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Exceptional magnetic sensitivity of PT-symmetric cavity magnon polaritons
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Achieving magnetometers with ultrahigh sensitivity at room temperature is an outstanding problem in physical
sciences and engineering. Recently developed non-Hermitian cavity spintronics offers new possibilities. In this
work we predict an exceptional magnetic sensitivity of cavity magnon polaritons with the peculiar parity-time
(PT) symmetry. Based on the input-output formalism, we demonstrate a “Z”-shape spectrum including two side-
band modes and a dark-state branch with an ultranarrow linewidth in the exact PT phase. The spectrum evolves
to a step function when the polariton touches the third-order exceptional point, accompanied by an ultrahigh
sensitivity with respect to the detuning. The estimated magnetic sensitivity can approach 10−15 T Hz−1/2 in the
strong coupling region, which is two orders of magnitude higher than that of the state-of-the-art magnetoelectric
sensor. We derive the condition for the noiseless sensing performance. Purcell-like effect is observed when the
PT symmetry is broken. A possible experimental scheme to realize our proposal is also discussed.
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I. INTRODUCTION

Strong light-matter interaction lies in the heart of cavity
(or circuit) quantum electrodynamics (CQED) and quantum
information science. It allows the Rabi splitting and polari-
tonic eigenmodes. The subject has been extensively studied
in the hybridized cavity and two-level system, including
atoms [1], molecules [2,3], superconducting qubits [4], and
quantum dots [5,6]. In recent years, cavity spintronics (or
spin cavitronics)—the emerging interdiscipline of CQED and
spintronics—has been rapidly developing [7–14]. A central
issue in the community is to observe the cavity magnon polari-
ton (CMP)—the hybrid quasiparticle of the microwave photon
coherently coupled with magnon (or spin wave), the collective
excitation in ordered magnets that can efficiently interact with
external magnetic fields. The entangled spin orientation and
photon number state enables an efficient quantum information
transfer between photon and magnon via Rabi oscillation,
which is promising for quantum computing [15]. Thanks to
the extremely low damping and high spin density in ferrimag-
netic insulators like yttrium iron garnet (YIG) [16], the CMPs
have been observed at both cryogenic temperature and room
temperature from the level repulsion spectra [7–14,17–20].
Very recently, an exotic level attraction of non-Hermitian
magnon-photon coupling was reported [21,22], which opens
a new avenue for exploring spin cavitronics.

On the other hand, highly sensitive magnetometers are
indispensable tools which assisted humankind through a wide
range of practical applications in geology, navigation, archae-
ology, magnetic storage, and medicine [23–25]. The tech-
nologies used for magnetic field sensing encompass many
aspects of physics, such as search coil, fluxgate, Hall effect,

*yunshan.cao@uestc.edu.cn
†yan@uestc.edu.cn

magnetoelectric coupling, spin mechanics, and magnetoresis-
tance [26–30], to name a few. The state-of-the-art magnetic
sensor can reach an ultrahigh sensitivity of subfetotesla, like
a superconducting quantum interference device [31,32] and
atomic magnetometer [33,34], however with limitations such
as extreme temperature [31,32] or low working frequency
[33,34]. Pursuing solid-state room-temperature magnetome-
ters with exceptional sensitivity represents a critical and chal-
lenging problem. Despite working in very different contexts,
the magnetometers mentioned above share the same basic
principle: at a conventional Hermitian degeneracy (also called
diabolic point), the induced shift of any physical quantity
(e.g., the magnetoresistance) by external perturbation ε (e.g.,
the magnetic field) is linear with the perturbation itself (with
|ε| � 1). This rule, however, is broken for a non-Hermitian
degeneracy called exceptional point (EP) at which not only
the eigenvalues, but also the eigenstates are simultaneously
coalesced. The most exciting non-Hermitian system are those
respecting parity-time (PT) symmetry which could exhibit
entirely real spectra below the EP [35,36]. The order of
EP is determined by the number of degenerate eigenstates.
Non-Hermitian perturbation theory shows that the eigenfre-
quency shift follows a |ε|1/N dependence at the N th order
EP, with N an integer. The non-Hermitian degeneracy thus
can significantly enhance the sensitivity [37]. Currently, PT
symmetry has been investigated in a broad field of quantum
mechanics [35,36,38], optics [39–43], acoustics [44,45], elec-
tronics [46–48], and very recently in spintronics [49,50] and
magnonics [51–54]. However, the property of PT symmetry
and EP sensing are yet to be addressed in spin cavitronics.

In this work we theoretically study the non-Hermitian cou-
pling between a cavity photon and two magnons with the PT
symmetry (see Fig. 1). We predict an exceptional magnetic
sensitivity around the third-order EP of CMP. From the input-
output formalism, we analytically derive the transmission
coefficient S21 and identify a novel “Z”-shape spectrum in the
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FIG. 1. Schematic illustration of photon scattering by two
magnons with balanced gain and loss in a microwave cavity.

exact PT phase without avoided level crossing. The spectrum
evolves to a step function when the polariton touches the third-
order EP, exhibiting an ultrahigh sensitivity with respect to the
detuning. The estimated magnetic sensitivity approaches two
orders of magnitude higher than that of the state-of-the-art
magnetoelectric sensor. Practical realization of our proposal
is discussed.

The paper is organized as follows. A theoretical model
is presented in Sec. II. Section III gives the main results,
including the phase diagram, the transmission spectrum, the
magnetic sensitivity, and the nonlinear effect. We implement
a classical wave scattering calculation in Sec. IV. Discussion
and conclusion are drawn in Secs. V and VI, respectively.
Formula derivation is elaborated in the Appendixes.

II. MODEL

We consider a setup consisting of two magnetic bodies
with balanced gain and loss inside a microwave cavity (shown
in Fig. 1). The magnetization is connected to the local spin
operator via M = −γ S with γ the gyromagnetic ratio. Con-
sidering small amplitude excitations and using the Holstein-
Primakoff transformation, we can write the spin operator as
Sz ∼ −ŝ†ŝ and Sx,y ∼ (ŝ† ± ŝ). We consider the following
non-Hermitian bosonic Hamiltonian:

H = h̄ωcâ†â + h̄(ωs + iβ )ŝ†
1ŝ1 + h̄(ωs − iβ )ŝ†

2ŝ2

+ h̄g[â†(ŝ1 + ŝ2) + H.c.], (1)

where â†(â) and ŝ†
1,2(ŝ1,2) are the photon and magnon creation

(annihilation) operators, respectively, ωc is the cavity resonant
frequency, ωs denotes the Zeeman splitting, β > 0 describes
the energy dissipation/amplification rate with environments,
and g represents the magnon-photon coupling strength. Under
a combined operation of parity P (ŝ1 ↔ ŝ2) and time reversal
T (i → −i, ŝ1(2) → −ŝ1(2), and â → −â), it is straightforward
to find that Eq. (1) is invariant and thus respects the PT
symmetry. The direct exchange coupling between magnons
is assumed to be absent in the present model. We note that
Hamiltonian (1) is a nontrivial generalization of the purely
dissipative one adopted in Ref. [55]. We consider single
particle processes, so that three states {â†|0〉, ŝ†

1|0〉, ŝ†
2|0〉}

constitute the complete basis, where |0〉 represents the vacuum
state. The Hamiltonian can therefore be expressed in the
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FIG. 2. Evolution of eigenvalues as the gain-loss parameter P,
with the solid and dashed curves, respectively, representing the real
and imaginary part of eigenfrequencies. The detuning parameters are
chosen to be (a) � = −0.3 and (b) � = 0. The cavity frequency is
set as ωc/g = 5. (c) PT-symmetric phase transition diagram.

following matrix form (set h̄ = 1):

H =
⎛
⎝ωs + iβ 0 g

0 ωs − iβ g
g g ωc

⎞
⎠. (2)

By solvingH|φ〉 = ω|φ〉, we obtain the following cubic equa-
tion for the eigenvalues:

(�2 + P2)(� + �) − 2� = 0, (3)

with � = (ω − ωs)/g, � = (ωs − ωc)/g the frequency detun-
ing, and P = β/g being the balanced gain-loss parameter.

III. RESULTS

A. Phase diagram

Figure 2(a) shows the roots of (3) with a detuning param-
eter � = −0.3. There are three real solutions at a small P,
which corresponds to the unbroken PT phase. By increas-
ing P, one pair of eigenvalues coalesce at PEP2 and then
bifurcate into the complex plane when P > PEP2. Here EPN
represents the N th-order EP. For a zero detuning (� = 0),
the closed-form solutions of the three eigenvalues are ω =
ωc ±

√
2g2 − β2 for side modes and ω = ωc for the central

mode, as shown in Fig. 2(b). The third-order exceptional point
EP3 appears when β = √

2g (or P = PEP3 = √
2), with the

unique coalesced eigenstate being ( i
2 , −i

2 , 1√
2

)T. For P < PEP3,
the side modes exhibit an abnormal Rabi splitting with the
frequency separation depending not only on the coupling
strength, but also on the gain-loss parameter. This is a sharp
contrast to their Hermitian counterpart. Furthermore, we note
that the flat central mode (real for all P) actually corresponds
to a dark-state polariton [56–58] (see analysis below).

The phase diagram [plotted in Fig. 2(c)] is determined by
the sign of the discriminant

	 = P2�4 + (2P4 + 10P2 − 1)�2 + (P2 − 2)3 (4)

of (3). 	 < 0 gives the exact (or unbroken) PT phase, in
which all three eigenvalues are real and the eigenvectors
satisfy the so-called biorthogonal relation 〈φ∗

i |φ j〉 = δi j with
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i, j = 1, 2, 3 [59]. For 	 > 0, only one real eigenvalue sur-
vives and the other two become complex conjugated, which
corresponds to the broken PT phase. EP2 happens along the
critical curve 	 = 0 but with � 
= 0 [see the gray curve in
Fig. 2(c)]. EP3 emerges when both P = PEP3 = √

2 and � =
0 are simultaneously satisfied [see the red star in Fig. 2(c)].

B. Transmission spectrum

For a conventional hybridized CMP system, the strong
coupling is usually identified from the gap of the transmission
spectrum at the resonance point. Next, we derive the scattering
coefficient of the PT-symmetric CMP system via a standard
input-output theory. We assume that the cavity is interacting
with a harmonic bosonic bath (environment). By introducing
the noise and dissipation functions into the Heisenberg equa-
tions of operators, we obtain the following quantum Langevin
equations [60,61]:

˙̂a = (−iωc − κc)â − ig(ŝ1 + ŝ2) − √
κcb̂in, (5a)

˙̂s1 = (−iωs + β )ŝ1 − igâ (gain), (5b)

˙̂s2 = (−iωs − β )ŝ2 − igâ (loss), (5c)

where κc represents the leakage rate of a photon to the
environment (the internal loss of the cavity is assumed to be
negligibly small), and b̂in/out is the input/output field from the
thermal bath, satisfying the input-output formula b̂out = b̂in +
2
√

κcâ [61–63]. After some algebra, we obtain the frequency-
resolved transmission coefficient (see Appendix A for details),

S21 = κc

i(ω − ωc) − κc + �(ω)
, (6)

where the total self-energy �(ω) = �gain(ω) + �loss(ω)
from the magnon-photon coupling includes two parts:
�gain/loss(ω) = g2/[i(ω − ωs) ± β] for gain (+) and loss (−),
respectively. We note that �(ω) now is purely imaginary,
leading to a fully transparent transmission at resonance.

Figures 3(a)–3(c) show the transmission spectrum |S21|2
as a function of the mode frequency ω and the cavity
detuning �, under different gain-loss parameters P. As a
reference, we plot the bare-cavity spectrum in Fig. 3(d).
For P < PEP3, we find that the transmission spectrum dis-
plays a novel Z shape [see Fig. 3(a)], instead of the con-
ventional level anticrossing. Furthermore, we observe three
peaks in the strong-coupling region (� ∼ 0), in which the
ultranarrow central mode corresponds to the dark-state CMP,
beside two sideband abnormal Rabi-splitting modes. To
clarify it, we introduce a bright operator âB = 1√

2
(ŝ1 + ŝ2)

and a dark operator âD = 1√
2
(ŝ1 − ŝ2). The Hamiltonian

(1) then transforms intoH = h̄ωcâ†â + h̄ωs(â
†
BâB + â†

DâD) +
h̄
√

2g(a†âB + H.c.) + ih̄β(â†
BâD + H.c.). It is straightfor-

ward to see that the bright magnon directly couples
with the cavity photon, while the dark magnon interacts
with the bright magnon through the gain-loss term. States
{|C〉 ≡ â†|0〉, |B〉 ≡ â†

B|0〉, |D〉 ≡ â†
D|0〉} now form the new

complete basis. At zero detuning, the eigenstate of the cen-
tral mode is i

√
2

P |D〉 + |C〉, which is totally decoupled from
the bright mode |B〉. We therefore call it dark-state CMP,
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FIG. 3. Transmission spectrum for different gain-loss parame-
ters: (a) P = 0.5, (b) P = √

2, and (c) P = 2. (d) Transmission
spectrum of a bare cavity. The right panel in (a)–(d) shows the
zero-detuning spectrum. (e) Half-linewidth of CMP modes κCMP ∈
{κs, κo, κEP3, κp} as a function of the gain-loss parameter P at the
zero detuning point. Symbols are numerical results and solid curves
are asymptotic formulas (7). Dashed area is not accessible because
of the strong overlap between modes. (f) Sensitivity at P = PEP3.
Symbols denote numerical results and the blue curve represents the
analytical formula (8). (Inset) Transmission spectrum as a function
of the mode frequency at detuning � = 0.1. We set κc/g = 0.1 in
the calculations.

which may have applications on frequency stabilizations
and high-resolution spectroscopic measurements [64]. Unlike
the conventional dark state with an infinitely long lifetime,
the lifetime of the dark-state CMP here is determined by the
gain-loss mechanism. Away from the zero-detuning point, its
linewidth increases biquadratically with |�| (not shown).

An increasing P leads to a coalescence of the peaks. For
P = PEP3, three eigenvalues merge together at ωc, and form a
flat and wide transparent window shown in Fig. 3(b). When
P further increases, i.e., P > PEP3, the dark-state CMP mode
still survives, with its linewidth however being significantly
broadened as plotted in Fig. 3(c). It is a Purcell-like effect
induced by the PT-symmetry breaking. We are interested in
the P dependence of the spectrum linewidth under a zero
detuning, and derive the following asymptotic formulas [solid
curves in Fig. 3(e)]:

P → 0 : κs/κc  (P2 + 2)/4, κo/κc  P2/2, (7a)

P � PEP3 : κp/κc  P2/(P2 − 2), (7b)

which agree well with numerical results [symbols in
Fig. 3(e)].
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C. Magnetic sensitivity

It has been shown that the non-Hermitian degeneracy can
provide an enhancement of sensitivity ∝ |�|1/N [37,65,66] at
the N th order EP. The sensitivity is conventionally defined
as the splitting of eigenfrequencies perturbed around the
EP. However, it becomes unfeasible due to the significant
spectrum broadening near the EP as shown in Fig. 3(b).
Furthermore, due to the complex nature of the frequency
bifurcation in the vicinity of EP, the view of exceptional
precision of exceptional-point sensors has been challenged
[67,68] by arguing that the sensitivity of EP2 is limited by
quantum fluctuations [67] and/or statistical noises [68]. In
the present model, there always exists a real central mode no
matter whether the PT symmetry is broken or not. We there-
fore suggest a more appropriate definition of the sensitivity as
the separation between the always-real central mode and the
constant cavity mode. At P = PEP3,

δωEP3/g = −sgn(�)δθ, with δθ = 21/3|�|1/3, (8)

excellently consistent with numerical results in the small
detuning regime, as plotted in Fig. 3(f). It can be found that
within a detuning |�| < 0.06 (corresponding to the magnetic
field |δB| < 2 mT for g ∼ 1 GHz), our prediction of the
exceptional sensitivity of the order |�|1/3 is still pronounced.
It is noted that our theory is based on the exact PT-symmetric
condition, i.e., the gain and loss is balanced. This condition
is necessary for obtaining the third-order exceptional point
and for the ultrahigh sensitivity. What about the exact equality
does not hold? In such a case, the CMP system cannot reach a
steady state. A practical experimental measurement therefore
should be implemented within the lifetime of the CMP which
can be estimated to be τ ∼ 1/|β − β ′| with β and β ′ the gain
and loss coefficient, respectively. Within this time scale τ , our
result is still valid.

Sample fluctuations are ubiquitous. To investigate the fluc-
tuation effect on the sensing performance, we consider an
ensemble of CMP systems at EP3 with a Gaussian distribution
of the detuning parameter �,

W (� − �0) = 1√
2πσ

exp

[
−1

2
(� − �0)2/σ 2

]
, (9)

with the target detecting signal at �0 and the noise σ . For sim-
plicity, we assume �0 � 0. The ensemble-average sensitivity
is then

〈δθ〉 = σ 1/3

21/6
√

π

∫ ∞

−∞
|x + x0|1/3e− 1

2 x2
dx, (10)

with x0 = �0/σ , which in the small and large signal/noise
ratio limits reduces to

〈δθ〉 
⎧⎨
⎩

√
2
π

�
(

2
3

)
σ 1/3, x0 � 1,

21/3�
1/3
0 , x0 � 1.

(11)

The sensitivity is found to be free from noise under a
large signal/noise ratio, i.e., x0 � 1, while it is suppressed
by fluctuations in the opposite limit. To see how fast the
sensitivity is recovered, we introduce a sensitivity-diminution
factor F0 = 2−1/3�

−1/3
0 〈δθ〉, so that F0 = 1 represents the

noise-free sensitivity regime. The red curve in Fig. 4 clearly

x0

F
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FIG. 4. Sensitivity-diminution factor as a function of x0.

shows that the noiseless sensing is well performed for x0 � 1.
In Ref. [68], a different definition of the sensitivity however is
introduced as ∂〈δθ〉/∂�0 with the following asymptotic form:

∂〈δθ〉
∂�0


⎧⎨
⎩

�( 5
3 )√

2πσ 5/3 �0, x0 � 1,

21/3

3 �
−2/3
0 , x0 � 1.

(12)

Similarly, we introduce F1 = 3
21/3 �

2/3
0

∂〈δθ〉
∂�0

being the
sensitivity-diminution function (see the blue curve in Fig. 4).
There is a clear diminution of the sensitivity to the noise
fluctuations for x0 � 1. For both cases, we find the condition
for the noiseless sensing performance as x0 � 2. Such features
near the third order EP can be utilized for designing magnetic
sensor with very high precisions. Considering the cavity
frequency resolution |δωEP3| ∼ κc, we obtain the magnetic
sensitivity

|δB| ≈ κc

2γC
, (13)

where γ is the gyromagnetic ratio and C ∼ g2/κ2
c is the strong

coupling cooperativity ranging from 103–107 [7,10,11]. For
a microwave cavity working at GHz with a MHz resolu-
tion and a (sub-)MHz noise, we estimate the sensitivity
∼10−15 T Hz−1/2, which is two orders of magnitude higher
than that of the state-of-the-art magnetoelectric sensors [27].

D. Nonlinearity

Nonlinear effects have been completely ignored in the
above calculation, which is justified only when the average
magnon number is negligibly small. At a mean-field level, the
nonlinear correction can be taken into account by modifying
the magnon part of Eqs. (5) as

˙̂s1 = (−iωs − iη〈ŝ†
1ŝ1〉 + β )ŝ1 − igâ (gain), (14a)

˙̂s2 = (−iωs − iη〈ŝ†
2ŝ2〉 − β )ŝ2 − igâ (loss), (14b)

where η is the nonlinear coefficient from the magnetic
anisotropy [69,70]. Solving these equations, we obtain
〈ŝ†

1ŝ1〉 = 〈ŝ†
2ŝ2〉 = np

P2+�2 , with np = 〈â†â〉 the average photon
number in the cavity. For a mall η, the EP3 is slightly shifted
to � = − ηnp

2 with P = √
2.

IV. WAVE SCATTERING CALCULATION

So far we illustrated the essence of PT-symmetric CMPs
only through a toy model Hamiltonian (1). The single-particle
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FIG. 5. (a) Schematic plot of one-dimensional scattering model
for a PT-symmetric magnetic bilayer in a microwave cavity. Trans-
mission spectrum (b) in the PT-symmetric region, (c) at the ex-
ceptional point, and (d) in the PT broken phase. (e) Conventional
anticrossing spectrum with α1 = α2 = α = 10−4. The following pa-
rameters are adopted: � = L = 46 mm and d = 5 μm. The cavity
resonant frequency of interest is then ωc/ωM  2.019. The external
magnetic field is ωH/ωM  1.58 at the split point.

assumption adopted in the quantum Hamiltonian formal-
ism and the conclusions accordingly needs justifications.
Below we explicitly show that the major results are valid
in the classical limit which in principle includes multipar-
ticle effects. Furthermore, a physical realization is neces-
sary to be sought to testify the theoretical predictions. To
this end, we follow the one-dimensional scattering method
in Ref. [17], and consider a ferromagnetic bilayer placed
in a microwave cavity [as shown in Fig. 5(a)]. The cav-
ity wall is modeled by a delta permeability function μ =
μ0[1 + 2�δ(x + L/2) + 2�δ(x − L/2)], where L is the cavity
width and � is the wall opacity. The dynamics of magneti-
zation M is governed by the Landau-Lifshitz-Gilbert (LLG)
equation,

∂M j

∂t
= −γμ0M j × Heff + α j

Ms
M j × ∂M j

∂t
, (15)

where μ0 is the vacuum permeability. The effective magnetic
field Heff = Hẑ + h consists of the external and rf magnetic
fields. M j with j = 1, 2 labels the left and right magnets
with balanced magnetic gain and loss α1 = −α and α2 =
α (α > 0), respectively. The typical value of α ranges from
10−5 to 10−1.

For small-amplitude magnetization oscillations M j =
Msẑ + m j with |m j | � Ms and Ms being the saturation mag-
netization, m j is driven by the rf magnetic field h satisfying

Maxwell’s equation(∇2 + k2
ε

)
h = ∇(∇ · h) − k2

ε m, (16)

where k2
ε = εμ0ω

2 = εrq2, q is the vacuum light wave vector,
εr = ε/ε0 is the relative permittivity of ferromagnets, and
m = m1(2) for −d/2 � x < 0 (0 < x � d/2).

Assuming a linearly polarized microwave field hy(x, t ) =
ψ (x)e−iωt traveling along the x̂ direction, the wave vector
in magnetic bilayer takes the form k j = q

√
εrμv, j [17] for a

given frequency ω, where μv, j = ω2−(ω j+ωM )2

ω2−ω j (ω j+ωM ) is the Voigt
permeability with ω j = ωH − iωα j , ωH = γμ0H , and ωM =
γμ0Ms. The microwave field ψ (x) in different regimes [see
Fig. 5(a)] can be expressed as

ψ1 = eiqx + re−iqx, ψ2 = a1eiqx + a2e−iqx, (17a)

ψ3 = b1eik1x + b2e−ik1x, ψ4 = b3eik2x + b4e−ik2x, (17b)

ψ5 = a3eiqx + a4e−iqx, ψ6 = teiqx, (17c)

where coefficients {r, t, a1, a2, a3, a4, b1, b2, b3, b4} are de-
termined by the electromagnetic boundary conditions at the
interfaces.

We adopt the magnetic material parameters of YIG in
the calculations, e.g., εr = 15 [71], μ0Ms = 175 mT [72],
and γ /(2π ) = 28 GHz/T. Figure 5(b) shows the transmission
spectrum for a small damping α = 0.002, which exhibits a
similar Z shape with Fig. 3(a). From the wave-scattering
calculation, we establish the following correspondence of
parameters in the toy model and the present one

ωs =
√

ωH(ωM + ωH), β = α

2

√
ω2

M + 4ω2
c , g = geff√

2
,

(18)

where geff is the effective coupling strength represented by the
anticrossing gap of the conventional strong-coupling spectrum
[17] [see also Fig. 5(e)]. For a ferromagnetic bilayer of the
thickness d = 5 μm, its value can be found from the spectrum
geff  0.012ωM. We therefore deduce the critical Gilbert-
type gain-loss parameter αEP3  0.0057. The transmission
spectrum at the EP3 is plotted in Fig. 5(c), which demon-
strates similar dependence on the frequency and the detuning
as Fig. 3(b). For a large α, the system goes into the PT-
symmetry broken phase, with a Purcell-like effect shown in
Fig. 5(d).

V. DISCUSSION

From an experimental point of view, negative magnetic
damping is necessary for observing the PT-symmetric CMP.
Although a natural gain in magnetic materials may not be
realistic, an effective negative damping can be realized by, for
instance, parametric driving from an ac magnetic field [53].
Spin transfer torques can be either parallel or antiparallel to
the intrinsic damping depending on the the current direction.
A sufficiently large current density over a critical value can
result in an amplification of magnetization oscillation, thus
realizing a magnetic gain [53,73,74]. Wegrowe et al. system-
atically investigated the spin transfer in an open ferromagnetic
system, and found that the negative damping emerges natu-
rally for describing the spin exchange between the magnet and
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the environment [75]. A recent experiment demonstrated that
the electric field can induce a negative magnetic damping in
heterostructured ferroelectric|ferromagnet layers [76]. Para-
metric coupling can induce a Gilbert-like gain by an optical
laser [77]. To soften the experimental challenge for realizing a
negative magnetic damping, we propose aPT-symmetric syn-
thetic electric circuit coupled with a ferromagnetic sphere to
implement our model (see Fig. 6 and details in Appendix B).

VI. CONCLUSIONS

To conclude, we predicted an ultrahigh magnetic sensi-
tivity of PT-symmetric cavity magnon polaritons near the
third-order EP. The estimated sensitivity approaches fetotesla,
and is not limited by the quantum or statistical noise under
proper conditions. Higher cooperativity of coupled magnon
and photon hybrid can further improve the sensing perfor-
mance. We propose to use magnetic bilayers with balanced
gain and loss in a microwave cavity or PT-symmetric circuits
coupled with a magnetic sphere to experimentally verify our
predictions. This study provides the theoretical framework
for the emerging PT-symmetric spin cavitronics, and offers
a new pathway for designing ultrasensitive magnetometers.
A generalization of present results to arbitrarily high-order
exceptional points should be an interesting issue for future
study.

ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-
ence Foundation of China (Grants No. 11704060 and No.
11604041), the National Key Research Development Pro-
gram under Contract No. 2016YFA0300801, and the National
Thousand-Young-Talent Program of China.

APPENDIX A: INPUT-OUTPUT FORMALISM

An input-output theory [61] is derived for a cavity inter-
acting with a thermal bath. Our starting point is the total
Hamiltonian

Htotal = Hsys +Hbath +Hint, (A1)

where Hsys describes the intracavity dynamics, the same as
Eq. (1) in the main text,Hbath is the bath Hamiltonian

Hbath = h̄
∑

k

ωkb̂†
kb̂k, (A2)

with the bosonic creation (annihilation) operator b̂†
k (b̂k). They

are coupled by the interaction term

Hint = h̄
∑

k

( fk â†b̂k + f ∗
k b̂†

kâ), (A3)

with the commutation relation [â, â†] = 1 and [b̂k, b̂†
k′ ] = δkk′ .

fk is the coupling strength.

In Heisenberg picture, the time-dependent operator
Ô(t ) := eiHt Ôe−iHt satisfies the following equations:

˙̂a(t ) = i

h̄
[Hsys, â(t )] − i

∑
k

fkb̂k (t ), (A4a)

˙̂bk (t ) = −iωkb̂k (t ) − i f ∗
k â(t ). (A4b)

The formal solution of b̂k (t ) can be written as

b̂k (t ) = b̂k (t0)e−iωk (t−t0 ) − i f ∗
k

∫ t

t0(<t )
dτe−iωk (t−τ )â(τ ),

(A5a)

b̂k (t ) = b̂k (t1)e−iωk (t−t1 ) + i f ∗
k

∫ t1(>t )

t
dτe−iωk (t−τ )â(τ ).

(A5b)

We thus have

˙̂a(t ) = i

h̄
[Hsys, â(t )] − i

∑
k

fkb̂k (t0)e−iωk (t−t0 )

−
∑

k

| fk|2
∫ t

t0

dτe−iωk (t−τ )â(τ ) (t0 < t ) (A6)

= i

h̄
[Hsys, â(t )] − i

∑
k

fkb̂k (t1)e−iωk (t−t1 )

+
∑

k

| fk|2
∫ t1

t
dτe−iωk (t−τ )â(τ ) (t < t1). (A7)

We then aim to convert the summation to the integral
by introducing the mode density ρk . Assuming that both
the mode density ρk and the coupling strength fk are mode
independent, i.e., ρk = ρ and fk = f , we obtain the following
relation: ∑

k

�→
∫

ρdωk, κc = 2πρ| f |2,

∫ ∞

−∞
dωke−iωk (t−t ′ ) = 2πδ(t − t ′),

∫ t

t0

dτδ(t − τ )â(τ ) =
∫ t1

t
dτδ(t − τ )â(τ ) = 1

2
â(t ). (A8)

The input and output fields are defined as

b̂in(t ) ≡ i√
κc

∑
k

fk b̂k (t0)e−iωk (t−t0 ), (A9a)

b̂out (t ) ≡ i√
κc

∑
k

fk b̂k (t1)e−iωk (t−t1 ). (A9b)

The coefficient 1/
√

κc in the expressions guarantees that
the input and output fields satisfy the bosonic commutation
relations

[b̂in(t ), b̂†
in(t ′)] = [b̂out (t ), b̂†

out (t
′)] = δ(t − t ′). (A10)
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Then, Eq. (A4a) can be simplified to

˙̂a(t ) = i

h̄
[Hsys, â(t )] − √

κcb̂in(t ) − κc

2
â(t ) (A11)

= i

h̄
[Hsys, â(t )] − √

κcb̂out (t ) + κc

2
â(t ), (A12)

from which we obtain the input-output formula [62,63]

b̂out (t ) = b̂in(t ) + √
κcâ(t ). (A13)

For a two-port cavity, the input and output fields are
connected by a scattering matrix,(

b̂(1)
out

b̂(2)
out

)
=

(
S11 S12

S21 S22

)(
b̂(1)

in

b̂(2)
in

)
. (A14)

So, every port satisfies the input-output relation b̂(1,2)
out =

b̂(1,2)
in + √

κcâ, while the total field satisfies b̂out = b̂in +
2
√

κcâ with the total input field b̂in = b̂(1)
in + b̂(2)

in , and total
output field b̂out = b̂(1)

out + b̂(2)
out. Considering only one input

field from port 1, i.e., b̂(2)
in = 0, we then obtain the quantum

Langevin equations,

˙̂a = (−iωc − κc)â − ig(ŝ1 + ŝ2) − √
κcb̂in,

˙̂s1 = (−iωs + β )ŝ1 − igâ,

˙̂s2 = (−iωs − β )ŝ2 − igâ. (A15)

Solving the above equations in frequency space, we obtain

a(ω) =
√

κcbin(ω)

i(ω − ωc) − κc + �(ω)
, (A16)

where �(ω) is the self-energy from the magnon-photon cou-
pling including gain and loss parts:

�(ω) = �gain(ω) + �loss(ω)

= g2

i(ω − ωs) + β
+ g2

i(ω − ωs) − β
. (A17)

By substituting the above relations into the input-output for-
mula, we have

b(1)
out = b(1)

in + κcb(1)
in

i(ω − ωc) − κc + �(ω)
,

b(2)
out = κcb(1)

in

i(ω − ωc) − κc + �(ω)
. (A18)

One therefore obtains the frequency-resolved reflection and
transmission coefficients,

S11 = b(1)
out

b(1)
in

= 1 + κc

i(ω − ωc) − κc + �(ω)
,

S21 = b(2)
out

b(1)
in

= κc

i(ω − ωc) − κc + �(ω)
. (A19)

APPENDIX B: SYNTHETIC ELECTRIC CIRCUITS
WITH PT SYMMETRY

We propose a synthetic circuit consisting of two resistance-
inductor-capacitor (RLC) resonators with balanced gain and
loss coupled to a precessional magnetic sphere, shown in

L
-R

C

L
 R

C

Gain

A B

Loss

(a) (b)

(c)

R
e[

]/
M

M x

z

Im
[

]/
M

FIG. 6. (a) Schematic of two resistance-inductor-capacitor
(RLC) circuits with balanced gain (red) and loss (blue) inductively
coupled to a magnetic sphere with precessing magnetization. (b) Real
and (c) imaginary parts of eigenvalues as a function of the gain/loss
parameter. EP3 emerges at χEP3 = 0.005. Parameters are chosen as
ω0/ωM = ωH/ωM = 2 and λ = 0.01 in the calculations.

Fig. 6(a). The gain in circuit can be realized through negative
resistances [47,78].

The equation describing the RLC circuits with two coils
parallel to the x̂ axis is written as [22]

LİA − RIA + (1/C)
∫

IAdt = VA(t ) (gain), (B1a)

LİB + RIB + (1/C)
∫

IBdt = VB(t ) (loss). (B1b)

Such a RLC circuit has a characteristic frequency ω0 =
1/

√
LC. The driving voltage induced by the precessing mag-

netic moment is given by Faraday’s law of induction,

VA(t ) = λ1Lṁx, VB(t ) = λ1Lṁx, (B2)

with λ1 the coupling strength. The magnetization dynamics
in the magnetic sphere is governed by the Landau-Lifshitz
equation (the Gilbert damping is ignored here),

Ṁ = −γμ0M × H, (B3)

where the total magnetic field is H = Hẑ + hAx̂ + hBx̂, and
the rf magnetic fields due to the RLC circuit are given by
Ampere’s law,

hA = −λ2IA, hB = −λ2IB, (B4)

with a coefficient λ2. We finally obtain the secular equation,

⎛
⎜⎝

ω2−ω2
0 −2iχωω0 ω2λ2 0

ωMωH ω2−ω2
H ωMωH

0 ω2λ2 ω2−ω2
0 +2iχωω0

⎞
⎟⎠

⎛
⎜⎝

hA

mx

hB

⎞
⎟⎠ = 0,

(B5)
with χ = R/(2Lω0) the dimensionless gain/loss parameter
and λ2 = λ1λ2. Solving the above equation, we obtain the
χ dependence of the eigenvalues as shown in Fig. 6. At
the zero detuning, i.e., ω0 = ωH, we observe the third order
exceptional point EP3 when χEP3 = 0.005.
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