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Unconventional thermal magnon Hall effect in a ferromagnetic topological insulator
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We present theoretically the thermal Hall effect of magnons in a ferromagnetic lattice with a Kekule-O
coupling (KOC) modulation and a Dzyaloshinskii-Moriya interaction (DMI). Through a strain-based mechanism
for inducing the KOC modulation, we identify four topological phases in terms of the KOC parameter and DMI
strength. We calculate the thermal magnon Hall conductivity κxy at low temperature in each of these phases. We
predict an unconventional conductivity due to a nonzero Berry curvature emerging from band proximity effects
in the topologically trivial phase. We find sign changes of κxy as a function of the model parameters, associated
with the local Berry curvature and occupation probability of the bulk bands. Throughout, κxy can be easily tuned
with external parameters such as the magnetic field and temperature.
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I. INTRODUCTION

In the thermal Hall effect, a heat current is induced perpen-
dicular to a temperature gradient in a material [1,2]. In a ferro-
magnetic system, these heat currents are carried by magnons
[3–6], which are weakly interacting quasiparticles obeying
Bose-Einstein statistics [7]. Unlike the Hall effect of electrons
[8], this is not a result of the Lorentz force as magnons
carry no electronic charge. Then, as neutral quasiparticles,
they can propagate over large distances without dissipation
by Joule heating [9]. The thermal Hall effect of magnons has
been observed in pyrochlore ferromagnetic insulators [10,11],
yttrium iron garnets [12,13], a kagome magnet [14], and a
frustrated pryocholore quantum magnet [15].

In the quantum Hall effect of electrons, time-reversal sym-
metry is broken by an external magnetic field, resulting in
charged edge currents which wind around the system [16,17].
In the spin Hall effect [18,19], time-reversal symmetry is
preserved and the spin-orbit coupling (SOC) induces topolog-
ically nontrivial band gaps [18,20,21] and spin-polarized edge
currents without overall charge transport. The Dzyaloshinskii-
Moriya interaction (DMI) representing SOC in magnetic sys-
tems [22,23] similarly induces a nontrivial band topology
[24,25]. On the other hand, a nontrivial band topology is found
in the absence of DMI in frustrated antiferromagnets [26] or
by introducing the magnetic dipolar interaction [3,4]. From
the bulk Hamiltonian and when a nontrivial gap is present, we
can use the bulk-boundary correspondence [27] to predict the
existence of robust magnon edge currents [28,29] which are
independent of the geometry of the system [3]. The edge states
of an isotropic two-dimensional (2D) honeycomb ferromagnet
with DMI have been studied theoretically for a system with
zigzag [30,31], armchair [32], and bearded boundaries [31].

*Present address: National Graphene Institute, University of
Manchester, Booth St. E., Manchester, M13 9PL, United Kingdom;
christian.moulsdale@postgrad.manchester.ac.uk

These may be observed experimentally in monolayers of the
ferromagnetic material chromium triiodide (CrI3), which has
been shown to possess large intrinsic DMI and consequently
a nontrivial band topology [33].

In graphene, bond modulations can be induced by local
changes in the position of the carbon atoms due to the absorp-
tion of adatoms on its surface [34] or by a proximity effect
[35,36]. One such example is the Kekule-O coupling (KOC)
modulation, depicted in Fig. 1, which is an intrinsic instability
of carbon nanotubes [37] and graphene [38–40]. In this case,
a nonuniform strain field results in bonds of different strength
within and between hexagonal unit cells similar to benzene
molecules [41]. Moreover, the adsorption of lithium adatoms
on the surface of CrI3 has been predicted to result in an
enhanced ferromagnetism and an increased Curie temperature
[42]. Therefore, it is interesting to ask if the KOC modulation
can be achieved in its ferromagnetic couplings through the
selective adsorption of such adatoms.

In this paper, we report by a theoretical investigation that
the thermal Hall effect of magnons is found in a KOC-
modulated honeycomb ferromagnet with DMI. We extend
our previous model [43] to include a strain-based mechanism
and next-nearest neighbor (NNN) ferromagnetic exchange
couplings, resulting in four topological phases. We find a
small but nonvanishing thermal Hall conductivity in the trivial
phase despite the lack of topologically protected edge states.
Furthermore, unlike the isotropic model without the KOC
modulation, we find sign changes of the thermal Hall con-
ductivity with respect to the various model parameters. These
are explained in terms of the competing contributions of the
bulk bands. The model studied here may be useful for the
future design of two–dimensional thermal components since
the thermal Hall conductivity can be easily tuned with external
parameters.

This paper is structured as follows. In Sec. II, we introduce
the Heisenberg model with KOC modulation and DMI. In
Sec. III, we give expressions for the Chern numbers and ther-
mal Hall conductivity. In Sec. IV, we discuss the properties
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FIG. 1. KOC modulation of the honeycomb lattice for different values of the KOC parameter �. The intracell (intercell) couplings are
shown as black (red) lines of widths proportional to their strength. The isotropic, unstrained case with � = 0 is shown in (b), with the
unstrained NN vectors ρ, NNN vectors μ, and lattice parameter a indicated.

of the four topological phases found before considering the
effects of the magnetic field. Finally, Sec. V is devoted to
conclusions.

II. BOND-MODULATED HEISENBERG MODEL

Recently, it has been shown that different topological
phases can be induced in a ferromagnetic honeycomb lattice
by introducing the KOC modulation and DMI [43]. In this
paper, we provide evidence of the thermal Hall effect of mag-
netic spin excitations in a similar model, whose Hamiltonian
is given by

H = −
∑
〈i j〉

Ji jSi · S j −
∑
〈〈i j〉〉

J ′
i jSi · S j − A

∑
i

(
Sz

i

)2

+
∑
〈〈i j〉〉

Di j · (Si × S j ) − gμBB
∑

i

Sz
i , (1)

in terms of the spin operators Si. The first two terms in the
above equation represent nearest-neighbor (NN) and next-
nearest-neighbor (NNN) ferromagnetic couplings, respec-
tively. The third term represents an easy-axis anisotropy in
the ferromagnetic coupling with the z axis identified as the
easy axis. The fourth term represents the NNN antisymmetric
exchange (DMI), where Di j is the DMI vector whose orien-
tation depends on the lattice geometry and follows the rules
set out by Moriya [23]. The last term represents a Zeeman
coupling with an external magnetic field B = Bez, where
g is the gyromagnetic ratio and μB = eh̄/2me is the Bohr
magneton.

To generate the KOC modulation shown in Fig. 1, we
introduce a nonuniform strain field [44] controlled by the
KOC parameter �. Following the convention of Gamayun
et al. [41], the NN coupling amplitudes within a unit cell
(intracell) and between unit cells (intercell) shown in Fig. 2(a)
are given by

w = (1 − �)J,
(2)

v = (1 + 2�)J,

respectively, where the unstrained, isotropic NN coupling
amplitude is given by Ji j = J . The intracell bonds are strained
by δ, so that the the spin-spin distance is (1 + δ)a and the
exchange coupling becomes w = Je−βδ , like in graphene
[45–47]. The Gruneissen-type parameter β describes the re-
sponse of the couplings to the local strain and, similarly to
graphene [48,49], depends on the microscopic properties of
the magnetic system. To linear order in the strain, we write

w � (1 − βδ)J, (3)

with similar expressions found for the other couplings. Com-
paring this to Eq. (2), we find that the intracell strain is δ = �

β

while the intercell strain is −2δ. This convention preserves the
lattice vectors and hence the size of the unit cell as shown in
Fig. 2(a).

We now consider the modulation of the NNN couplings.
Since the lattice sites lie in the xy plane, the DMI vector
takes the form Di j = Di jνi jez, where Di j is the DMI strength

FIG. 2. (a) The KOC-modulated honeycomb lattice (� > 0)
with DMI complete with the indexed site basis in the unit cell
shown as a dotted green hexagon. The strengths of the various
couplings are indicated and described in the main text. The arrows
give the directions in which νi j = 1. (b) The vertices of the unstrained
Brillouin zone (dashed hexagon) are folded into the center of the
strained Brillouin zone (shaded hexagon) due to the KOC modula-
tion. The path �MK� in k space between the high-symmetry points
shown as black circles used in later figures is shown in (b).
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and νi j = 1 (−1) for counterclockwise (clockwise) couplings
[19]. The unstrained values of J ′

i j and Di j are J ′ and D,
respectively. As shown in Fig. 2(a), there are two distinct
kinds of NNN couplings: intracell (t ) with a strain of δ and
intercell (u) with a strain of − δ

2 . We assume that the NNN
couplings have the same Gruneissen-type parameter, as in
graphene [50]. Thus, Eq. (3) gives

t = (1 − �)
√

J ′2 + D2,
(4)

u =
(

1 + �

2

)√
J ′2 + D2,

as the magnitudes of their corresponding NNN coupling
amplitudes to linear order in �. The ansatz in our previous
work [43] corresponds to the NNN Gruneissen-type parameter
being 2β.

The KOC-modulated Heisenberg model consisting of the
first two terms in Eq. (1) features an SO(3) rotational sym-
metry of the magnetization vector. The Zeeman term totally
breaks this symmetry, favoring the alignment of the magne-
tization with the external magnetic field B. Thus, the mean-
field ground-state energy of our model with Si = ξSez is
E0 = − 1

2 N (3J + 6J ′ + 2A)S2 − NgμB|B|, where ξ = sgn(B)
and N is the total number of lattice points. This is independent
of both the KOC modulation and the DMI.

We perform Holstein-Primakoff (HP) transformations on
the spin operators [7], expressing them in terms of boson
operators ai (a†

i ) which destroy (create) a magnon at sublattice
point i. Each magnon carries a quantum h̄ of angular momen-
tum. We make the linear spin-wave approximation and thus
neglect the higher-order terms in the boson operators which
result in magnon-magnon interactions. This assumption is
justified because we are considering a collinear ferromagnetic
ground state with negligible anharmonic interactions that
would require further consideration [51]. The HP transforma-
tions in the linear spin-wave approximation are given by

S+
i �

√
2Sai, S−

i �
√

2Sa†
i , Sz

i = S − a†
i ai, (5)

where the spin-ladder operators are S±
i = Sx

i ± iSy
i . This cor-

responds to a ferromagnetic ground state aligned in the
positive z direction, appropriate for B > 0 (ξ = 1), with the
magnetization 〈Sz〉 = S − 〈a†a〉 identified as the order pa-
rameter. The spin-flipped HP transformations appropriate for
B < 0 (ξ = −1) are given by Eq. (5) with S+

i ↔ S−
i and

Sz
i → −Sz

i . This flips the sign of the DMI term in Eq. (1),
so the DMI strengths in the bosonized Hamiltonian are
effectively multiplied by ξ to account for the orientation of
the ground state. Hence, magnons propagating along NNN
couplings gain a phase νi jφ, where φ = ξ arctan( D

J ′ ).
Finally, we perform a Fourier transformation on the boson

operators to move into k space. Then, the Hamiltonian in
Eq. (1) is written as

H = E0 +
∑

k



†
k Mk
k, (6)

where the summation is across all states of wave vector k
in the Brillouin zone (BZ), shown as a filled hexagon in
Fig. 2(b). Compared to the BZ of the isotropic two-band
model, shown as a dashed hexagon in Fig. 2(b), this is smaller

in area by a factor of 3 and rotated by 30◦ around the zone
center �. In Eq. (6), Mk is a 6 × 6 matrix in the basis



†
k = (a†

1k, a†
2k, . . . , a†

6k ) shown in Fig. 2(a) given by

Mk = ε0I6 +
(

MAA MAB

MBA MBB

)
. (7)

The first term represents the magnon onsite potential
ε0 = 3(J + 2J ′)S + h, where the effective magnetic field
strength is h = 2AS + gμB|B| and I6 is the 6 × 6 identity
matrix. The off-diagonal matrices in the second term represent
the NN coupling and are given by

MAB = M∗
BA = −S

⎛
⎝γ1v γ3w γ2w

γ3w γ2v γ1w

γ2w γ1w γ3v

⎞
⎠. (8)

The intracell and intercell gamma factors are given, respec-
tively, by

γiw = weik·(1+δ)ρi , γiv = veik·(1−2δ)ρi , (9)

in terms of the unstrained NN vectors ρ =
{(0, 1), (

√
3

2 ,− 1
2 ), (−

√
3

2 ,− 1
2 )}a shown in Fig. 1(b), where

a is the unstrained lattice constant. Similarly, the diagonal
components representing the NNN coupling are given by

MAA = MBB|di↔d∗
i

= −S

⎛
⎝ 0 z∗d∗

3 zd2

zd3 0 z∗d∗
1

z∗d∗
2 zd1 0

⎞
⎠. (10)

The complex number is z = e−iφ and

di = ηδ
i (tηi + uηi+1 + uηi−1), (11)

with the indices defined modulus 3. In Eq. (11), ηi = eik·μi in
terms of the unstrained NNN vectors μi = ρi+1 − ρi−1 which
are also shown in Fig. 1(b).

We solve the time-independent Schrödinger equation
(TISE) Mk |ψλk〉 = ελk |ψλk〉 to find the corresponding energy
eigenvalue ελk and eigenvector |ψλk〉 of a band λ. These bands
λ = 1, 2, . . . , 6 are indexed by increasing energy. We proceed
numerically for general values of k, although the TISE is
exactly solvable at the high-symmetry points �, K , and M of
the BZ shown in Fig. 2(b).

III. THERMAL MAGNON HALL EFFECT

A. Berry phase and Chern numbers

Nonzero DMI is a consequence of inversion symmetry
breaking and breaks the pseudo-time-reversal symmetry of
the component of the magnetization parallel to the DMI
vector [25,52]. Then, in a honeycomb ferromagnetic lattice,
magnons accumulate an additional phase νi jφ upon propaga-
tion between NNN sites and a nontrivial band topology arises
characterized by a nonzero Berry curvature [53]. In 2D lattice
systems, the Berry curvature of a band indexed by λ is given
by

�λk = −2
∑
λ′ �=λ

Im
〈ψλk|∂kx Mk|ψλ′k〉 〈ψλ′k|∂ky Mk|ψλk〉

(ελk − ελ′k)2
. (12)
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FIG. 3. The thermal Hall conductivity κxy of a KOC-modulated
CrI3 monolayer against the KOC parameter � and DMI strength
D at temperature T = 30 K with magnetic field B = 0+ T (ξ = 1).
Each topological phase is distinguished by its set of Chern numbers
(C1,C2, . . . ,C6). Gap-closing transitions separating phases are de-
picted as dotted black lines. The four points in each phase we use
in later figures lying on the line D = 0.31 meV with � = −0.27 (I),
−0.136 (II), 0.136 (III), and 0.27 (IV) are shown as black dots. The
two color bars apply to region I and regions II–IV, respectively, and
have been added for clarity as the magnitude of κxy is much smaller
in region I.

The Chern number Cλ of the band λ is given by the integral of
its Berry curvature about the BZ:

Cλ = 1

2π

∫
BZ

d2k �λk. (13)

We use the algorithm of Fukui et al. [54] to calculate the Chern
numbers. In our six-band system, each topological phase is
characterized by the set of Chern numbers of the bulk bands
(C1,C2, . . . ,C6), as shown in Fig. 3. Another relevant quantity
is the winding number νζ of the topologically protected edge
states in band gap ζ = 1, . . . , 5 between bulk bands ζ and
ζ + 1, given by [55,56]

νζ =
∑
λ�ζ

Cλ. (14)

We find a number |νζ | of topological edge states traversing
this band gap, propagating (counter)clockwise around the
system if sgn(νζ ) = (−)1.

B. Thermal Hall conductivity

A direct consequence of a nonzero Berry curvature in a
magnonic system is the presence of thermal currents per-
pendicular to an applied temperature gradient, described by
the thermal Hall conductivity κxy. In a series of seminal
works [3–5], Matsumoto and Murakami demonstrated that,
at low temperature T , κxy can be split into two contribu-
tions, κxy = κ

xy
E + κ

xy
O , where κ

xy
E is the contribution from the

magnons’ current density, given by

κ
xy
E = − 1

2h̄T

6∑
λ=1

∫
BZ

d2k

(2π )2
nλk(T )

× Im 〈∂kx ψλk|(Mk + ελkI6)2|∂kyψλk〉 , (15)

and κ
xy
O is the contribution from their reduced orbital momen-

tum. The full expression for κxy is given by

κxy = −k2
BT

h̄

6∑
λ=1

∫
BZ

d2k

(2π )2
c2[nλk(T )]�λk. (16)

Magnons obey Bose-Einstein statistics so that their occupa-
tion function is given by nλk(T ) = (eελk/kBT − 1)−1. The c2

function is given in terms of this by c2(n) = (1 + n)
[ ln (1 + 1/n)]2 − (ln n)2 − 2 Li2(−n), where Lis(z) =∑∞

r=1 zr/rs is a polylogarithm.
We can identify the contributions to the thermal Hall con-

ductivity κ
xy
λ of each band λ in Eq. (16) with κxy = ∑6

λ=1 κ
xy
λ .

Both the Chern number Cλ in Eq. (13) and κ
xy
λ of a band

are integrals weighted by its Berry curvature �λk and are
intrinsically related. As a result, a band with a nonzero Chern
number Cλ will generally have a contribution κ

xy
λ of opposite

sign. Equally, a band gap with a positive winding number
indicates the presence of clockwise-propagating edge states
which give a negative contribution to κxy and vice versa.
At low temperatures, the lowest-energy states have a greater
occupation and so the dominant contribution comes from the
lowest bands due to the c2 function. As the temperature is
increased, bands of increasing energy become occupied and
provide significant contributions to κxy.

IV. RESULTS AND DISCUSSION

In the following calculations, we consider the parameters
of a monolayer of the ferromagnetic material chromium triio-
dide (CrI3). This is one the of chromium trihalides, which are
a family of 2D ferromagnetic spin- 3

2 materials with gyromag-
netic ratio g = 3 [57–59]. Using results from powder neutron
diffraction [33], the NN and NNN ferromagnetic coupling
strengths are J = 2.01 meV and J ′ = 0.16 meV, respectively.
This model also considered next-next-nearest-neighbor and
interlayer couplings, but these have been neglected for be-
ing too weak and irrelevant to a monolayer, respectively. A
CrI3 monolayer has the highest Curie temperature Tc = 45 K
[60] of the chromium trihalides due to its large easy-axis
anisotropy A = 0.22 meV. Since the KOC modulation pre-
serves the sum of the bond strengths at each point and by
the small values in the parameter �, we do not anticipate
the Curie temperature to change using the Ising assumption
in the Metropolis algorithm [61]. Self-consistent calculations,
such as performed by Lado et al. [62], may give different
results, however. It also has the largest intrinsic DMI strength
D = 0.31 meV due to its heavy iodide anions, making it
ideal for our theoretical analysis. However, there is some
controversy in this result as a recent theoretical analysis has
attributed the observed spin-wave gap to an underlying Kitaev
interaction rather than the DMI [63]. Its Grunessein-type
parameter has not yet been calculated, so we take β � 2 as in
graphene [49] for demonstration purposes. This is reasonable
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FIG. 4. The thermal Hall conductivity (κxy, top) and its band contributions (κxy
λ , bottom) in a KOC modulated honeycomb lattice with DMI

as a function of temperature T for the points in each phase given in Fig. 3.

since there is little variation of κxy in the range 1 � β � 4.
For example, if the KOC parameter has a value of � = 0.1,
then the intracell bonds are stretched by 5% and the intercell
bonds compressed by 10%. The resulting phase diagram as
a function of the KOC parameter � and the DMI strength
D is depicted in Fig. 3, giving a total of four topological
phases. The dotted black lines represent the critical regions
where phase transitions occur. The v-shaped line gives the
gap-closing condition at the BZ center � between bulk bands
3 and 4 which changes the Chern numbers of these bands. The
vertical line at � = 0 gives the gap-closing transition at the K
points which changes the Chern numbers of all bands except 2
and 5. This gap is trivial for � < 0 and nontrivial for � > 0.
For small values of the NNN ferromagnetic coupling J ′, the
Chern numbers of each phase are the same as in our previous
work [43]. Outside of the region considered in Fig. 3 where
the couplings are linear in �, we find the emergence of new
topological phases.

The thermal magnon Hall conductivity κxy at temperature
T = 30 K is shown as a function of � and D in Fig. 3, reveal-
ing sign changes with respect to these parameters in phases I,
III, and IV. These sign changes are not observed in the absence
of the KOC modulation [64]. Changing T modifies the shape
of the white region in Fig. 3 where these sign changes are
found. In a kagome lattice, the sign of κxy has been shown to
depend on the winding number and the occupation probability
of the edge magnons [56,65]. Similar results are found in our
system except for in phase I, where all six Chern numbers
are vanishing and so all five winding numbers from Eq. (14)
are zero. Despite the resulting lack of topologically protected
edge states, an unconventional nonzero κxy is found in this
phase.

In Fig. 4, κxy is depicted as a function of temperature T for
four different values of �, each marked with a dot in Fig. 3,

which put the system into each of the topological phases.
The total conductivity κxy is shown in the top row and its
corresponding band contributions κ

xy
λ in the bottom row in

each case. For phases II–IV, the only significant contributions
come from the bands with nonvanishing Chern numbers. For
the given parameters in phase I, bands 3 and 4 are of particular
significance.

In the following sections, we discuss the different phases
separately.

A. Phase I

We first consider phase I where, as shown in Figs. 3 and
4(a), there is a nonzero thermal Hall conductivity κxy despite
this phase being topologically trivial. In addition, a change of
sign of κxy with respect to the KOC parameter � and the DMI
strength D can also be observed. To elucidate this, we write
the contribution D fλ(ε) of the isoenergy surface of energy ε

to an integral fλ ≡ ∫
BZ d2k Fλk as [65]

D fλ(ε) =
∫

BZ
d2k δ(ελk − ε)Fλk, (17)

so that fλ = ∫ ∞
0 dε D fλ(ε). The band structures, isoenergy

surface contributions to the Chern numbers DCλ and corre-
sponding contributions to the thermal conductivity Dκ

xy
λ are

depicted in Fig. 5 for two points in phase I of Fig. 3 at
T = 30 K. The first point in Fig. 5(a) with � = −0.27 and
D = 0.31 meV is close to the gap-closing transition at � with
phase II, so we find a pair of similarly sized peaks in DCλ of
opposite sign at � in bands 3 and 4 due to their proximity. In
each of the bands, the contributions of the different isoenergy
surfaces cancel, so that all the Chern numbers are vanishing.
The integrand of our expression for κ

xy
λ from Eq. (16) contains

the c2 function, which suppresses the contributions Dκ
xy
λ of
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FIG. 5. The band structure along the path �MK� shown in Fig. 2
(left), the isoenergy surfaces of the Chern numbers DCλ (middle),
and the isoenergy surfaces of the contributions of each band to the
thermal Hall conductivity Dκ

xy
λ (right). The parameters are given in

Fig. 3 with (a) � = −0.27 and D = 0.31 meV and (b) � = −0.2
and D = 0.05 meV. The energies of the bands at the �, M, and K
points are highlighted in each plot by gray horizontal lines. The
Chern numbers Cλ and contribution to the conductivity κ

xy
λ in units

of 10−13 W K−1 are given for each band as text of the corresponding
color in each subfigure. The color scheme of the energy bands and
its contributions are the same as in Fig. 4.

higher isoenergy surfaces, allowing the κ
xy
λ to take nonzero

values. Bands 5 and 6 are so strongly suppressed as to have
negligible contributions since the average thermal energy is
kBT = 2.6 meV, lying within band 1. A large negative con-
tribution is found around � between bands 3 and 4 with a
smaller negative contribution around the K points between
bands 2 and 3. Thus, we find a nonzero thermal conductivity
κxy = −3.0 × 10−13 W K−1 at this point, albeit significantly
smaller than in neighboring phases.

As we move away from phase II in parameter space,
the trivial gap between bands 3 and 4 at � is opened up,
while the gap between bands 2 and 3 (and 4 and 5) at the
K points is closed. This increases the contribution of the
isoenergy surfaces at the K points while suppressing those
at �, resulting in a transition to positive κxy, as observed
with κxy = 8.1 × 10−14 W K−1 at � = −0.2, D = 0.05 meV
in Fig. 5(b). Thus, the competition between the contributions
of the � and K points in the parameter space results in the
observed sign change of κxy for a fixed temperature in Fig. 3.

B. Phase II

In this phase, only bands 3 and 4 have nonvanishing Chern
numbers and provide significant contributions to κxy. Band
3 has C3 = 1 and the higher-energy band 4 with C4 = −1
can never fully counter its negative contribution so that this
is the only phase where the thermal Hall conductivity has a

FIG. 6. The total thermal conductivity κxy (blue, solid line)
and its current κ

xy
E (yellow, dashed line) and orbital κ

xy
O (green,

dotted-dashed line) contributions against (a) the temperature T at
� = 0.136 and (b) the KOC parameter � at T = 30 K at the point
in phase III from Fig. 3.

fixed sign with κxy < 0. This is similar to the isotropic lattice,
where the system is reduced to a two-band model with the
upper (lower) band having a Chern number of −1 (1) [64].
At the boundary with phase III where the magnitude of κxy is
greatest, we have � = 0 so that the KOC modulation is absent
and the system reduces to this two-band model exactly.

C. Phase III

The nonzero winding numbers in this phase are
ν1 = ν2 = −ν3 = ν4 = ν5 = −1, so we find four edge modes
propagating counterclockwise against the fifth, in band gap 3,
propagating clockwise. As shown in Fig. 4(c), at low temper-
atures the lower bulk bands dominate with ν1 = ν2 = −1 so
that κxy > 0. Upon increasing the temperature, the edge mode
in band gap 3 becomes populated, with the sign change in κxy

occurring due to the transition to its dominance over the lower
edge modes.

On the other hand, the total thermal Hall conductivity κxy in
Eq. (16) and its contributions due to the current κ

xy
E in Eq. (15)

and orbital motion of magnons κ
xy
O at the point in phase III

with � = 0.136 and the other parameters from Fig. 3 are
plotted against temperature in Fig. 6(a). This lies on the line of
points throughout the parameter space where κxy is vanishing
at T = 30 K. At low temperatures, κ

xy
E > 0 dominates and

κxy rapidly increases to its peak value of 1.9 × 10−13 W K−1

at T = 19 K in Fig. 6(a). Beyond this, κ
xy
E rapidly decreases

and, despite the large κ
xy
O > 0, κxy transitions to negative

values at T = 30 K. Thus, externally varying the temperature
in the region around 30 K would allow direct control over
the sign of κxy. The variation of these contributions to κxy

with respect to � around its critical value of 0.136 at 30 K
is depicted in Fig. 6(b). Since the orbital contribution κ

xy
O

is nearly constant around criticality, this demonstrates that
the sign change with respect to � is driven by the current
contribution κ

xy
E . Alternatively, as shown in Fig. 4(c), the

sign change of κxy with temperature is a consequence of a
competition between bands of different Chern numbers. For
a given temperature, as shown in Fig. 3, the sign change in
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κxy is due to a competition between the contributions Dκ
xy
λ of

isoenergy surfaces near the � and K points, as in Sec. IV A.

D. Phase IV

Similarly to phases I and III, in this phase κxy changes its
sign in the parameter space at fixed temperature. However, as
shown in Fig. 3, this sign change occurs for small values of
� and D. For larger values, κxy is positive. The set of Chern
numbers for this phase is (−1, 0, 1,−1, 0, 1) with winding
numbers ν1 = ν2 = ν4 = ν5 = −1 and ν3 = 0, so we find four
edge modes propagating counterclockwise. Thus, we gener-
ally have κxy > 0 in this phase. Alternatively, for the point
given in Fig. 3 at low temperatures, band 1 with C1 = −1
dominates, resulting in κxy > 0. As the temperature increases,
there is a competition of higher bulk bands, however, their
contribution to the Hall current is strongly suppressed by the
c2 function so that κxy remains positive.

E. Magnetic field

In the Hall effect of electrons, time-reversal symmetry is
broken as a result of an external magnetic field B deflecting
the electrons carrying the heat currents via the Lorentz force.
In the thermal Hall effect of magnons, which are electrically
neutral, a similar effect is a consequence of the DMI and
does not require an external magnetic field. Thus, in a real
ferromagnetic material, the observation of the Hall effect at
weak B would directly demonstrate that the particles carrying
the heat currents are electrically neutral, being either magnons
or phonons [10]. As discussed in Sec. II, B affects the magnon
bands through the Zeeman term in Eq. (1). Flipping the
sign of B effectively flips the sign of the DMI strengths,
so that κxy(−B) = −κxy(B). Increasing |B| or the easy-axis
anisotropy A increases the onsite potential ε0 and the energy
gap h between the ground state and band 1 at �, shown in
Fig. 5. This suppresses the contributions to the thermal Hall
conductivity κ

xy
λ of all bands as a consequence of the c2

function in Eq. (16).
Plots of the thermal Hall conductivity κxy against the mag-

netic field B for various temperatures T at the point in phase
III from Fig. 3 are depicted in Fig. 7. We now consider B > 0
for simplicity. For low temperatures, the occupation of all
bands is so strongly suppressed that κxy is negligible, as shown
for T = 5 K in Fig. 7(a). Increasing the temperature with
T < 15 K, only band 1 has a significant contribution κ

xy
1 > 0,

so increasing B decreases κxy. This continues as band 3 with
κ

xy
3 < 0 becomes successively occupied up to 25 K, at which

point both bands are suppressed equally and κxy is nearly
invariant with respect to an increase in B. Above this tem-
perature, as band 3 dominates and decreases κxy, increasing B
increases κxy. At T = 30 K, when κxy = 0 at B = 0, we find
no discontinuity in the plot as shown in Fig. 7(f). Above this,
we have κxy < 0 so that increasing B increases κxy, despite the
increasing occupancy of band 4 with κ

xy
4 > 0. Bands 2 and 5

have zero Chern numbers and band 6 has too high an energy,
so they have negligible contributions to κxy. Experimental
observation of the suppression of κxy by increasing |B| would
preclude the heat currents being carried by phonons, as their
mean-free path and hence κxy is expected to be enhanced due
to reduced magnon-phonon scattering [10].

FIG. 7. The thermal Hall conductivity κxy against magnetic field
B at various temperatures T at the point in phase III in Fig. 3.

V. CONCLUSION

We have investigated the thermal Hall effect of magnons
in a KOC-modulated honeycomb ferromagnetic lattice with
DMI. As an extension of our previous model [43], we have
considered a strain-based mechanism for introducing this
modulation. We have calculated the thermal Hall conductiv-
ity κxy at low temperature in the four different topological
phases as a function of the KOC parameter, DMI strength,
temperature, and external magnetic field. We found that in
the topologically trivial phase, where all the Chern numbers
are vanishing, the thermal Hall conductivity is nonzero due
to a nonvanishing local Berry curvature emerging from band
proximity effects. We also found that κxy can easily be con-
trolled using the external temperature and magnetic field as
well as the internal KOC and DMI parameters. Further, we
found that the sign of κxy is not fixed, exhibiting sign changes
with respect to these parameters. Thus, such a material with
both KOC modulation and DMI would be highly appropriate
for thermal components.

Finally, near the Curie temperature, magnon-magnon in-
teractions beyond the scope of the linear spin-wave theory
considered become important [51,66]. Furthermore, to derive
the Grunessein-type parameter of CrI3 in a similar manner
to graphene [49], it would be necessary to consider other
interactions such as magnon-phonon. We will report on the
results of such investigations in the future.
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