a single gyromagnetic cylinder
ω0.

larizabilities for cylinder A and cylinder B are given by αA

and αB, and their corresponding magnetic dipole moments are
given by mA and mB, respectively. With Bloch’s theorem in
Eq. (13), the coupled-dipole equations for the dimer model
can be written as(

α−1
A 0
0 α−1

B

)(
mA

mB

)
= �

(
mA

mB

)
, (25)

with

� := 4πk2
0

⎛
⎜⎝

∑
R�=0

G(0, R)eik·R ∑
R

G(0, R + b)eik·R

∑
R

G(0, R − b)eik·R ∑
R �=0

G(0, R)eik·R

⎞
⎟⎠,

(26)

and the associated eigenvalue problem with eigenresponse
theory is given by

Mdimer(k, ω)mi = λi(k, ω)mi, (27)
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where

Mdimer(k, ω) :=
(

α−1
A 0

0 α−1
B

)
− � (28)

is a non-Hermitian 4 × 4 matrix.
We consider the system with δ = 0 and 0.2, in the qua-

sistatic limit (see Appendix B) and in general, with dynamic
effects, all with long-range interactions. Again, the band
structure can be obtained from the peaks of max |αeig|. For
δ = 0, the system is the same as that discussed in Sec. II C as
depicted in Fig. 1(a). The band structures for this system are
shown in Figs. 2(b) and 2(c). Two bands are obtained due to
the band folding, and they are physically the same as those
in Figs. 1(b) and 1(c). In both cases, the results are gapless
and there is degeneracy at the Brillouin zone boundary k =
±π/a2 protected by the inversion symmetry of the system.
For the case in the quasistatic limit, this degeneracy is at
the resonant frequency of a single gyromagnetic cylinder ω0,
while for the case with dynamic effects it is at a frequency
below ω0.

For δ = 0.2, the band structures are shown in Figs. 2(d)
and 2(e). Again, two bands are obtained. For any δ �= 0,
the inversion symmetry of the system is broken, hence the
degeneracy split. For the case in the quasistatic limit, the
degeneracy at the Brillouin zone boundary k = ±π/a2 is
split by one band shifting to a lower frequency, such that
the two bands do not exceed the resonant frequency of a
single gyromagnetic cylinder ω0. The system does not have
a full band gap, while for the case with dynamic effects the
system opens a full band gap. The degeneracy at the Brillouin
zone boundary k = ±π/a2 is split, such that the bands are
symmetric about the original degeneracy. Moreover, the band
gap is larger than that in the quasistatic limit.

We showed that, for a dimer model of gyromagnetic cylin-
ders on a 1D infinite lattice, the system does not have a full
band gap in the quasistatic limit, even if long-range inter-
actions are included. Besides breaking inversion symmetry
of the system, a full band gap is obtained only when the
dynamic long-range interactions are taken into account. This
is a major difference with the conventional SSH model and
its analogous systems, such as arrays of plasmonic [27,29]
and dielectric nanoparticles [33,35]. In plasmonic lattices,
although dynamic long-range interactions can also be con-
sidered [30–32], studying the system in the quasistatic limit
with only short-range interactions is sufficient to obtain a
full band gap [27,29,33,35], as long as inversion symmetry
is broken in the system. Furthermore, chiral symmetry of the
system is broken due to the dynamic long-range interactions
[31,32], such that the band structures are not symmetric with
respect to the resonant frequency of a single cylinder ω0.
These demonstrated the importance of dynamic long-range
interactions on the band structures in gyromagnetic systems.

B. Topological phase transition

It is known that, for the conventional SSH model, the
band topology depends on the distance between the two basis
elements in the unit cell [52]. Here, we discuss the topological
phase transition in the dimer model of gyromagnetic cylinders
on 1D infinite lattices by the associated band inversion [42].

FIG. 3. Band inversion and topological phase transition in the
dimer model of gyromagnetic cylinders on a 1D infinite lattice. The
curves are the upper and lower band edges at k = π/a2 and the gray
areas are the band gap. The eigenstates of the unit cell with δ = 0.2
and −0.2 for both the upper band and the lower band are illustrated.
The in-phase eigenmodes and the corresponding band are in blue,
while the antiphase eigenmodes and the corresponding band are in
red. The cyan dashed line indicates the resonant frequency of a single
gyromagnetic cylinder ω0. For δ < 0, the system is in topological
phase I, while for δ > 0 it is in topological phase II. At δ = 0, the
system is gapless, which undergoes band inversion and topological
phase transition.

We consider the band structures of the system for δ ∈
[−0.2, 0.2] and find the corresponding upper and lower band
edges at k = π/a2. The results are shown in Fig. 3. The
curves are the upper and lower band edges at k = π/a2 and
the gray areas are the band gaps. The results are symmetric
about δ = 0. For δ �= 0, the system opens a band gap. As |δ|
decrease, the band gap becomes smaller. For δ = 0, the band
gap closes, and the system is gapless, which corresponds to
the results in Fig. 2(c) at k = π/a2. To illustrate the band
inversion, we find the eigenmodes of the unit cell with δ = 0.2
and −0.2 for both the upper band and the lower band. We see
that all the magnetic dipole moments rotate counterclockwise
elliptically, as discussed in Sec. II C 1. There are two types of
eigenmodes of the unit cell, with a different phase difference
	θ between cylinder A and cylinder B: one is in-phase,
	θ = 0, and the other is antiphase, 	θ = π . The in-phase
eigenmodes and the corresponding band are in blue, while the
antiphase eigenmodes and the corresponding band are in red.
It is shown that, as δ varies and crosses the point δ = 0, the
band with in-phase eigenmodes becomes antiphase and vice
versa. This observation illustrates band inversion and indicates
topological phase transition in the dimer model. For δ < 0,
the system is in topological phase I, while for δ > 0 it is
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FIG. 4. Illustration of the 1D topological model of gyromagnetic lattices. The lattice constant is given by a2. The finite lattice is composed
of a left and a right part with different unit cells. The unit cells are indicated by the dashed boxes and indexed by the integer n. The
distance between cylinder A and cylinder B, in the left and the right part of the lattice, is given by bL = (1 − δL )a2/2 and bR = (1 − δR )a2/2,
respectively.

in topological phase II. At δ = 0, the system is gapless; it
undergoes band inversion and topological phase transition.

C. Finite lattice and topological edge modes

To demonstrate topological edge modes supporting a 1D
gyromagnetic system, we consider a dimer model of gyro-
magnetic cylinders on a 1D finite lattice in the x direction with
lattice constant a2 = 18.75 mm. The finite lattice is composed
of a left and a right part with different unit cells. For both the
left and the right part of the lattice, the unit cell, indexed by
the integer n, consists of two gyromagnetic cylinders labeled
A and B, with the same radius r = 2.5 mm as depicted in
Fig. 4. We assume there are N unit cells with N being an
even number, so n = −N/2, . . . , 0, . . . , N/2 − 1. Then n < 0
corresponds to the left part and n � 0 corresponds to the right
part of the lattice. The displacement from cylinder A to B in
unit cell n is given by bn = bnx̂, where

bn =
{

bL if n < 0,

bR if n � 0,
(29)

with

bL = a2

2
(1 − δL ), (30a)

bR = a2

2
(1 − δR). (30b)

In the nth unit cell, the magnetic dipole mo-
ment is mn = (mn,A, mn,B)T and the polarizabil-
ity is αn(ω) = diag(αn,A,αn,B). Then we have
m̃ = (m−N/2, . . . , m0, . . . , mN/2−1)T and α̃(ω) =
diag(α−N/2, . . . ,α0, . . . ,αN/2−1). We define �̃(ω) as the
interactions between the unit cells i and j, such that for i = j,

�̃i j = 4πk2
0

(
0 G(0, bi )

G(0,−bi ) 0

)
, (31)

and for i �= j,

�̃i j = 4πk2
0

(
G(0, Ri j ) G(0, Ri j + bi )

G(0, Ri j − bi ) G(0, Ri j )

)
, (32)

where Ri j := ( j − i)a2x̂ is the displacement from unit cell i to
unit cell j. Furthermore, we define

M̃dimer(ω) := α̃−1(ω) − �̃(ω). (33)

The coupled-dipole equations for the dimer model of gyro-
magnetic cylinders on a 1D finite lattice can be written as

M̃dimer(ω)m̃ = 0, (34)

where M̃dimer(ω) is a 4N × 4N matrix. Finally, we have the
eigenvalue problem

M̃dimer(ω)m̃i = λi(ω)m̃i, (35)

with the eigenresponse theory described in Sec. II B.
We consider the finite lattice with N = 32. First, we study

the topological trivial case with both δL = 0.2 and δR = 0.2.
This is the finite case of the dimer model studied in Sec. III A
with δ = 0.2. To clearly show the eigenmodes, we plot the
quantity Im(αeig). The result is shown in Fig. 5(a). We found
that there are two sets of modes corresponding to the upper
and the lower band of the system. There is no state within the
band gap, as expected. The results are in good agreement with
the band structure obtained in Fig. 2(e).

Next, we consider the topological nontrivial case with both
δL = −0.2 and δR = −0.2. As is well known from the con-
ventional SSH model, this system should present topological
edge modes at the end of the chain by the bulk-boundary
correspondence. The result is shown in Fig. 5(b). Again, we
observed that there are two sets of modes corresponding to
the upper and the lower band of the system. The bottom
of the upper band is labeled by the magenta upper triangle,
and the top of the lower band is labeled by the magenta lower
triangle. However, in contrast to the trivial case, there is a
localized mode on the top of the lower band, which is labeled
by the magenta circle. Then we calculated the corresponding
norm of the eigenmodes ‖m‖ = √

m∗m of the system. The
results for the upper and lower band are shown in Figs. 6(a)
and 6(b), respectively. They are the usual normal modes of the
system. For the localized mode on the top of the lower band,
the norm of the eigenmodes is shown in Fig. 6(c). We see that
this eigenmode is localized at m−N/2,A and mN/2−1,B, which
is at the end of the chain. This is the topological edge mode
supporting the system. Since the full band gap in the dimer
model only appears when dynamic long-range interactions
are included and cannot be predicted by the tight-binding
approach, it is very interesting to see that the dynamic long-
range interactions lead to localized topological edge modes.

Furthermore, from the results in Fig. 3, we choose the
two extreme cases with δL = 0.2 and δR = −0.2. Then
the left part of the lattice is in topological phase II, while
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FIG. 5. Band structures of the dimer model of gyromagnetic cylinders on a 1D finite lattice. (a) The topologically trivial system with
both δL = 0.2 and δR = 0.2. (b) The topologically nontrivial system with both δL = −0.2 and δR = −0.2. (c) The system with δL = 0.2 and
δR = −0.2, where the left and the right parts of the lattice are topologically trivial and nontrivial, respectively. The upper and the lower triangle
indicate the upper and the lower bands, respectively. The circle and the square are the topological edge modes. The cyan dashed line indicates
the resonant frequency of a single gyromagnetic cylinder ω0.

the right part of the lattice is in topological phase I. The
result is shown in Fig. 5(c). Again, we observed the upper
and the lower band of the system, which are labeled by the
upper blue triangle and the lower blue triangle, respectively.
Besides the localized mode on the top of the lower band,
which is labeled by the blue circle, there is also a localized
mode at the center of the band gap, which is labeled by the
blue square. There are two topological edge modes supporting
this system. The corresponding eigenmodes for the upper and
the lower band are shown in Figs. 6(d) and 6(g), respectively.
The eigenmodes are neither symmetric nor antisymmetric
about the center of the chain because the system has a broken

FIG. 6. The norm of eigenmodes corresponding to the labeled
modes in the band structures in Fig. 5. (a)–(c) The results for the
system with δL = −0.2 and δR = −0.2. (d)–(g) The results for the
system with δL = 0.2 and δR = −0.2. In particular, (c), (e), and (f)
are topological edge modes.

inversion and reflection symmetry. For the localized mode on
the top of the lower band, the norm of the eigenmode is shown
in Fig. 6(f). Now, this eigenmode is only localized at mN/2−1,B,
which is the right end of the chain. For the localized mode
at the center of the band gap, the norm of the eigenmode is
shown in Fig. 6(e). It is shown that this eigenmode is localized
at m0,A, which is the boundary between the left and the right
part of the lattice. As long as the left part and the right part
of the lattice are in two distinct topological phases, protected
modes exist at the boundary where there is a topological phase
transition.

To study the effects of dynamic long-range interactions
on the topological edge modes, we consider the system with
fixed δL = 0.2 and δR ∈ [−0.2, 0.2]. The band structures are
shown in Fig. 7. For δR > 0, both the left and the right part of
the lattice are in the same topological phase II. As a result,
there is no mode within the band gap in the system. We
observed that, as δR decreases from δR = 0.2, the band gap
becomes smaller. When the system crosses δR = 0, which
is indicated by the white dashed line, the right part of the
lattice undergoes a topological phase transition, as discussed
in Sec. III B. Hence, for δR < 0, the right part of the lattice is
in topological phase I. Now, the left and the right part of the
lattice are in two distinct topological phases. By the prediction
of the bulk-boundary correspondence, topological edge modes
will exist. We observed that, after the system crossing δR = 0,
the topological edge mode emerges from the bottom of the
upper band and it is redshifted from the resonant frequency of
a single gyromagnetic cylinder ω0.

In the conventional SSH model and its analogous systems,
the topological edge modes can be predicted by the bulk-
boundary correspondence with a tight-binding approach in
the quasistatic limit, where only nearest-neighbor interactions
are being considered. However, this is not possible with our
1D topological model for a gyromagnetic system. As seen in
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FIG. 7. Topological phase transition of the dimer model of gy-
romagnetic cylinders on a 1D finite lattice with δL = 0.2 and δR ∈
[−0.2, 0.2]. The white dashed line at δR = 0 indicates topological
phase transition in the right part of the lattice, and the cyan dashed
line indicates the resonant frequency of a single gyromagnetic cylin-
der ω0. The blue square and the blue circle are the topological edge
modes.

Fig. 2(d), in the quasistatic limit, apart from not having a full
band gap, the resonant frequency of a single gyromagnetic
cylinder ω0, which corresponds to the zero-energy state in
the SSH model, is on top of the bands. Since the chiral
symmetry ensures that the spectral position of any edge mode
lies at ω0, the topological nature of the edge mode is not
well defined. As discussed in Sec. III A, in order to obtain a
full band gap, the dynamic long-range interactions have to be
taken into account. Furthermore, the chiral symmetry of the
system is broken due to the dynamic long-range interactions
[31,32], and the topological edge modes are redshifted from
ω0, such that they are within two topological bands and can be
understood by the bulk-boundary correspondence. Therefore,
the dynamic long-range interaction plays a crucial role in
opening a band gap and supporting the topological edge
modes in our system. Part of the band structures and edge
modes (or density of states) of this topological 1D array
of gyromagnetic cylinders could be verified experimentally
through measurement of the transmission along the chain
using near-field techniques [53–56].

IV. CONCLUSION

In conclusion, we studied the dynamic long range inter-
action induced topological photonic edge modes in a one-
dimensional (1D) array of strongly dispersive gyromagnetic
resonant cylinders. In the case of dimer lattices, we found that
the creation of the nontrivial band gaps and topological edge
modes relies on the dynamic long range interaction associated
with the free-space photon modes of the background medium.
Our results indicate that the dynamic long range interaction
plays a crucial role in predicting the precise band structures

and the spectral position of the topological edge modes in
gyromagnetic systems.
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APPENDIX A: COUPLED-DIPOLE EQUATIONS IN
THE QUASISTATIC LIMIT

In the quasistatic limit k0 → 0, the Hankel functions in
Eq. (7) become [57]

H (1)
0 (k0R) ∼ 2i

π
ln k0R, (A1a)

H (1)
1 (k0R) ∼ −2i

π

(
1

k0R

)
. (A1b)

Hence, the 2D Green’s tensor for our system in the qua-
sistatic limit is given by

G′(ρ, ρ′) =
(

G′
xx 0

0 G′
yy

)
, (A2)

with

Gxx = 1

2π

1

(k0R)2
, (A3a)

Gyy = − 1

2π

(
ln k0R + 1

(k0R)2

)
. (A3b)

Now, G′ is real symmetric. Moreover, we define

A(ρ, ρ′) := lim
k0→0

4πk2
0G′(ρ, ρ′), (A4)

and since limk0→0 k2
0 ln k0R = 0,

A(ρ, ρ′) =
(

2
R2 0
0 − 2

R2

)
. (A5)

The polarizability in the quasistatic limit α′(ω) is obtained
by eliminating the radiative correction term in Eq. (1), as
limk0→0 −i(πk2

0/2)I = 0. We have

α′−1(ω) = 4

r2

(
ωh
ωm

+ 1
2 − iβ ω

ωm
i ω
ωm

−i ω
ωm

ωh
ωm

+ 1
2 − iβ ω

ωm

)
. (A6)

Then the coupled-dipole equations in the quasistatic limit are
given by

m(ρ) = α′(ω)

⎛
⎝∑

ρ′ �=ρ

A(ρ, ρ′)m(ρ′) + B0(ρ)

⎞
⎠, (A7)

and in the formalism of eigenresponse theory, we define

M ′(ω) := α′−1(ω) −
∑
ρ′ �=ρ

A(ρ, ρ′). (A8)
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For an infinite lattice, with Bloch’s theorem in Eq. (13),
Eq. (A7) becomes

m(ρ) = α′(ω)

⎛
⎝∑

R �=0

A(0, R)eik·Rm(ρ′) + B0(ρ)

⎞
⎠. (A9)

Then we define

M ′(k, ω) := α′−1(ω) −
∑
R �=0

A(0, R)eik·R. (A10)

It should be noted that, although A is real symmetric, α′ is
non-Hermitian, so M ′ in both Eqs. (A8) and (A10) are also
non-Hermitian.

APPENDIX B: COUPLED-DIPOLE EQUATIONS FOR THE
DIMER MODEL IN THE QUASISTATIC LIMIT

We consider the dimer model in Sec. III A in the quasistatic
limit, k0 → 0. The polarizabilities for cylinder A and cylinder

B are given by Eq. (A6) and are denoted by α′
A and α′

B,
respectively. With Bloch’s theorem in Eq. (13) and with
Eq. (A5), the coupled-dipole equations for the dimer model
can be written as(

α′−1
A 0
0 α′

B
−1

)(
mA

mB

)
= �′

(
mA

mB

)
, (B1)

where we have defined

�′ :=

⎛
⎜⎝

∑
R �=0

A(0, R)eik·R ∑
R

A(0, R + b)eik·R

∑
R

A(0, R − b)eik·R ∑
R �=0

A(0, R)eik·R

⎞
⎟⎠. (B2)

It should be noted that, since A is real symmetric, �′ is Her-
mitian. In the formalism of eigenresponse theory, we define

M ′
dimer(k, ω) :=

(
α′−1

A 0
0 α′

B
−1

)
− �′. (B3)

Now, since α′ is non-Hermitian, M ′ is also non-Hermitian.
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