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Dzyaloshinskii-Moriya interaction in magnetoferroelectric superlattices: Spin waves and skyrmions
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We study in this paper effects of Dzyaloshinskii-Moriya (DM) magnetoelectric coupling between ferroelectric
and magnetic layers in a superlattice formed by alternate magnetic and ferroelectric films. Magnetic films are
films of simple cubic lattice with Heisenberg spins interacting with each other via an exchange J and a DM
interaction with the ferroelectric interface. Electrical polarizations of ±1 are assigned at simple cubic lattice
sites in the ferroelectric films. We determine the ground-state (GS) spin configuration in the magnetic film. In
zero field, the GS is periodically noncollinear and in an applied field H perpendicular to the layers, it shows
the existence of skyrmions at the interface. Using the Green’s function method, we study the spin waves (SW)
excited in a monolayer and also in a bilayer sandwiched between ferroelectric films, in zero field. We show
that the DM interaction strongly affects the long-wavelength SW mode. We calculate also the magnetization
at low temperature T . We use next Monte Carlo simulations to calculate various physical quantities at finite
temperatures such as the critical temperature, the layer magnetization, and the layer polarization, as functions
of the magnetoelectric DM coupling and the applied magnetic field. Phase transition to the disordered phase is
studied in detail.
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I. INTRODUCTION

Nonuniform spin structures, which are quite interesting by
themselves, became the subject of close attention after the
discovery of electrical polarization in some of them [1]. The
existence of polarization is possible due to the inhomogeneous
magnetoelectric effect, namely, that electrical polarization can
occur in the region of magnetic inhomogeneity. It is known
that the electric polarization vector is transformed in the
same way as the combination of the magnetization vector
and the gradient of the magnetization vector, meaning that
these values can be related by the proportionality relation.
In Ref. [2] it was found that in a crystal with cubic sym-
metry, the relationship between electrical polarization and
inhomogeneous distribution of the magnetization vector has
the following form:

P = γχe[M · (∇ · M) − (M · ∇) · M], (1)

where γ is the magnetoelectric coefficient and χe the permit-
tivity. In noncollinear structures, the microscopic mechanism
of the coupling of polarization and the relative orientation
of the magnetization vectors is based on the interaction of
Dzyaloshinskii-Moriya (DM) [3–5]. The corresponding term
in the Hamiltonian is

HDM = Di, j · Si × Sj, (2)

where Si is the spin of the ith magnetic ion, and Di, j is the
Dzyaloshinskii-Moriya vector. The vector Di, j is proportional
to the vector product R × ri,j of the vector R which specifies
the displacement of the ligand (for example, oxygen) and the
unit vector ri,j along the axis connecting the magnetic ions i

and j [see Fig. 1(a)]. We write

Di, j ∝ R × ri,j. (3)

Thus, the Dzyaloshinskii-Moriya interaction connects the
angle between the spins and the magnitude of the displace-
ment of nonmagnetic ions. In some micromagnetic struc-
tures, all ligands are shifted in one direction, which leads
to the appearance of macroscopic electrical polarization [see
Fig. 1(b)]. By nature, this interaction is a relativistic amend-
ment to the indirect exchange interaction, and is relatively
weak [6]. In the case of magnetically ordered matter, the con-
tribution of the Dzyaloshinskii-Moriya interaction to the free
energy can be represented as Lifshitz antisymmetric invariants
containing spatial derivatives of the magnetization vector.
In analogy, the vortex magnetic configuration can be stable
via Skyrme mechanism [7]. Skyrmions were theoretically
predicted more than 20 years ago as stable micromagnetic
structures [8]. The idea came from nuclear physics, where the
elementary particles were represented as vortex configurations
of continuous fields. The stability of such configurations
was provided by the “Skyrme mechanism,” the components
in Lagrangians containing antisymmetric combinations of
spatial derivatives of field components [9]. For a long time
skyrmions have been the subject only of theoretical studies.
In particular, it was shown that such structures can exist in
antiferromagnets [10] and in magnetic metals [11]. In the
latter case, the model included the possibility of changing
the magnitude of the magnetization vector and spontaneous
emergence of the skyrmion lattice without the application
of external magnetic field. A necessary condition for the
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FIG. 1. (a) Schema of Dzyaloshinskii-Moriya interaction, spins
are in the xy plane; (b) microscopic mechanisms of creation of
electric spontaneous polarization P due to displacements of atoms
(red) in the same direction z.

existence of skyrmions in bulk samples was the absence of
an inverse transformation in the crystal magnetic symmetry
group. Diep et al. [12] have studied a crystal of skyrmions
generated on a square lattice using a ferromagnetic exchange
interaction and a Dzyaloshinskii-Moriya interaction between
nearest neighbors under an external magnetic field. They have
shown that the skyrmion crystal has a hexagonal structure
which is shown to be stable up to a temperature Tc where a
transition to the paramagnetic phase occurs and the dynamics
of the skyrmions at T < Tc follows a stretched exponential
law. In Ref. [11] it was shown that the most extensive class
of candidates for the detection of skyrmions includes the sur-
faces and interfaces of magnetic materials, where the geome-
try of the material breaks the central symmetry and, therefore,
can lead to the appearance of chiral interactions similar to
the Dzyaloshinskii-Moriya interaction. In addition, skyrmions
are two-dimensional (2D) solitons, the stability of which is
provided by the local competition of short-range interactions
exchange and Dzyaloshinskii-Moriya interactions [12,13].
The idea of using skyrmions in memory devices nowadays
is reduced to the information encoding using the presence
or absence of a skyrmion in certain area of the material.
A numerical simulation of the creation and displacement of
skyrmions in thin films was carried out in Ref. [14] using
a spin-polarized current. The advantage of skyrmions with
respect to the domain boundaries in such magnetic memory
circuits (e.g., racetrack memory, see Ref. [15]) is the rela-
tively low magnitude of the currents required to move the
skyrmions along the “track.” For the first time, skyrmions
were experimentally detected in the MnSi helimagnet [16].
Below the Curie temperature in MnSi spins are aligned in
helicoidal or conical structure (the field was applied along
the [100] axis), depending on the magnitude of the applied
magnetic field. Similar experimental results were obtained for
the compound Fe1−xCoxSi, x = 0.2 [17]. The investigation
of Fe0.5Co0.5Si made it possible to take the next important
step in the study of skyrmions: to directly observe them
using Lorentz electron microscopy [18]. The dependence of
the stability of the skyrmion lattice on the sample thickness
of FeGe was studied in more detail in Ref. [19]. Studies
have confirmed that the thinner was the film, the greater

was the “stability region” of skyrmions. Skyrmions as the
most compact isolated micromagnetic objects are of great
practical interest as memory elements [13]. The stability of
skyrmions [12] can make the memory on their basis non-
volatile, and low control currents will reduce the cost of
rewriting compared to similar technologies based on domain
boundaries. In Refs. [20,21] magnetic and electrical proper-
ties of the skyrmion lattice were studied in the multiferroic
Cu2OSeO3. It has been shown that that energy consumption
can be minimized by using the electric field to control the
micromagnetic structures. It is worth noting that the multifer-
roics BaFe12−x−0.05ScxMg0.05O19 may also have a skyrmion
structure [22,23]. The manipulations with skyrmions were
first demonstrated in the diatomic PdFe layer on the iridium
substrate, and the importance of this achievement for the
technology of information storing is difficult to overestimate:
it makes possible to write and read the individual skyrmions
using a spin-polarized tunneling current [24]. In Ref. [25], the
possibility of the nucleation of skyrmions by the electric field
by means of an inhomogeneous magnetoelectric effect was
established.

Recent studies are focused on the interface-induced
skyrmions. Therefore, the superstructures naturally lead to
the interaction of skyrmions on different interfaces, which
has unique dynamics compared to the interaction of the
same-interface skyrmions. In Ref. [26], a theoretical study
of two skyrmions on two-layer systems was carried using
micromagnetic modeling, as well as an analysis based on
the Thiele equation, which revealed a reaction between them,
such as the collision and a bound-state formation. The dy-
namics sensitively depends on the sign of DM interaction,
i.e., the helicity, and the skyrmion numbers of two skyrmions,
which are well described by the Thiele equation. In addition,
the colossal spin-transfer-torque effect of bound skyrmion
pair on antiferromagnetically coupled bilayer systems was
discovered. In Ref. [27] the study of the Thiele equation
was carried for current-induced motion in a skyrmion lattice
through two soluble models of the pinning potential.

We consider in this paper a superlattice composed of al-
ternate magnetic films and ferroelectric films. The aim of this
paper is to propose a model for the coupling between the mag-
netic film and the ferroelectric film by introducing a DM-like
interaction. It turns out that this interface coupling gives rise
to noncollinear spin configurations in zero applied magnetic
field and to skyrmions in a field H applied perpendicularly to
the films. Using the Green’s function method, we study spin-
wave excitations in zero field of a monolayer and a bilayer.
We find that the DM interaction affects strongly the long-
wavelength mode. Monte Carlo simulations are carried out to
study the phase transition of the superlattice as functions of
the interface coupling strength.

The paper is organized as follows. Section II is devoted
to the description of our model and the determination of
the ground-state spin configuration with and without applied
magnetic field. Section III shows the results obtained by
Monte Carlo simulations for the phase transition in the system
as a function of the interface DM coupling. In Sec. IV we
show the results of the Green’s function technique in zero field
for a monolayer and a bilayer. Concluding remarks are given
in Sec. V.
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FIG. 2. (a) The superlattice composed of alternately a ferroelec-
tric layer indicated by F and a magnetic layer indicated by M;
(b) a polarization P1 at the interface interacts with five spins in the
magnetic layer. See text for expression.

II. MODEL AND GROUND STATE

A. Model

Consider a superlattice composed of alternate magnetic
and ferroelectric films [see Fig. 2(a)]. Both have the struc-
ture of simple cubic lattice of the same lattice constant, for
simplicity. The Hamiltonian of this multiferroic superlattice
is expressed as

H = Hm + Hf + Hm f , (4)

where Hm and Hf are the Hamiltonians of the ferromagnetic
and ferroelectric subsystems, respectively, while Hm f is the
Hamiltonian of magnetoelectric interaction at the interface
between two adjacent films.

We describe the Hamiltonian of the magnetic film with the
Heisenberg spin model on a simple cubic lattice:

Hm = −
∑
i, j

Jm
i j Si · S j −

∑
i

H · Si, (5)

where Si is the spin on the ith site, H is the external magnetic
field, Jm

i j > 0 the ferromagnetic interaction parameter between
a spin and its nearest neighbors (NN), and the sum is taken
over NN spin pairs. We consider Jm

i j > 0 to be the same,
namely, Jm, for spins everywhere in the magnetic film. The
external magnetic field H is applied along the z axis which is
perpendicular to the plane of the layers. The interaction of the
spins at the interface will be given below.

For the ferroelectric film, we suppose for simplicity that
electric polarizations are Ising-type vectors of magnitude 1,
pointing in the ±z direction. The Hamiltonian is given by

Hf = −
∑
i, j

J f
i jPi · P j −

∑
i

E zPz
i , (6)

where Pi is the polarization on the ith lattice site, J f
i j > 0

the interaction parameter between NN, and the sum is taken
over NN sites. Similar to the ferromagnetic subsystem we will
take the same J f

i j = J f for all ferroelectric sites. We apply the
external electric field E along the z axis.

We suppose the following Hamiltonian for the magneto-
electric interaction at the interface:

Hm f =
∑
i, j,k

Jm f
i jk Di, j · [Si × Sj]. (7)

In this expression, Jm f
i jk Di, j plays the role of the DM vector

which is perpendicular to the xy plane. Using Eqs. (2) and (3),
one has

Di, j = R × ri, j,
(8)

D j,i = R × r j,i = −Di, j .

Now, let us define for our model

Jm f
i jk = Jm f

i, j Pk, (9)

which is the DM interaction parameter between the electric
polarization Pk at the interface ferroelectric layer and the two
NN spins Si and Sj belonging to the interface ferromagnetic
layer. Hereafter, we suppose Jm f

i, j = Jm f independent of (i, j).
Selecting R in the xy plane perpendicular to ri, j (see Fig. 1),
we can write R × ri, j = az ei, j where ei, j = −e j,i = 1, a is a
constant, and z the unit vector on the z axis.

It is worth at this stage to specify the nature of the DM
interaction to avoid a confusion often seen in the literature.
The term [Si × S j] changes its sign with the permutation of
i and j, but the whole DM interaction defined in Eq. (2)
does not change its sign because Di, j changes its sign with
the permutation as seen in Eq. (3). Note that if the whole
DM interaction is antisymmetric, then when we perform the
lattice sum, nothing of the DM interaction remains in the
Hamiltonian. This explains why we need the coefficient ei, j

introduced above and present in Eq. (10).
We collect all these definitions we write Hm f in a simple

form

Hm f =
∑
i, j,k

Jm f Pk (R × ri, j ) · [Si × Sj]

=
∑
i, j,k

Jm f Pk ei, jz · [Si × Sj]

=
∑
i, j,k

Jm f ei, j Pk · [Si × Sj], (10)

where the constant a is absorbed in Jm f .
As seen in Eq. (10), the coefficient of the interface coupling

is proportional to 〈Pk〉 which depends on T . If 〈Pk〉 becomes
zero before the loss of skyrmion texture, we will not see the
latter. Therefore, we have chosen the polarization of the Ising
type with ferroelectric interaction parameter J f in a way that
its transition temperature is higher than that of the magnetic
part. Note that the magnetic transition is driven by the compe-
tition between T and the magnetic texture (skyrmions) which
is a result of the competition between J , the DM interaction
(namely, 〈Pk〉) and field H .

We note that the DM interaction is taken only between NN
spin. If we choose the DM vector D perpendicular to the xy
plane, then the DM interaction energy is minimum when the
spins are in the xy plane because D is parallel to [Si × S j].
One can choose any orientation for D but in that case to have
the minimum energy the plane containing Si and S j should be
perpendicular to D: the spins are not in the xy plane, making
the spin configuration analysis difficult.

The superlattice and the interface interaction are shown in
Fig. 2. A polarization at the interface interact with five spins
on the magnetic layer according to Eq. (10), for example [see
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Fig. 2(b)],

Jm f P1 · [e1,2(S1 × S2) + e1,3(S1 × S3)

+ e1,4(S1 × S4) + e1,5(S1 × S5)]. (11)

Since we suppose Pk is a vector of magnitude 1 pointing
along the z axis, namely, its z component is Pz

k = ±1, we
will use hereafter Pz

k for electric polarization instead of Pk .
From Eq. (10), we see that the magnetoelectric interaction Jm f

favors a canted spin structure. It competes with the exchange
interaction J of Hm which favors collinear spin configurations.
Usually, the magnetic or ferroelectric exchange interaction
is the leading term in the Hamiltonian, so that in many
situations the magnetoelectric effect is negligible. However,
in nanofilms of superlattices the magnetoelectric interaction
is crucial for the creation of noncollinear long-range spin
order.

Note that the hypothesis that Pk is in the z direction in
order to have the polarization proportional to the DM vector
[Eqs. (7)–(10)]. The DM vector is taken in the z direction in
order to have spins in the magnetic layers lying in the xy plane,
in the absence of an applied field (see Secs. II B 1 and IV). The
polarization is in addition supposed of the Ising type since in
this paper, this assumption allows us to have the DM vector in
a fixed direction z. The assumption is justified by the fact that
in ferroelectric materials, if atoms are displaced in the same
direction, it gives rise to a spontaneous polarization in that
direction as illustrated in Fig. 1(b).

B. Ground state

1. Ground state in zero magnetic field

Let us analyze the structure of the ground state (GS) in
zero magnetic field. Since the polarizations are along the z
axis, the interface DM interaction is minimum when Si and Sj
lie in the xy interface plane and perpendicular to each other.
However, the ferromagnetic exchange interaction among the
spins will compete with the DM perpendicular configuration.
The resulting configuration is noncollinear. We will determine
it below, but at this stage, we note that the ferroelectric film
has always polarizations along the z axis even when interface
interaction is turned on.

Let us determine the GS spin configurations in magnetic
layers in zero field. If the magnetic film has only one mono-
layer, the minimization of Hm f in zero magnetic field is done
as follows. By symmetry, each spin has the same angle θ with
its four NN in the xy plane. The energy of the spin Si gives the
relation between θ and Jm:

Ei = −4JmS2 cos θ + 8Jm f PzS2 sin θ, (12)

where θ = |θi, j | and care has been taken on the signs of sin θi, j

when counting NN, namely, two opposite NN have opposite
signs, and the opposite coefficient ei j , as given in Eq. (11).
Note that the coefficient 4 of the first term is the number of
in-plane NN pairs, and the coefficient 8 of the second term is
due to the fact that each spin has 4 coupling DM pairs with the
NN polarization in the upper ferroelectric plane, and 4 with
the NN polarization of the lower ferroelectric plane (we are
in the case of a magnetic monolayer). The minimization of Ei

yields, taking Pz = 1 in the GS and S = 1,

dEi

dθ
= 0 ⇒ −2Jm f

Jm
= tan θ ⇒ θ = arctan

(
−2Jm f

Jm

)
.

(13)
The value of θ for a given −2Jm f

Jm is precisely what is obtained
by the numerical minimization of the energy. We see that
when Jm f → 0, one has θ → 0, and when Jm f → −∞, one
has Jm f → π/2, as it should be. Note that we will consider
in this paper Jm f < 0 so as to have θ > 0. The above relation
between the angle and Jm f will be used in the last section to
calculate the spin waves in the case of a magnetic monolayer
sandwiched between ferroelectric films.

In the case when the magnetic film has a thickness, the
angle between NN spins in each magnetic layer is different
from that of the neighboring layer. It is more convenient using
the numerical minimization method called “steepest descent
method” to obtain the GS spin configuration. This method
consists in minimizing the energy of each spin by aligning it
parallel to the local field acting on it from its NN. This is done
as follows. We generate a random initial spin configuration,
then we take one spin and calculate the interaction field
from its NN. We align it in the direction of this field, and
take another spin and repeat the procedure until all spins
are considered. We go again for another sweep until the
total energy converges to a minimum. In principle, with this
iteration procedure the system can be stuck in a metastable
state when there is a strong interaction disorder such as in spin
glasses. But for uniform, translational interactions, we have
never encountered such a problem in many systems studied
so far.

We use a sample size N × N × L. For most calculations,
we select N = 40 and L = 8 using the periodic boundary
conditions in the xy plane. For simplicity, when we investigate
the effect of the exchange couplings on the magnetic and
ferroelectric properties, we take the same thickness for the
magnetic and ferroelectric films, namely, La = Lb = 4 = L/2.
Exchange parameters between spins and polarizations are
taken as Jm = J f = 1 for the simulation. For simplicity, we
will consider the case where the in-plane and interplane ex-
change magnetic and ferroelectric interactions between near-
est neighbors are both positive. All the results are obtained
with Jm = J f = 1 for different values of the interaction pa-
rameter Jm f .

We investigated the following range of values for the
interaction parameters Jm f : from Jm f = −0.05 to −6.0 with
different values of the external magnetic and electric fields.
We note that the steepest descent method calculates the real
ground state with the minimum energy to the value Jm f =
−1.25. After larger values, the angle θ tends to π/2 so that
all magnetic exchange terms (scalar products) will be close
to zero, the minimum energy corresponds to the DM energy.
Figure 3 shows the GS configurations of the magnetic inter-
face layer for small values of Jm f : −0.1, −0.125, −0.15. Such
small values yield small values of angles between spins so that
the GS configurations have ferromagnetic and noncollinear
domains. Note that angles in magnetic interior layers are
different but the GS configurations are of the same texture (not
shown).
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FIG. 3. GS spin configuration for weak couplings: Jm f = −0.1 (a), −0.125 (b), −0.15 (c), with H = 0.

For larger values of Jm f , the GS spin configurations have
periodic structures with no more mixed domains. We show
in Fig. 4 examples where Jm f = −0.45 and −1.2. Several
remarks are in order:

(i) Each spin has the same turning angle θ with its
NN in both x and y directions. The schematic zoom
in Fig. 4(c) shows that the spins on the same di-
agonal (spins 1 and 2, spins 3 and 4) are paral-
lel. This explains the structures shown in Figs. 4(a)
and 4(b).

(ii) The periodicity of the diagonal parallel lines depends
on the value of θ [comparing Figs. 4(a) and 4(b)]. With a
large size of N , the periodic conditions have no significant
effects.

2. Ground state in applied magnetic field

We apply a magnetic field perpendicular to the xy plane.
As we know, in systems where some spin orientations are
incompatible with the field such as in antiferromagnets, the
down spins cannot be turned into the field direction without
losing their interaction energy with the up spins. To pre-
serve this interaction, the spins turn into the direction almost
perpendicular to the field while staying almost parallel with
each other. This phenomenon is called “spin flop” [28]. In
more complicated systems such as helimagnets in a field,
more complicated reaction of spins to the field was observed,
leading to striking phenomena such as partial phase transition
in thin helimagnetic films [29]. In the present system, there is
a competition between the applied field which wants to align

FIG. 4. GS spin configurations for Jm f = −0.45 (a), −1.2 (b), with H = 0. Angles between NN are schematically zoomed (c). See text
for comments.
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FIG. 5. GS configuration of the surface magnetic layer for
(a) Jm f = −1.1 and H = 0.1, (b) 3D view of the surface GS
configuration.

the spins along the z direction, and the DM interaction which
wants the spins to be perpendicular which each other in the
x plane. As a consequence, spins find a compromise which is
the structure of skyrmions as shown below.

Figure 5(a) shows the ground-state configuration for Jm f =
−1.1 for first (surface) magnetic layer, with external magnetic
layer H = 0.1. Figure 5(b) shows the three-dimensional (3D)
view. We can observe the beginning of the birth of skyrmions
at the interface and in the interior magnetic layer.

Figure 6(a) shows the ground-state configuration for Jm f =
−1.1 for first (surface) magnetic layer, with external magnetic
layer H = 0.2. Figure 6(b) shows the 3D view. We can
observe the skyrmions for the surface and interior magnetic
layer. Note that the skyrmions are found here in a range of
sufficiently strong interface coupling and the applied field.
The skyrmions are distributed in 3D space (not on a plane)
in the magnetic layer. Figure 6 shows a cut in xy plane so
that the projected sizes are not uniform. We have made a
single magnetic layer: in that case, skyrmions are uniform
on a 2D sheet (not shown). We note that the skyrmion and
antiskyrmion textures are not degenerate due to the DM
asymmetry [see Eq. (10)]: choosing the direction of P will
fix the skyrmion turning direction, i.e., [Si × S j]. Changing P
will change skyrmions into antiskyrmions or vice versa.

Figure 7 shows the GS configuration of the interface mag-
netic layer (top) for Jm f = −1.1, with external magnetic layer
H = 0.33. The bottom figure shows the configurations of the
second (interior) magnetic layer. We can observe skyrmions
on both the interface and the interior magnetic layers.

Figure 8 shows the 3D view of the GS configuration for
Jm f = −1.1, with H = 0.33 for the first (interface) magnetic
layer and the second (interior) magnetic layer. We can observe
skyrmions very pronounced for the surface layer but less

FIG. 6. (a) GS configuration for the surface magnetic layer for
Jm f = −1.1 and H = 0.2, (b) 3D view.

FIG. 7. (a) GS configuration for the interface magnetic layer for
Jm f = −1.1 and H = 0.33, (b) GS configurations for the second and
third magnetic layers (they are identical). See text for comments.

contrast for the interior magnetic layer. For fields stronger
than H = 0.33, skyrmions disappear in interior layers. At
strong fields, all spins are parallel to the field, thus no
skyrmions anywhere.

III. MONTE CARLO RESULTS

We have used the Metropolis algorithm [30,31] to calcu-
late physical quantities of the system at finite temperatures
T . As said above, we use mostly the size N × N × L with
N = 40 and thickness L = Lm + L f = 8 (4 magnetic layers, 4
ferroelectric layers). Simulation times are 105 Monte Carlo

FIG. 8. (a) 3D view of the GS configuration of the interface,
(b) 3D view of the GS configuration of the second and third magnetic
layers, for Jm f and H = 0.33.
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steps (MCS) per spin for equilibrating the system and 105

MCS/spin for averaging. We calculate the internal energy
and the layer order parameters of the magnetic (Mm) and
ferroelectric (M f ) films.

The order parameter M f (n) of layer n is defined as

M f (n) = 1

N2

〈∣∣∣∣∣
∑
i∈n

Pz
i

∣∣∣∣∣
〉
, (14)

where 〈. . .〉 denotes the time average. The definition of an
order parameter for a skyrmion crystal is not obvious. Taking
advantage of the fact that we know the GS, we define the order
parameter as the projection of an actual spin configuration at
a given T on its GS and we take the time average. This order
parameter of layer n is thus defined as

Mm(n) = 1

N2(ta − t0)

∑
i∈n

∣∣∣∣∣
ta∑

t=t0

Si(T, t ) · S0
i (T = 0)

∣∣∣∣∣, (15)

where Si(T, t ) is the ith spin at the time t , at temperature
T , and Si(T = 0) is its state in the GS. The order parameter
Mm(n) is close to 1 at very low T where each spin is only
weakly deviated from its state in the GS. Mm(n) is zero when
every spin strongly fluctuates in the paramagnetic state. The
above definition of Mm(n) is similar to the Edward-Anderson
(EA) order parameter used to measure the degree of freezing
in spin glasses [32]. The EA order parameter, by definition,
is calculated as follows. We follow each spin during the time.
If it is frozen, then its time average is not zero. If it strongly
fluctuates with time evolution, then its time average is zero. To
calculate the overall degree of freezing, it suffices to add the
square of each spin’s time average. In doing so, we see that the
EA order parameter does not express the nature of ordering,
but only the degree of freezing.

In general, when the GS has several degenerate configura-
tions such as the all-up and the all-down spin configurations
in a ferromagnetic system of Ising spins, the system chooses
one of the two when T tends to 0. The coexistence of several
phases is not tolerated in such a case because the resulting
energy is higher than that of a pure one (due to walls). How-
ever, in frustrated systems where one can construct a ground
state by random stacking of frustrated units, one does not have
a long-range ordering. In this paper, we wish to follow the
evolution of the system ordering from T = 0, so we have to
compare the configuration at temperature T at the time t with
the GS we have selected to do the slow heating. That was
what we did: we compare the actual configuration obtained by
slowly heating the selected GS by projecting it on the selected
GS [see Eq. (15)]. There are several possibilities: (i) if the spin
structure is not stable when T 	= 0, Mm(n) goes to zero with
time, this is the case of the Kosterlitz-Thouless (XY spins in
2D with NN interaction); (ii) if the spin structure is frozen
or ordered (spin glasses (SG), ferromagnets,...), Mm(n) is not
zero at low T . In our case of skyrmion structure, we have
observed the second case, namely, the GS is stable up to a
finite T .

If the system makes a global rotation during the simulation,
then

∑ta
t=t0

Si(T, t ) · S0
i (T = 0) = 0 for a long-time average.

But, the length of this runtime depends on the nature of
ordering and the size of the system used in simulations.

FIG. 9. Energy of the magnetic film versus temperature T for
(a) Jm f = −0.1, Jm f = −0.125, Jm f = −0.15, Jm f = −0.2 (all
the lines are the same, see text for comments); (b) Jm f = −0.45
(purple line), Jm f = −0.75 (green line), Jm f = −0.85 (blue line),
and Jm f = −1.2 (gold line), without an external magnetic field.

For large disordered systems such as SG and complicated
noncollinear extended skyrmion structures, the global rotation
may be forbidden or the time to realize it is out of reach in MC
simulations. To see if a global rotation is realized or not, we
have to make a finite-time scaling to deduce properties at the
infinite time. This is very similar in spirit with the finite-size
scaling used to deduce properties at the infinite crystal size.
We have previously performed a finite-time scaling for the 2D
skyrmion crystal [33]. In that work, we have used the same
order parameter as Eq. (15). We have seen that skyrmions need
much more than 106 MC steps per spin to relax to equilibrium.
The order parameter follows a stretched exponential law as in
SG and stabilized at nonzero values for T < Tc at the infinite
time. If there is a global rotation, we would not have nonzero
values of Mm(n) for T < Tc at the infinite time. We note that
in this work, as in Ref. [33], we have made a very slow heating
of a selected GS and we did not observe a global rotation.

Note that the counting of topological charges around each
skyrmion is numerically possible. In that case, the charge
number evolves with T and goes to zero at the phase tran-
sition. The procedure is equivalent to projecting the skyrmion
spin texture on its GS. We have chosen the projection one.
The total order parameters Mm and M f are the sum of the
layer order parameters, namely, Mm = ∑

n Mm(n) and M f =∑
n M f (n).
In Fig. 9 we show the dependence of energy of the mag-

netic film versus temperature, without an external magnetic
field, for various values of the interface magnetoelectric
interaction: in Fig. 9(a) for weak values Jm f = −0.1, Jm f =
−0.125, Jm f = −0.15, Jm f = −0.2, and in Fig. 9(b)
for stronger values Jm f = −0.45, Jm f = −0.75, Jm f =
−0.85, Jm f = −1.2.

As said in the GS determination, when Jm f is weak, the
GS is composed with large ferromagnetic domains at the
interface (see Fig. 3). Interior layers are still ferromagnetic.
The energy therefore does not vary with weak values of Jm f as
seen in Fig. 9(a). The phase transition occurs at the curvature
change, namely, maximum of the derivative or maximum of
the specific heat T m

c 
 1.25. Note that the energy at T = 0
is equal to −2.75 by extrapolating the curves in Fig. 9(a) to
T = 0. This value is just the sum of energies of the spins
across the layers: 2 interior spins with 6 NN, 2 interface spins
with 5 NN. The energy per spin is thus (in ferromagnetic
state) E = −(2 × 6 + 2 × 5)/(4 × 2) = −2.75 (the factor 2
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FIG. 10. (a) Order parameter of the magnetic film Mm versus T ;
(b) order parameter of the ferroelectric film Mf versus T , for Jm f =
−0.1 (purple dots), Jm f = −0.125 (green dots), Jm f = −0.15 (blue
dots), Jm f = −0.2 (gold dots), without an external magnetic field.

in the denominator is to remove the bond double counting in
a crystal).

For stronger values of Jm f , the curves shown in Fig. 9(b)
indicate a deviation of the ferromagnetic state due to the
noncollinear interface structure. Nevertheless, we observe the
magnetic transition at almost the same temperature, namely,
T m

c 
 1.25. It means that spins in interior layers dominate the
ordering.

We show in Fig. 10 the total order parameters of the
magnetic film Mm and the ferroelectric film M f versus T
for various values of the parameter of the magnetoelectric
interaction Jm f = −0.1,−0.125,−0.15,−0.2 and for Jm f =
−0.45,−0.75,−0.85,−1.2, without an external magnetic
field. Several remarks are in order:

(i) For the magnetic film, Mm shows strong fluctuations
but we still see that all curves fall to zero at T m

c 
 1.25.
These fluctuations come from nonuniform spin configurations
and also from the nature of the Heisenberg spins in low
dimensions [34].

(ii) For the ferroelectric film, M f behaves very well with
no fluctuations. This is due to the Ising nature of electric
polarizations supposed in the present model. The ferroelectric
film undergoes a phase transition at T f

c 
 1.50.
(iii) There are thus two transitions, one magnetic and

one ferroelectric, separately. The magnetic transition occurs
at a lower temperature. We know that in bulk crystals the
transition temperature is approximatively proportional to 1/n
where n is the component number of the spin: n = 3 for the
Heisenberg spin, n = 1 for the Ising spin [35,36]. The fact
that the ferroelectric transition occurs at a higher temperature
observed in Fig. 10(b) is understood. The weak coupling
with the magnetic film makes the two transition temperatures
separately. Between T m

c and T f
c , the superlattice is partially

disordered: the magnetic part is disordered while the ferro-
electric part is ordered. The partial disorder has been observed
in many systems, for example, the surface layer of a thin film
can become disordered at a low temperature while the bulk
is still ordered [37]. One can also mention the partial phase
transition in helimagnets in a field [29].

We show in Fig. 11 the order parameters of the magnetic
and ferroelectric films at strong values of Jm f as functions
of T , in zero field. We observe that the stronger |Jm f | is, the
lower T m

c becomes. This is understood by the discussion given
below Eq. (13) for a monolayer: the stronger |Jm f | makes the

FIG. 11. (a) Order parameter of the magnetic film versus T ;
(b) order parameter of the ferroelectric film versus T for Jm f =
−0.45 (purple dots), Jm f = −0.75 (green dots), Jm f = −0.85 (blue
dots), and Jm f = −1.2 (gold dots), without an external magnetic
field.

larger angle θ . In the case of many magnetic layers shown in
Fig. 11, the larger angle causes a stronger competition with
the collinear ferromagnetic interaction of the interior layers.
This enhanced competition gives rise to the destruction of the
ordering at a lower temperature.

We examine the field effects now. Figure 12 shows the
order parameter and the energy of the magnetic film versus T ,
for various values of the external magnetic field. The interface
magnetoelectric interaction is Jm f = −1.2. Depending on the
magnetic field, the noncollinear spin configuration survives
up to a temperature between 0.5 and 1 (for H = 0). After the
transition, spins align themselves in the field direction, giving
a large value of the order parameter [Fig. 12(a)]. The energy
shows a sharp curvature change only for H = 0, meaning that
the specific heat is sharp only for H = 0 and broadened more
and more with increasing H .

We consider now the case of very strong interface
couplings.

Figure 13(a) shows the magnetic order parameter ver-
sus T . The purple and green lines correspond to M for
Jm f = −2.5 with Hz = 1.0 and 1.5, respectively; the blue
and gold lines correspond to M for Jm f = −6 with Hz = 0
and 1. These curves indicate first-order phase transitions at
T m

c = 1.05 for (Jm f = −2.5, Hz = 1) (purple), at T m
c = 1.12

for (Jm f = −2.5, Hz = 1.5) (green), and at T m
c = 1.25 for

(Jm f = −6, Hz = 1) (blue). In the case of zero field, namely
(Jm f = −6, Hz = 0) (gold), one has a first-order phase tran-
sitions occurring at Tc = 2.30.

FIG. 12. (a) Temperature dependence of (a) the magnetic or-
der parameter; (b) the magnetic energy for H = 0 (purple dots),
H = 0.25 (green line), H = 0.5 (blue line), H = 0.75 (gold line),
H = 1 (yellow line). The interface magnetoelectric interaction is
Jm f = −1.2.
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FIG. 13. (a) Order parameter of magnetic film versus T . The
purple and green dots correspond to M for (Jm f = −2.5, Hz = 1)
and (Jm f = −2.5, Hz = 1.5), blue and gold dots correspond to M
for (Jm f = −6, Hz = 1) and (Jm f = −6, Hz = 0). (b) Energies of
magnetic (purple dots) and ferroelectric (green dots) subsystems
versus T for (Jm f = −6, H = 0).

Let us discuss about the nature of the transition shown in
Fig. 13(a). When H 	= 0, the first transition at low temperature
(T 
 1.05–1.25) is due to the destruction of the skyrmion
structure. After this transition, the z-spin components being
not zero under an applied field come close to zero only at
high T (
2.3). This is not a phase transition because the z
components will never be zero in a field if Jm f is not so strong.
When Jm f is very strong (Jm f = −6, blue data points), the
DM interaction is so strong that the spins will lie in the xy
plane in spite of H : we see that the z-spin components are zero
after the loss of the ferroelectric ordering at T 
 2.3. Note that
when H = 0 (gold data points), there is no skyrmion, the spin
configuration is chiral (helical) as shown in Sec. III. The single
transition to the paramagnetic phase occurs at T 
 2.3 where
the chiral ordering and the ferroelectric ordering are lost at the
same time [see Fig. 13(b)].

Figure 13(b) shows the magnetic (purple) and ferroelectric
(green) energies versus T for (Jm f = −6, Hz = 0). One sees
the discontinuities of these curves at Tc 
 2.3, indicating
the first-order transitions for both magnetic and ferroelectric
at the same temperature. In fact, with such a strong Jm f

the transitions in both magnetic and ferroelectric films are
driven by the interface, this explains the same Tc for both.
The first-order transition observed here can be understood
because the present system is a frustrated system due to the
competing interactions. So far, all frustrated noncollinear spin
systems have been found possessing a first-order transition
(see Ref. [38] and references in Ref. [39]).

Let us show the effect of an applied electric field. For the
ferroelectric film, polarizations are along the z axis so that
an applied electric field E along this direction will remove
the phase transition: the order parameter never vanishes when
E 	= 0, similar to the case of a ferromagnet in an applied
magnetic field. This is seen in Fig. 14. Note that the energy has
a sharp change of curvature for E = 0 indicating a transition,
other energy curves with E 	= 0 do not show a transition. One
notices some anomalies at T ∼ 1–1.1 which are due to the
effect of the magnetic transition in this temperature range.

IV. SPIN WAVES IN ZERO FIELD

We have shown in the previous section Monte Carlo results
for the phase transition in our superlattice model. Here, let us

FIG. 14. (a) Order parameter and (b) energy of ferroelectric film,
versus temperature for E = 0 (purple dots), E = 0.25 (green line),
E = 0.5 (blue line), E = 0.75 (gold line), E = 1 (yellow line). The
interface magnetoelectric interaction is Jm f = −1.2 .

show theoretically spin waves (SW) excited in the magnetic
film in zero field, in some simple cases. The method we
employ is the Green’s function technique for noncollinear
spin configurations which has been shown to be efficient for
studying low-T properties of quantum spin systems such as
helimagnets [40] and systems with a DM interaction [41].

In this section, we consider the same Hamiltonian sup-
posed in Eqs. (4)–(10) but with quantum spins of amplitude
1
2 . As seen in the previous section, the spins lie in the xy
planes, each on its quantization local axis lying in the xy plane
(quantization axis being the ζ axis, see Fig. 15).

Expressing the spins in the local coordinates, one has

Si = Sξi
i ξ̂i + Sηi

i η̂i + Sζi
i ζ̂i, (16)

S j = S
ξ j

j ξ̂ j + S
η j

j η̂ j + S
ζ j

j ζ̂ j, (17)

where the i and j coordinates are connected by the rotation

ξ̂ j = cos θi j ζ̂i + sin θi j ξ̂i,

ζ̂ j = − sin θi j ζ̂i + cos θi j ξ̂i, η̂ j = η̂i,

where θi j = θi − θ j being the angle between Si and S j .
As we have seen above, the GS spin configuration for one

monolayer is periodically noncollinear. For two-layer mag-
netic film, the spin configurations in two layers are identical
by symmetry. However, for thickness larger than 2, the interior
layer has angles different from that on the interface layer. It is
not our purpose to treat that case though it is possible to do so

FIG. 15. The spin quantization axes of Si and S j are ζ̂i and ζ̂ j ,
respectively, in the xy plane.
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FIG. 16. Spin-wave energy E (k) versus k (k ≡ kx = kz) for (a) θ = 0.3 radian and (b) θ = 1 in 2D at T = 0. See text for comments.

using the method described in Ref. [41]. We rather concentrate
ourselves in the case of a monolayer in this section.

In this paper, we consider the case of spin one-half (S = 1
2 ).

Expressing the total magnetic Hamiltonian HM = Hm + Hm f

in the local coordinates [41]. Writing S j in the coordinates
(ξ̂i, η̂i, ζ̂i ), one gets the following exchange Hamiltonian from
Eqs. (4)–(10):

HM = −
∑
〈i, j〉

Jm

{
1

4
(cos θi, j − 1)(S+

i S+
j + S−

i S−
j )

+ 1

4
(cos θi, j + 1)(S+

i S−
j + S−

i S+
j )

+ 1

2
sin θi, j (S

+
i + S−

i )Sz
j − 1

2
sin θi, jS

z
i (S+

j + S−
j )

+ cos θi, jS
z
i Sz

j

}
+ D

4

∑
〈i, j〉

[
(S+

i +S−
i )(S+

j +S−
j )|sinθi, j |

+ 4Sz
i Sz

j |sinθi, j |
]
, (18)

where D = Jm f Pz. Note that Pz = 1 in the GS. At finite T we
replace Pz by 〈Pz〉. In the above equation, we have used stan-
dard notations of spin operators for easier recognition when
using the commutation relations in the course of calculation,
namely, (

Sξi
i , Sηi

i , Sζi
i

) → (
Sx

i , Sy
i , Sz

i

)
,

(19)(
S

ξ j

j , S
η j

j , S
ζ j

j

) → (
Sx

j , Sy
j , Sz

j

)
,

where we understand that Sx
i is in fact Sxi

i and so on.
Note that the sinus terms of Hm, the third line of Eq. (18),

are zero when summed up on opposite NN unlike the sinus
term of the DM Hamiltonian Hm f [Eq. (10)] which remains
thanks to the choice of the DM vectors for opposite directions
in [41].

A. Monolayer

In two dimensions (2D) there is no long-range order at
finite temperature (T ) for isotropic spin models with short-
range interaction [34]. Therefore, to stabilize the ordering
at finite T it is useful to add an anisotropic interaction to
stabilize the magnetic long-range ordering when the wave
vector vanishes [see Fig. 16(a) for instance]. It is known that
in 2D or in very thin films, the integrands to calculate 〈M〉 at
a finite T [see Eq. (38)] diverges as k dk/k2 (since E = >k2

for the ferromagnetic mode when k = >0) while in 3D this is
k2dk/k2 as k = >0 (no problem of divergence). In MC sim-
ulations shown in the previous section, the statistical average
was done using stochastic random configurations generated
by statistical probability (no possible mode of k = 0). So, we
do not encounter such a mathematical divergence as in the SW
calculation.

We use the following anisotropy between Si and S j which
stabilizes the angle determined above between their local
quantization axes Sz

i and Sz
j :

Ha = −
∑
〈i, j〉

Ki, jS
z
i Sz

j cos θi, j, (20)

where Ki, j is supposed to be positive, small compared to Jm,
and limited to NN. Hereafter, we take Ki, j = K for NN pair in
the xy plane, for simplicity. The total magnetic Hamiltonian
HM is finally given by (using operator notations)

HM = Hm + Hm f + Ha. (21)

We now define the following two double-time Green’s
functions in the real space:

Gi, j (t, t ′) = 〈〈S+
i (t ); S−

j (t ′)〉〉
= −iθ (t − t ′)〈[S+

i (t ), S−
j (t ′)]〉, (22)

Fi, j (t, t ′) = 〈〈S−
i (t ); S−

j (t ′)〉〉
= −iθ (t − t ′)〈[S−

i (t ), S−
j (t ′)]〉. (23)

The equations of motion of these functions read as

ih̄
dGi, j (t, t ′)

dt
= 〈[S+

i (t ), S−
j (t ′)]〉δ(t − t ′)

−〈〈[HM , S+
i ]; S−

j 〉〉 (24)

ih̄
dFi, j (t, t ′)

dt
= 〈[S−

i (t ), S−
j (t ′)]〉δ(t − t ′)

−〈〈[HM , S−
i ]; S−

j 〉〉. (25)

For the Hm and Ha parts, the above equations of motion
generate terms such as 〈〈Sz

l S±
i ; S−

j 〉〉 and 〈〈S±
l S±

i ; S−
j 〉〉. These

functions can be approximated by using the Tyablikov decou-
pling to reduce to the above-defined G and F functions:〈〈

Sz
l S±

i ; S−
j

〉〉 
 〈
Sz

l

〉〈〈
S±

i ; S−
j

〉〉
, (26)〈〈

S±
l S±

i ; S−
j

〉〉 
 〈
S±

l

〉〈〈
S±

i ; S−
j

〉〉 
 0. (27)
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FIG. 17. (a) Spin length M = 〈Sz〉 versus temperature T for a 2D sheet with θ = 0.175 (radian) (magenta void squares), θ = 0.524 (blue
filled squares), θ = 0.698 (green void circles), θ = 1.047 (black filled circles). (b) Zoom at low T to show magnetization crossovers.

The last expression is due to the fact that transverse spin-
wave motions 〈S±

l 〉 are zero with time. For the DM term, the
commutation relations [H, S±

i ] give rise to the following term:

D
∑

l

sin θ
[∓Sz

i (S+
l + S−

l ) ± 2S±
i Sz

l

]
. (28)

This leads to the following type of Green’s function:〈〈
Sz

i S±
l ; S−

j

〉〉 
 〈
Sz

i

〉〈〈
S±

l ; S−
j

〉〉
. (29)

Note that we have used defined θ positively. The above
equation is thus related to G and F functions [see Eq. (27)].

We use the following Fourier transforms in the xy plane of
the G and F Green’s functions:

Gi, j (t, t ′, ω) = 1

�

∫
BZ

dkxye−ih̄ω(t−t ′ )g(ω, kxz )eikxy·(Ri−R j ),

(30)

Fi, j (t, t ′, ω) = 1

�

∫
BZ

dkxye−ih̄ω(t−t ′ ) f (ω, kxy)eikxy·(Ri−R j ),

(31)

where the integral is performed in the first xy Brillouin zone
(BZ) of surface � and ω is the SW frequency. Let us define
the SW energy as E = h̄ω in the following.

For a monolayer, we have after the Fourier transforms

(E + A)g + B f = 2〈Sz〉,
(32)−Bg + (E − A) f = 0,

where A and B are

A = −Jm[8〈Sz〉 cos θ (1 + d ) − 4〈Sz〉γ (cos θ + 1)]

−4D sin θ〈Sz〉γ + 8D sin θ〈Sz〉, (33)

B = 4Jm〈Sz〉γ (cos θ − 1) − 4D sin θ〈Sz〉γ , (34)

where the reduced anisotropy is d = K/Jm and γ =
(cos kxa + cos kya)/2, kx and ky being the wave-vector com-
ponents in the xy planes, a the lattice constant.

The SW energies are determined by the secular equation

(E + A)(E − A) + B2 = 0,

[E + A][E − A] + B2 = 0,
(35)

E2 − A2 + B2 = 0,

E = ±
√

(A + B)(A − B),

where ± indicate the left and right SW precessions. We see
the following.

(i) If θ = 0, we have B and the last two terms of A are zero.
We recover then the ferromagnetic SW dispersion relation

E = 2ZJm〈Sz〉(1 − γ ), (36)

where Z = 4 is the coordination number of the square lattice
(taking d = 0).

(ii) If θ = π , we have A = 8Jm〈Sz〉 and B = −8Jm〈Sz〉γ .
We recover then the antiferromagnetic SW energy

E = 2ZJm〈Sz〉
√

1 − γ 2. (37)

(iii) In the presence of a DM interaction, we have 0 <

cos θ < 1 (0 < θ < π/2). If d = 0, the quantity in the square
root of Eq. (35) is always �0 for any θ . It is zero at γ = 1.
We do not need an anisotropy d to stabilize the SW at T = 0.
If d 	= 0, then it gives a gap at γ = 1.

We show in Fig. 16 the SW energy calculated from Eq. (35)
for θ = 0.3 radian (
17.2◦) and 1 radian (
57.30◦). The
spectrum is symmetric for positive and negative wave vectors
and for left and right precessions. Note that for small values of
θ (i.e., small D) E is proportional to k2 at low k [cf. Fig. 16(a)],
as in ferromagnets. However, for strong θ , E is proportional
to k as seen in Fig. 16(b). This behavior is similar to that in
antiferromagnets [28]. The change of behavior is progressive
with increasing θ , no sudden transition from k2 to k behavior
is observed.

In the case of S = 1
2 , the magnetization is given by (see

technical details in Ref. [28])

〈Sz〉 = 1

2
− 1

�

∫∫
dkxdky

[
1

eEi/kBT − 1
+ 1

e−Ei/kBT − 1

]
,

(38)

where for each k one has ±Ei values. Since Ei

depends on Sz, the magnetization can be calculated
at finite temperatures self-consistently using the above
formula.

It is noted that the anisotropy d avoids the logarithmic
divergence at k = 0 so that we can observe a long-range or-
dering at finite T in 2D. We show in Fig. 17 the magnetization
M (≡〈Sz〉) calculated by Eq. (38) for using d = 0.001. It
is interesting to observe that M depends strongly on θ : at
high T , larger θ yields stronger M. However, at T = 0 the
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FIG. 18. Spin length at temperature T = 0 for a monolayer ver-
sus θ (radian).

spin length is smaller for larger θ due to the so-called spin
contraction in antiferromagnets [28]. As a consequence, there
is a crossover of magnetizations with different θ at low T as
shown in Fig. 17.

The spin length at T = 0 is shown in Fig. 18 for several θ .

B. Bilayer

We note that for magnetic bilayer between two ferroelectric
films, the calculation similar to that of a monolayer can be
done. By symmetry, spins between the two layers are parallel,
the energy of a spin on a layer is

Ei = −4JmS2 cos θ − JmS2 + 4Jm f PzS2 sin θ, (39)

where there are four in-plane NN and one parallel NN spin
on the other layer. The interface coupling is with only one
polarization instead of two [see Eq. (12)] for a monolayer
for comparison. The minimum energy corresponds to tan θ =
−Jm f /Jm.

The calculation by the Green’s functions for a film with a
thickness is straightforward: writing the Green’s functions for
each layer and making Fourier transforms in the xy planes,
we obtain a system of coupled equations. For the details, the
reader is referred to Ref. [40]. For a bilayer, the SW energy is
the eigenvalue of the following matrix equation:

M(E )h = u, (40)

where

h =

⎛
⎜⎝

g1,n′

f1,n′

g2,n′

f2,n′

⎞
⎟⎠, u =

⎛
⎜⎜⎝

2
〈
Sz

1

〉
δ1,n′

0
2
〈
Sz

2

〉
δ2,n′

0

⎞
⎟⎟⎠, (41)

where E = h̄ω and M(E ) is given by⎛
⎜⎝

E + A1 B1 C1 0
−B1 E − A1 0 −C1

C2 0 E + A2 B2

0 −C2 −B2 E − A2

⎞
⎟⎠ (42)

with

A1 = −Jm
[
8
〈
Sz

1

〉
cos θ (1 + d ) − 4

〈
Sz

1

〉
γ (cos θ + 1)

]
−2Jm

〈
Sz

2

〉 − 4D sin θ
〈
Sz

1

〉
γ + 8D sin θ

〈
Sz

1

〉
, (43)

FIG. 19. Spin-wave energy E versus k = kx = ky at T = 0 for a
bilayer with θ = 0.6 radian.

A2 = −Jm
[
8
〈
Sz

2

〉
cos θ (1 + d ) − 4

〈
Sz

2

〉
γ (cos θ + 1)

]
−2Jm

〈
Sz

1

〉 − 4D sin θ
〈
Sz

2

〉 + 8D sin θ
〈
Sz

2

〉
, (44)

Bn = 4Jm
〈
Sz

n

〉
γ (cos θ − 1) − 4D sin θ

〈
Sz

n

〉
γ , n = 1, 2

(45)

Cn = 2Jm
〈
Sz

n

〉
, n = 1, 2. (46)

Note that, by symmetry, one has 〈Sz
1〉 = 〈Sz

2〉.
We show in Fig. 19 the SW spectrum of the bilayer case for

a strong value θ = 0.6 radian. There are two important points:
(i) the first mode has the E ∝ k antiferromagnetic behavior
at the long-wavelength limit for this strong θ ; (ii) the higher
mode has E ∝ k2 which is the ferromagnetic wave due to the
parallel NN spins in the z direction.

In conclusion of this section, we emphasize that the DM
interaction affects strongly the SW mode at k → 0. Quan-
tum fluctuations in competition with thermal effects cause
the crossover of magnetizations of different θ : in general,
stronger θ yields stronger spin contraction at and near T = 0
so that the corresponding spin length is shorter. However, at
higher T , stronger θ means stronger Jm f which yields stronger
magnetization. It explains the crossover at moderate T .

V. CONCLUSION

We have studied in this paper a model for the interface
coupling between a magnetic film and a ferroelectric film in a
superlattice. This coupling has the form of a Dzyaloshinskii-
Moriya (DM) interaction between a polarization and the spins
at the interface. The ground state shows uniform noncollinear
spin configurations in zero field and skyrmions in an applied
magnetic field. We have studied spin-wave (SW) excitations
in a monolayer and in a bilayer in zero field by the Green’s
function method. We have shown the strong effect of the DM
coupling on the SW spectrum as well as on the magnetization
at low temperatures.

Monte Carlo simulation has been used to study the phase
transition occurring in the superlattice with and without ap-
plied field. Skyrmions have been shown to be stable at finite
temperatures. We have also shown that the nature of the phase
transition can be of second or first order, depending on the
DM interface coupling.
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The existence of skyrmions confined at the magnetoferro-
electric interface is very interesting. We believe that it can be
used in transport applications in spintronic devices. A number
of applications using skyrmions have been already mentioned
in the Introduction.
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