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We have investigated the critical phenomenon associated with the magnetic phase transition in the half-
metallic full-Heusler Co2TiGe. The compound undergoes a continuous paramagnetic-to-ferromagnetic phase
transition below the Curie temperature TC = 371.5 K. The analysis of magnetization isotherms in the vicinity
of TC , following a modified Arrott plot method, the Kouvel-Fisher technique, and a critical isotherm plot, yields
the asymptotic critical exponents β = 0.495, γ = 1.324, and δ = 3.67. The self-consistency and reliability of
the obtained exponents are further verified by the Widom scaling relation and scaling equations of state. The
mean-field-like value of the critical exponent β suggests a long-range nature of the exchange interactions,
whereas the values of the critical exponents γ and δ imply sizable critical spin fluctuations. The half-metallic
itinerant character of Co2TiGe in the presence of magnetic inhomogeneity may result in such a strong deviation
from the three-dimensional Heisenberg values (β = 0.369, γ = 1.38, and δ = 4.8) of the critical exponents
toward the mean-field values (β = 0.5, γ = 1, and δ = 3). The results suggest the complex nature of exchange
couplings that stabilize the long-range ferromagnetic ordering in the system and are consistent with the earlier
theoretical studies on the exchange mechanism in Co2TiGe.
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I. INTRODUCTION

The discovery of ferromagnetism by Heusler in Cu2MnAl,
which does not contain any of the pure ferromagnetic el-
ements, initiated an ever-growing research interest in inter-
metallic compounds [1]. Subsequently, numerous experimen-
tal works [2–4] have been carried out and several theoretical
models [5–11] have been proposed to understand the micro-
scopic interactions that lead to the long-range magnetic or-
dering in this class of materials. The fascinating half-metallic
character [12,13] makes them very promising candidates for
spintronics applications at room temperature [14]. Moreover,
novel topological semimetal states have been discovered re-
cently in these systems [15]. The Co2-based ternary inter-
metallic Heusler compounds, viz., Co2M ′Z , where M ′ is a
transition metal and Z is a main group element, received
special interest and became the most widely studied systems
because of their very high Curie temperatures [11].

Co2TiGe crystallizes in cubic L21 structure (space group:
Fm3̄m), which consists of four interpenetrating face-centered-
cubic (fcc) lattices. The crystallographic positions of Co
atoms are (0,0,0) and (1/2,1/2,1/2), and those of the Ti and
Ge atoms are (1/4,1/4,1/4) and (3/4,3/4,3/4), respectively.
There are several theoretical and experimental reports on the
structural, electronic, and magnetic properties of Co2TiGe
[16]. Spin-resolved band-structure calculations show that the
majority spin-band has a metallic character, whereas the
minority spin-band exhibits semiconducting behavior with a
band gap of about 0.5 eV at the Fermi level [15,16]. Further,
the inclusion of spin-orbit coupling (SOC), albeit very weak,
in the band-structure calculation reveals a novel topological
Weyl semimetal state [15]. The temperature dependence of the

resistivity of Co2TiGe shows typical metallic behavior down
to 2 K [16]. The origin of ferromagnetism in half-metallic
Co2-based Heusler alloys is a rather complicated issue and
remains one of the most interesting problems in modern
magnetism. They exhibit Slater-Pauling-type behavior for the
magnetization, where the saturation magnetization scales with
the total number of valance electrons in the unit cell, leading to
a characteristic integer magnetic moment. Magnetic Heusler
alloys are traditionally believed to be ideal local-moment
systems [17], and their exchange couplings can be described
by a Heisenberg Hamiltonian. However, several theoretical
reports claim the presence of complex exchange interac-
tions of the localized magnetic moments in these Heusler
compounds [6,8–11]. Both the short-range direct exchange
coupling between the nearest-neighbor spins and the coupling
between further neighbor spins mediated by the Ruderman-
Kittel-Kasuya-Yosida (RKKY) -type long-range interaction
are believed to be responsible for the long-range magnetic
ordering [11]. It is concluded that intersublattice and intrasub-
lattice exchange interactions of different strength stabilize ro-
bust ferromagnetic ordering with remarkably high Curie tem-
peratures in these compounds. However, a recent theoretical
study shows that in the Co2TiZ system, the magnetic moment
of the Co atoms and that of the Ti atoms are not completely
localized, which is further supported by the disordered local-
moment calculation [16]. Thus, the presence of a localized
magnetic moment is not a prerequisite for the occurrence of
half-metallic ferromagnetism. Furthermore, significant orbital
magnetic moments in different Co2M ′Z compounds as probed
by x-ray magnetic circular dichroism studies [17–19] indicate
that the SOC may result in magnetocrystalline anisotropy.
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FIG. 1. Rietveld profile refinement of the XRD pattern of pow-
dered samples of Co2TiGe. The black circles are experimental data
(Yobs), the red line is the calculated pattern (Ycal), the blue line is the
difference between experimental and calculated intensities (Yobs −
Ycal), and the magenta vertical lines show the Bragg positions. The
inset shows clearly the presence of (111) and (200) superlattice
reflections in Co2TiGe.

So, anisotropic exchange interaction may also be involved
in the magnetic ordering phenomenon in these systems. The
values of the critical exponents associated with a continuous
magnetic phase transition reflect the nature of the exchange
mechanism, the spin symmetry, or the magnetic anisotropy,
and the effective dimensionality of spin-spin interactions in
the system [20]. Therefore, by investigating the critical phe-
nomenon associated with the ferromagnetic-to-paramagnetic
(FM-to-PM) phase transition in Co2TiGe, we have tried to
clarify different aspects of the exchange mechanism in the
Co2-based Heusler alloy.

II. EXPERIMENTAL DETAILS

The Co2TiGe compound was prepared by arc-melting sto-
ichiometric amounts of its constituents in a highly purified
argon atmosphere. The obtained ingots were then sealed in
an evacuated quartz tube and annealed for about 3 weeks.
Phase purity and a structural analysis of the sample were
done using the powder x-ray diffraction (XRD) technique with
Cu Kα radiation in a Rigaku x-ray diffractometer (TTRAX
III). The Rietveld profile refinement of the XRD pattern
(Fig. 1) shows that the compound is single-phase in nature.
The presence of weak (111) and (200) superlattice reflections
(Fig. 1, inset) indicates that this material orders in L21-type
structure with Fm3̄m space group and is consistent with
earlier reports [16,21]. However, these peaks, in particular
(200), are much weaker as compared to that reported for
Co2TiSi and Co2TiSn [16,21]. This is due to the nearly equal
scattering factors of Co, Ti, and Ge, which are from the same
row in the Periodic Table [22]. The complete absence of the
(200) peak might indicate structural disorder [23]. In such
cases, an unambiguous determination of the true structure by
refining the XRD pattern could be very difficult and may

FIG. 2. Field dependence of the magnetization (M vs H ) at 2 K.
Right inset: temperature dependence of the magnetization (M vs T )
measured at 500 Oe. Left inset: dM/dT vs temperature.

require additional experimental techniques [16,24]. The re-
fined lattice parameters, a = b = c = 5.811(1)Å, are in good
agreement with that reported previously [16,25]. The mag-
netization measurements were done using a superconducting
quantum interference device–vibrating sample magnetometer
(SQUID-VSM) (MPMS 3, Quantum Design) in fields up to
5 T. The sample used for the magnetic measurements is of
approximate dimensions 0.5 × 0.5 × 4 mm3. To minimize
the demagnetization effect, the external magnetic field was
applied along the longest sample direction. The magnetization
data were recorded over the temperature range from 366 to
377 K at 1.0 K intervals. To achieve good thermal equilibrium,
we have stabilized each temperature for 45 min. For each
M(H ) isotherm, the magnetic field was increased from 0 to
5 T and then reduced to 0. We did not find any difference in
M(H ) between the increasing and decreasing field.

III. RESULTS AND DISCUSSIONS

Figure 2 shows the magnetic-field dependence of dc mag-
netization (M) at 2 K. In the right inset of Fig. 2, we have
plotted M as a function of temperature, measured at 500
Oe. The observed behavior is quite similar to the earlier
reports [16,25]. As mentioned before, the Co-based Heusler
alloys, which are half-metallic ferromagnets (FMs), exhibit
the Slater-Pauling-type behavior of the magnetization as given
by Mp = (Zp − 24)μB/f.u. Here, Mp is the total magnetic
moment and Zp is the total number of valence electrons in
the unit cell of the compound. For Co2TiGe, the value of Zp

is 26. Therefore, according to the above relation, the total
magnetic moment should be 2μB/f.u. From Fig. 2, the sat-
uration magnetization is estimated to be ∼1.99μB/f.u., which
implies that the compound obeys the Slater-Pauling rule. As
shown in the inset of Fig. 2, the magnetization curve mimics a
continuous or second-order FM-to-PM phase transition. From
the temperature derivative of this magnetization curve (left
inset of Fig. 2), the Curie temperature (TC) is estimated to be
371 K.

214414-2



COMPLEX EXCHANGE MECHANISM DRIVEN … PHYSICAL REVIEW B 99, 214414 (2019)

A continuous magnetic phase transition exhibits critical
behavior of different thermodynamic variables, governed by
the critical fluctuation. The critical behavior is characterized
by a set of static critical exponents. The values of these
exponents depend only on the symmetry of the order parame-
ter and the lattice dimensionality of the system, resulting in
different universality classes of the continuous phase tran-
sition in uniform FMs. In the vicinity of TC , the spin-spin
correlation length (ξ ) diverges as ξ = ξ0|(T − TC )/TC |−ν ,
which leads to universal scaling laws for the spontaneous
magnetization, MS (0, T ), and inverse initial susceptibility,
χ0

−1(0, T ). MS (0, T ) below TC , χ0
−1(0, T ) above TC , and the

magnetization isotherm M(H, TC ) at TC are characterized by a
set of static critical exponents β, γ , and δ, respectively. These
exponents are defined as follows [26]:

MS (0, T ) = [MS (0)](−ε)β, ε < 0, (1)

χ0
−1(0, T ) =

[
H0

MS (0)

]
(ε)γ , ε > 0, (2)

M(H, TC ) = D(H )1/δ, ε = 0, (3)

where ε = T −TC
TC

is the reduced temperature, and MS (0), H0
MS (0) ,

and D are the critical amplitudes. The scaling theory predicts
that in the close vicinity of the phase transition, the magnetic
equation of state for the system can be expressed as

M(H, ε) = |ε|β f±

[
H

|ε|(γ+β )

]
, (4)

where f+ and f− are regular functions for temperature above
and below TC , respectively. In terms of the renormalized
magnetization, m ≡| ε |−β M(H, ε), and the renormalized
field, h ≡| ε |−(γ+β ) H , the above scaling equation can be
rewritten as

m = f±(h). (5)

The above equation implies that for the right choice of β, γ ,
and ε, the m versus h isotherms will fall onto two separate
branches of the scaling function: f+ for isotherms above TC

and f− for isotherms below TC . This is also an important
criterion to check whether the set of critical exponents are the
same below and above TC .

To characterize the FM-to-PM phase transition in the
present system, a series of magnetization isotherms, as shown
in Fig. 3(a), has been measured in the vicinity of the approx-
imate Curie temperature 371 K determined from the inset
of Fig. 2. To test whether the framework of the Landau
mean-field theory of the magnetic phase transition holds for
Co2TiGe, we have constructed the conventional Arrott plot
[27] of M2 versus H/M isotherms as shown in Fig. 3(b).
For the mean-field values of the critical exponents (β = 0.5
and γ = 1), the Arrott plot should generate a set of parallel
straight lines, and the one that passes through the origin of the
plot corresponds to the isotherm at the exact critical tempera-
ture. However, the Arrott plot for Co2TiGe does not constitute
a set of parallel straight lines and shows significant nonlin-
earity with downward curvature even at high magnetic fields.
Therefore, the Landau mean-field theory fails to describe the
phase transition in Co2TiGe and suggests the presence of sig-
nificant critical fluctuations. According to Banerjee’s criterion

FIG. 3. (a) Isothermal magnetization (M vs H ) as a function
of magnetic field measured around TC . (b) Arrott plot of isotherms
measured in the vicinity of TC .

[28], the positive values of the slope of the curves in the Arrott
plot indicate the second-order nature of the phase transition.
In Fig. 3(b), the M2 versus H/M isotherms show downward
curvature for T < 371.5 K and subtle upward curvature at
low field for T > 371.5 K. But the slopes remain positive
for all the isotherms, and thereby confirm the second-order
FM-to-PM phase transition in Co2TiGe.

To determine the true critical exponents, we have reana-
lyzed the magnetization isotherms using the modified Arrott
plot [29] method, which is based on the following Arrott-
Noakes equation of state:

(H/M )1/γ = a

(
T − TC

TC

)
+ bM1/β . (6)

Here, a and b are constants. The critical exponents predicted
for the three-dimensional (3D) system by theoretical models
such as the 3D Heisenberg (β = 0.365, γ = 1.386), the 3D
XY (β = 0.345, γ = 1.316), and the 3D Ising (β = 0.325,
γ = 1.24) models have been used to construct modified Arrott
plots as shown in Figs. 4(a), 4(b) and 4(c), respectively. One
can see from Figs. 4(a)–4(c) that in the high-field region,
the constructions show quasistraight lines, which appear to
be parallel to each other. To determine which one among
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FIG. 4. Modified Arrott plot of isotherms for 366 � T � 377 K, with the parameters of (a) the 3D Heisenberg model, (b) the 3D XY
model, and (c) the 3D Ising model. (d) Modified Arrott plot of isotherms with β = 0.495 and γ = 1.325. Solid lines are the linear fits to the
isotherms in the high-field regions.

these three models generates the best modified Arrott plot
with parallel isotherms, we have compared the slope of these
straight lines (obtained from the linear fits to the isotherms
in the high-field region) to that obtained for the isotherm at
T � TC for each modified Arrott plot. Here, the slope is de-
fined as S(T ) = dM1/β/d (H/M )1/γ . The obtained normalized
slopes, NS = S(T )/S(TC ), for each model have been plotted
as a function of temperature in Fig. 5. It is evident that the
values of the NS deviate progressively from the ideal value

FIG. 5. Temperature dependence of the normalized slopes, NS =
S(T )/S(TC), obtained from Figs. 4(a)–4(d).

of 1 both below and above TC . However, among these three
models, the deviation is minimum for the 3D Heisenberg
model. Therefore, the modified Arrott plot corresponding to
the 3D Heisenberg model [Fig. 4(a)] has been used for further
refinement of the exponents β and γ using a rigorous iterative
method as described below.

In Fig. 4(a), the intercepts of the linear fits (to the isotherms
in high-field region), with the axes M1/β and (H/M )1/γ , give
reliable values of MS (0, T ) and χ0

−1(0, T ), respectively. The
power-law fits to the data following Eqs. (1) and (2) yield new
values of the exponents β and γ , which are used to construct a
new modified Arrott plot. During the fitting, TC was varied to
get the best-fit results. From this plot, new M1/β and (H/M )1/γ

are obtained by linear fits to the isotherms at the high-field
region. So we get a new set of β and γ . This procedure is
repeated to achieve self-consistency, i.e., when the new values
of the critical exponents become almost equal to the values
before that iteration.

The final modified Arrott plot, constructed using β =
0.495 and γ = 1.325, is shown in Fig. 4(d). The normalized
slopes of the linear fits to the isotherms of this modified Arrott
plot are also shown in Fig. 5. Here, one can see that both above
and below TC , the normalized slope is close to 1, implying that
all the isotherms form parallel straight lines with the isotherm
at T = 371.5 K, which almost passes through the origin of
the plot. Thus, the more accurate value of TC is estimated to
be 371.5 K. In the low-field region, the small curvatures in the
isotherms of Fig. 4(d) are due to the reorientation of the do-
mains at low magnetic fields. The temperature dependences of
MS (0, T ) and χ0

−1(0, T ), which are obtained from Fig. 4(d),
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FIG. 6. (a) Temperature variations of MS and χ0
−1 along with the

fits (solid lines) following Eqs. (1) and (2), which give the values of
the exponents and TC as mentioned in the plot. (b) Kouvel-Fisher plot
of MS and χ0

−1. The exponents and TC are obtained from the linear
fits (solid lines) of the data.

are shown in Fig. 6(a). The power-law fit following Eq. (1)
to the MS (0, T ) data yields β = 0.494(3) and TC = 371.5(1),
and fitting of Eq. (2) to the χ0

−1(0, T ) data gives γ = 1.33(3)
and TC = 371.5(1). These values of the exponents and TC are
almost the same as that obtained from the modified Arrott plot
[Fig. 4(d)]. Therefore, the estimated values of β, γ , and TC are
reliable and intrinsic.

Accurate values of the exponents as well as TC can also be
obtained using the Kouvel-Fisher technique [30]. According
to this method, MS ( dMS

dT )−1 versus T and [χ0( dχ0
−1

dT )]−1 versus

FIG. 7. Field dependence of the magnetization isotherm at TC =
371.5 K for Co2TiGe. The inset shows the same plot in log-log scale,
where the solid line is the linear fit following Eq. (3) that gives the
critical exponent δ as mentioned in the graph.

T should be straight lines with slopes 1
β

and 1
γ

, respectively,
and their intercepts on the T -axis give the value of TC . The lin-
ear fits to these plots [shown in Fig. 6(b)] yield β = 0.495(2),
TC = 371.48(4) and γ = 1.324(4), TC = 371.51(2).

The critical exponent δ can be obtained from the critical
isotherms, i.e., the M(H ) isotherm at T = TC as well as from
the Widom scaling relation [31]:

δ = 1 + γ

β
. (7)

The M(H ) plot at T = 371.5 K is shown in Fig. 7 and
the inset shows the same plot on the log-log scale. Following
Eq. (3), from the inverse of the slope of the linear fit to the
log(M) versus log(H) curve, we obtain δ = 3.671(1). Using
the values of β and γ obtained from Figs. 6(a) and 6(b), the
Widom scaling relation, Eq. (7), gives δ = 3.692 and 3.675,
respectively. These values of δ are very close to that obtained
from the critical isotherms (Fig. 7). Hence the obtained values

TABLE I. Comparison of critical exponents of Co2TiGe with earlier reports on itinerant uniform FM Ni, itinerant amorphous
FM Gd80Au20, and different theoretical models. Abbreviation: modified Arrott plot (MAP), Kouvel-Fisher (KF), critical isotherm (CI),
renormalization-group epsilon (ε

′ = 2σ − d) expansion (RG-ε
′
).

Material/Model Ref. Technique TC β γ δ

Co2TiGe This work MAP 371.5 0.495 1.325 3.677
This work KF 371.5(1) 0.495(2) 1.324(4) 3.675
This work CI 3.671(1)

Ni [32] KF 0.391(10) 1.314(16) 4.39(2)
Gd80Au20 [37] KF 0.44(2) 1.29(5) 3.96(3)
Mean field [26] Theory 0.5 1 3
3D Heisenberg [28,41] Theory 0.365 1.386 4.8
3D XY [28,42] Theory 0.345 1.316 4.81
3D Ising [28,42] Theory 0.325 1.24 4.82
LR exchange: J (r) = 1/rd+σ

d = 3, n = 3, σ = 1.88 [43] RG-ε
′

0.393 1.32 4.36
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FIG. 8. (a) Scaled magnetization as a function of the renormal-
ized field for Co2TiGe, indicating two separate branches of the scal-
ing for isotherms below and above TC . The inset shows the same plot
in log-log scale. (b) The replotting of renormalized magnetization
(m) and renormalized field (h) in the form of m2 vs h/m. The inset
shows the rescaling of the M(H ) isotherms by MH−1/δ vs H−1/(βδ),
where all the data collapse on a single curve following Eq. (8).

of critical exponents and TC are self-consistent and obey the
Widom scaling relation very well.

The values of the critical exponents β, γ , and δ, obtained
from various methods, are presented in Table I along with
the theoretically predicted values for different models. From
Table I, at a glance we see that the values of the exponents for
the present system do not belong to any of the conventional
universality classes. Therefore, we must check whether these
exponents can generate the scaling equation of state as given
by Eq. (5). In Fig. 8(a), scaled-m versus scaled-h has been
plotted using the values of critical exponents β, γ , and TC ,
calculated from the Kouvel-Fisher plot. The inset shows the
same plot on log-log scale to expand the low-field region.
From Fig. 8(a), it is clear that all the isotherms collapse onto
two separate branches: one above TC and another below TC .
The reliability of the values of the exponents and TC is further
verified by plotting m2 versus h/m, as shown in Fig. 8(b).
In this case, all the isotherms also fall on two independent

branches of the scaling function. Furthermore, in the vicinity
of the transition, the scaling equation of state can be rewritten
in another form,

H

Mδ
= k

(
ε

H1/β

)
, (8)

where k is a regular scaling function. The scaling Eq. (8)
implies that all the isotherms now collapse onto a single curve.
Following Eq. (8), we have plotted MH−1/δ versus εH−1/βδ in
the inset of Fig. 8(b). The inset shows that all the experimental
data fall on a single curve passing through TC , which is located
at zero on the horizontal axis of the plot. Therefore, the scaling
behavior shown in Figs. 8(a) and 8(b) implies that all the
interactions in the vicinity of TC get properly renormalized
and the set of critical exponents are the same below and above
TC for the present compound.

The static critical exponents for Co2TiGe, obtained from
the aforementioned rigorous methods, obey the scaling rela-
tion and the scaling equation of state. Therefore, these expo-
nents truly characterize the critical behavior in the compound.
However, a comparison of these exponents with that predicted
by different theoretical models for the 3D system confirms
that estimated critical exponents for Co2TiGe do not belong to
any conventional universality class and fall between the values
predicted by the 3D Heisenberg model and the mean-field
theory. It should be mentioned that the asymptotic critical
exponents, which are temperature-independent in the asymp-
totic critical regime, truly characterize the critical behavior
in a material belonging to a universality class. Usually, the
asymptotic critical regime is | ε | � 10−2 for homogeneous
magnets and slightly larger for disordered and amorphous
systems [32]. The reduced temperature range, used to derive
the critical exponents for Co2TiGe, is 1.3 × 10−3 �| ε |�
1.4 × 10−2. Therefore, we have performed the above analysis
in the asymptotic critical regime. Indeed, we noticed that the
estimated effective critical exponents (βeff and γeff) remain
almost the same in the studied reduced temperature range
[32,33]. The observed discrepancy from the 3D Heisenberg
values may result from two possibilities: (i) exchange inter-
action of extended-type, i.e., interactions beyond the nearest
neighbor, and (ii) magnetic inhomogeneity in the system.
Hence, it is necessary to understand the nature as well as the
range of interaction in this material. Renormalization-group
analysis has shown that the isotropic long-range dipolar inter-
action can drive a crossover toward mean-field exponents at a
certain value εco of the reduced temperature, which depends
on the strength of the dipolar interactions [32,34,35]. The
analysis also shows that the new crossover exponents are only
slightly different from the Heisenberg ones and shifted toward
the mean-field values. The general theory of the crossover
phenomenon gives the crossover temperature as εco ≈ g1/φd

d ,
where gd is the strength of the dipolar interaction and φd is
the crossover exponent [36]. gd can be estimated from gd ≈
0.87
TC

p2θ

v
[34–36], where p = g

√
S(S + 1), θ is a correction

factor, and v is the elementary cell volume in Å3. For the
present material, v = 196.93Å3 and for spin S = 1/2, θ can
be taken as 0.68 [36]. Using these parameters, we get gd =
2.426 × 10−5 for Co2TiGe. Taking the crossover exponent
φd as the Heisenberg exponent γ = 1.386, we estimate the
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crossover temperature to be εco = 4.78 × 10−4 [32,36]. Only
for ε � εco does the dipolar interaction result in a new regime
with exponents shifted toward mean-field values. Therefore,
the isotropic dipolar picture is not consistent with the present
scenario since the estimated εco for Co2TiGe is well below
the investigated asymptotic critical regime, 1.3 × 10−3 �|
ε |� 1.4 × 10−2. However, the extended type of interaction
can also arise from isotropic exchange interaction between
spins involving itinerant electrons that decays spatially as
J (r) ∝ 1/rd+σ , where d is the effective dimensionality of
the spin interaction and σ is a measure of the range of the
exchange interaction [20]. In a 3D system with isotropic spins,
the Heisenberg model is realized for σ > 2 such that J (r)
decreases with r faster than r−5. Mean-field exponents are
realized when J (r) ∝ r−m with m < 4.5. For 3/2 � σ � 2,
the system belongs to a different class with critical exponents
that take intermediate values depending on σ . Given the
dimensionality of lattice (d) and spin (n), σ can be estimated
using the renormalization-group approach, which gives [20]

γ = 1 + 4

d

(
n + 2

n + 8

)
�σ + 8(n + 2)(n − 4)

d2(n + 8)2

×
{

1 + 2G
(

d
2

)
(7n + 20)

(n − 4)(n + 8)

}
�σ 2, (9)

where �σ = (σ − d
2 ) and G( d

2 ) = 3 − 1
4 ( d

2 )2. Using Eq. (9),
for d : n = 3 : 3 and σ = 1.88, we have obtained the exper-
imentally estimated value of γ = 1.32. However, for σ =
1.88, scaling relations [26] yield β = 0.393, which deviates
from the 3D Heisenberg value toward the mean-field one but
not as much as observed experimentally (Table I). The value
of σ suggests the extended nature of the exchange interaction,
which could be due to the presence of RKKY-type long-
range interaction between spins involving itinerant electrons
as argued by others and discussed earlier [11]. The asymptotic
critical exponents for uniform ferromagnet Ni (Table I) are
also shifted toward the mean-field values, and the shift is
attributed to a crossover to the fixed-point corresponding
to the isotropic long-range exchange interactions [32]. But,
in Co2TiGe, the large deviation in the value of the critical
exponent β from the 3D Heisenberg value cannot be explained
only on the basis of the extended nature of the exchange
interaction. It should be mentioned that the mean-field-like
values of β have been reported for several magnetically

inhomogeneous systems [37–39]. The amorphous FM
Gd80Au20 also shows unusual values of the critical exponents
(Table I), all being largely shifted toward the mean-field val-
ues, and they are attributed to the dilution model for inhomo-
geneous FMs [37,40]. Magnetic inhomogeneities may lead to
critical phenomena that could not be described on the basis of
existing universality classes. However, unlike inhomogeneous
FMs, the critical exponent γ shows quite a small shift toward
the mean-field one for Co2TiGe. Thus, the obtained values
of the critical exponents in Co2TiGe cannot be accounted
for by the magnetic inhomogeneity alone. Therefore, we
believe that the observed unconventional critical exponents in
Co2TiGe comply with the complex nature of exchange inter-
actions, involving both the short-range and beyond nearest-
neighbor spin-spin interactions, and they also suggest some
magnetic inhomogeneity in the system.

IV. CONCLUSION

To summarize, we have comprehensively studied the crit-
ical behavior in the half-metallic full-Heusler ferromagnet
Co2TiGe in the vicinity of the ferromagnetic-to-paramagnetic
phase transition at TC = 371.5 K. Although magnetic Heusler
alloys are regarded as an ideal local-moment system and their
spin-spin interactions are modeled by a Heisenberg Hamilto-
nian, we observe a significant deviation in the values of critical
exponents from the 3D Heisenberg toward the mean-field ones
in Co2TiGe. In particular, the value of the critical exponent β

is very close to the mean-field one. This implies diminished
critical spin-fluctuation in the vicinity of the transition temper-
ature, which could be due to the presence of exchange inter-
actions beyond the nearest-neighbor spin as well as magnetic
inhomogeneity in the compound. The results are consistent
with the recently argued fact that both the short-range direct
exchange coupling between nearest-neighbor spins and the
indirect coupling between further-neighbor spins mediated by
the long-range RKKY interaction stabilize the long-range fer-
romagnetic ordering. The present study provides experimental
evidence of the complex nature of exchange interactions in the
Co2-based full Heusler ferromagnet, which does not belong to
any known universality class predicted by theory.
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