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Emergent crystals are the periodic alignment of “emergent particles,” i.e., localized collective behavior of
atoms or their charges, spins, or orbits. The elasticity of these novel states of matter suffering mechanical
loads can be strikingly softer than that of the underlying material, showing great strain-mediated tunability.
However, the deformation and possible failure of emergent crystals under strong strain, vital for realizing related
applications, are hitherto unclear. Here we theoretically study the nonlinear elasticity and structural transitions
of a Skyrmion crystal (SkX) suffering uniaxial distortion. Under moderate tension, a SkX behaves like a ductile
material, with an exotic negative crossover elastic stiffness and a negative emergent Poisson’s ratio at appropriate
conditions of magnetic field. Under strong strain, we observe at most six phase transitions, generating four novel
emergent crystals that are thermodynamically metastable. We argue that this nondestructive polymorphism is a
general feature for any emergent crystals exposed to mechanical loads.
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I. INTRODUCTION

A recent outburst of interest in emergent crystals has
occurred due to the discovery of skyrmions [1–4] and their
“relatives” [5–7] with varying chirality [8,9], commensurabil-
ity [10], and dimensionality [8,11]. Particularly, in bulk [8,12]
and geometrically confined [13–15] magnetic materials, they
appear to be localized spin textures with nontrivial topology.
These topological objects behave as elementary particles in
an emerging world, such that they form novel crystalline
states at low temperature and melt under heating [16]. These
emergent crystals benefit from the exotic local properties of
their composing particles (e.g., mobility to electric current
[17,18] and skyrmion Hall effects [19,20]), while giving rise
to novel macroscopic emergent properties when interacting
with external fields [21–23]. Systematic study of the defor-
mation and instability of emergent crystals under different
external fields provides a major challenge for us to understand
these new states of matter and to develop reliable approaches
toward precise manipulation.

Skyrmion crystals (SkXs) in chiral magnets are profoundly
affected by deformation of the atomic crystal underneath. It
is known that mechanical loads affect the stability [24–28]
and the elementary excitations [29] of the SkXs. Moreover,
a SkX inside an FeGe thin film is found to undergo significant
deformation about 66 times larger than that of the underly-
ing atomic lattice [23] when stretched, and this “emergent”
elasticity of SkXs has also been observed in MnSi [23,30,31].
This exotic sensitivity of SkX deformation to the deformation
of the underlying material provides a new approach of SkX
manipulation and has been studied in the linear range [32,33].
Nevertheless, a key issue for application that remains unclear
is the nonlinear and critical behavior of SkXs when subject to
moderate or strong elastic fields.
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In this work, we study the nonlinear elasticity and struc-
tural phase transitions of Bloch-type SkXs suffering uniaxial
distortion of the underlying material within an analytical
framework [32,34]. The model used has proved its effec-
tiveness by quantitatively reproducing for MnSi the phase
diagram [8], the variation of elastic stiffness [35], and the
changed stability of SkXs in thin films [36]. We find that a
SkX in MnSi behaves like a typical ductile material under
moderate uniaxial tension, but with an exotic negative emer-
gent Poisson’s ratio and an exotic negative crossover elastic
stiffness at appropriate conditions. At strong tension, a SkX
undergoes five or six subsequent structural phase transitions,
leading to the appearance of four distorted SkX phases that are
thermodynamically metastable. We find the exotic emergent
elasticity of a SkX observed in an FeGe thin film suffering
uniaxial tension [23] is caused by a triangle-square phase
transition of the SkX.

II. RESULTS

A. Model

Consider a cubic helimagnet stabilized in the SkX phase
suffering uniaxial distortion along the x axis; the equilibrium
state of the system is determined by the following rescaled
Helmholtz free-energy density functional [34]:

w̃(m) = w̃0 +
3∑

i=1

(
∂m
∂ri

)2

+ 2m · (∇ × m) − 2b · m

+ tm2 + m4 +
3∑

i=1

Ãe

(
∂mi

∂ri

)2

+ ε11
[
K̃m2

+ L̃1m2
1 + L̃2m2

3 + L̃O1(m1,2m3 − m1,3m2)

+ L̃O2(m3,1m2 − m2,1m3) + L̃O3m1(m2,3 − m3,2)
]
,

(1)
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FIG. 1. Field configurations of deformed SkXs under various
conditions. (a) A typical configuration of a SkX under uniaxial dis-
tortion, (b) εe

11 = 0.3, (c) εe
22 = 0.3, (d) εe

12 = 0.3, and (e) ωe = 0.3.
The vectors illustrate the distribution of the in-plane magnetization
components with the length proportional to their magnitude, while
the colored density plot illustrates the distribution of the out-of-
plane magnetization component. The black dashed line plots the
undeformed Wigner-Seitz cell, while the black solid line plots the
deformed cell. The blue dashed line in (a) plots the undeformed
material sample, while the blue solid line plots the deformed sample.
(a) shows the physical meaning of ε11 and εe

11, in which case the only
nonzero strain component is ε11 and the only nonzero emergent strain
component is εe

11.

where m is the rescaled magnetization, ε11 is the strain
component describing the uniaxial distortion, t is the rescaled
temperature, b is the rescaled magnetic field, Ãe is the rescaled
exchange anisotropy coefficient, and w̃0 denotes the part of
the free-energy density independent of the magnetization. To
guarantee the validity of the results obtained, Eq. (1) contains
a comprehensive description of magnetoelastic interaction de-
rived based on group-theoretical analysis of B20 compounds
[34], where the effects of strain can be categorized into three
types [36]: (1) a renormalization of the coefficient of the
second-order Landau expansion term by K̃ , (2) a uniaxial
anisotropy determined by L̃1 and L̃2, and (3) an anisotropy
of the Dzyaloshinskii-Moriya interaction (DMI) described by
L̃O1, L̃O2, and L̃O3. The exchange anisotropy is considered
in Eq. (1) since in previous studies it explains the intrinsic
anisotropy as well as the direction-dependent stability of SkXs
[37]. When the uniaxial distortion is applied along the y axis,
Eq. (1) changes to Eq. (7) introduced in Sec. IV.

To describe the deformed SkXs, m is expanded within
the nth-order Fourier expansion [32,38] as m = m0 +∑n

i=1

∑ni
j=1 mqi j e

iqi j (εe
i j ,ω

e )·r, where m0 is a constant vector
and qi j (εe

i j, ω
e) denotes the deformable reciprocal vectors

whose deformation is described by the emergent elastic strains
εe

i j and the emergent rotational angle ωe (details shown in
Sec. IV). Alternatively, we can write m = (mq, εea), where
the vector mq contains all components of the vectors of
Fourier magnitude m0 and mqi j for all i and j and

εea = [
εe

11, ε
e
22, ε

e
12, ω

e
]T

. (2)

A remarkable feature of SkXs or any emergent crystals ap-
pearing in solid states is that two types of deformation coexist
in the material considered, as illustrated in Fig. 1: deformation
of the atomic lattice described by the strains εi j [Fig. 1(a)] and

deformation of emergent crystals described by the emergent
strains εe

i j and the emergent rotational angle ωe [Fig. 1(b)].
At given values of t, b, and ε11, the equilibrium state of

the SkX phase is determined by minimizing w̄(mq, εea) with
respect to all components of mq and εea, where w̄(mq, εea) =
1
V

∫
V w̃(mq, εea) denotes the averaged free-energy density of

the system. To guarantee that the solution obtained actually
corresponds to a local minimum of the free energy of the
system, the method of soft-mode analysis [38] is incorporated
in the minimization process. A relation between ε11 and the
equilibrium value of components of εea characterizes the
emergent elastic properties of SkXs under mechanical loads.

In addition to the free-energy minimization based on the
Fourier representation introduced above, two other methods
are also used to calculate the emergent elastic properties of
SkXs under strain, namely, the Monte Carlo simulation and
the theory of emergent elasticity. The Monte Carlo simulation
also minimizes the Helmholtz free energy at given values of
t, b, and ε11, but by discretizing Eq. (1) with two-dimensional
(2D) grids in Cartesian coordinates instead of finding an
analytical expression of m for SkXs. To use the theory of
emergent elasticity, the emergent elastic strains of SkXs is
calculated based on the assumption that εea is linear to ε11,
where the linear coefficients are calculated at the equilibrium
state of the SkX at given values of t, b, and ε11 = 0. The
details of the three methods used and a comparison between
them are given in Sec. IV.

B. Elastic and nonlinear elastic behaviors of SkXs suffering
moderate uniaxial tension of the underlying material

We study the elastic and nonlinear elastic behaviors of
SkXs in MnSi (thermodynamic parameters are shown in
Sec. IV) suffering moderate uniaxial tension of the underly-
ing material. By “moderate” we mean the applied uniaxial
tension does not induce a failure of the SkX phase, so that its
deformation changes smoothly in the range of uniaxial tension
considered. We analyze the variation of the components of εea

with ε11 calculated at different values of b and Ãe, where it is
assumed that the SkX is distributed in the x-y plane and the
rescaled magnetic field satisfies b = [0, 0, b]T .

We use three different methods to calculate the ε11-εea

curves of SkXs at small strain, including the theory of
emergent elasticity [32], the free-energy minimization based
on fourth-order Fourier representation, and the Monte Carlo
simulation method. As shown in Figs. 1(a) and 2(a), the results
obtained by the three methods agree quantitatively well in
the small-strain range and are exactly equal to each other
when ε11 → 0. At small strain, εe

11 is almost linear with ε11

at all calculated conditions. The gradient of the ε11-εe
11 curve

at ε11 = 0 is found to be sensitive to the value of applied
magnetic field b. Specifically, the ε11-εe

11 curves calculated at
b = 0.3 correspond to a negative gradient at ε11 = 0, indicat-
ing a compressed SkX along the x axis when the underlying
material suffers elongation in the same direction. This result
agrees with a previous study based on the theory of emer-
gent elasticity [32], where the inverse of the gradient of the
ε11-εe

11 curves at ε11 = 0 represents the component λ11 of the
crossover strain ratio (CSR) matrix (introduced in Sec. IV).
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FIG. 2. Variation of εe
11 with ε11 and related emergent elastic

properties of SkXs in MnSi calculated at different values of b
and Ãe. (a) ε11-εe

11 curves in the elastic stage, where solid curves
are obtained through Fourier-representation-based free energy mini-
mization, short-dashed curves with stars are obtained through Monte
Carlo simulation, and long-dashed lines are obtained by calculating
the CSR component λ11 under strain-free conditions. (b) ε11-εe

11

curves in the whole range of ε11 before failure, where circles mark
the yield points and squares mark the failure points. (c) Variation of
εY and εF on the left axis and the strain-free CSR component λ11 on
the right axis, with b.

In the wider range 0 � ε11 � 0.02, the ε11-εe
11 curves [Fig.

2(b)] gradually show nonlinearity as ε11 increases. Specifi-
cally, at b = 0.3, the gradient of the ε11-εe

11 curve changes
sign as ε11 increases, passing by a point (ε11 ≈ 0.001) where
it becomes singular. As shown in Fig. 3, uniaxial distortion
of the material generally leads to complicated deformation
of the SkX, especially when considering intrinsic anisotropic
effects. When the material is stretched along the x axis, the

SkX in the material deforms along the y axis, which is referred
to as Poisson’s effect for ordinary solids. As illustrated by
the ε11-εe

22 curves in Fig. 3(a), SkXs possess a complicated
Poisson’s effect as ε11 increases. At Ãe = −0.05, εe

12 and
ωe vary with ε11, while at Ãe = 0 they vanish. Variation of
ωe with ε11 indicates that the SkX rotates globally when
the material is stretched along the x axis. This is a type of
deformation unseen in ordinary crystals.

C. Structural transitions of a skyrmion crystal
in MnSi suffering uniaxial tension

When the applied uniaxial tension or compression is large
enough, the SkX becomes intrinsically unstable, and struc-
tural phase transitions may occur. This has already been
shown by the break points appearing near ε11 = 0.0001 in
the ε11 − εe

11, ε11 − εe
12, and ε11 − ωe curves at b = 0.1 in

Figs. 2(a), 3(c) and 3(d).
We study the metastability and phase transitions of SkXs

in MnSi at t = 0.5, b = 0.3 suffering uniaxial distortion and
find that six types of nontrivial emergent crystalline states ap-
pear in MnSi suffering uniaxial tension. They are the triangle
skyrmion crystal (T-SkX), rotated triangle skyrmion crystal
(RT-SkX), deformed square skyrmion crystal (DS-SkX), elon-
gated and rotated triangle skyrmion crystal (ERT-SkX), unsta-
ble skyrmion crystal (U-SkX), and in-plane single-Q (IPSQ)
phase. The field configurations of these different phases are
shown in the insets of Fig. 4. We choose εe

11 and ωe to be the
order parameters of the system and plot their variation with
ε11 in Fig. 4 to illustrate the behavior of different phases.

Interestingly, we find that immediately after the phase
transition to the DS-SkX phase, the change of emergent elastic
strain �εe

11 compared with the strain-free SkX is about 60
times larger than the uniaxial strain ε11 applied to the un-
derlying material. This result agrees quantitatively well with
the significant deformation of the SkX observed in an FeGe
thin film suffering uniaxial distortion [23]. Concerning the
similarity of the crystalline structure between MnSi and FeGe,
we argue that this phase transition from RT-SkX to DS-SkX
explains the exotic emergent elasticity of SkX in FeGe.

Under uniaxial compression, the SkX quickly becomes
unstable and evolves to the ferromagnetic state. This is pre-
dominantly explained by the renormalization of the coefficient
of the second-order Landau expansion term due to the term
ε11K̃m2 in Eq. (1) due to uniaxial compression, which leads
to a decrease of the Curie temperature.

D. Effects of different terms in the magnetoelastic
interaction on the phase transitions of a SkX

We have incorporated a comprehensive description of mag-
netoelastic interaction in the free-energy density functional
given in Eq. (1). It will be useful to know the effects of
different parts of the interaction and tell which is the dominant
term. In Fig. 5, we present the results obtained with two
different sets of magnetoelastic coupling parameters, where
Fig. 5(a) is obtained by using the set of parameters of MnSi
introduced in Sec. IV and Fig. 5(b) is obtained by setting
L̃O1 = 0, L̃O2 = 0, L̃O3 = 0 [i.e., Fig. 5(b) is obtained ignor-
ing the DMI anisotropy induced by magnetoelastic coupling].
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(a)

(c)

(b)

(d)

FIG. 3. Variation of other components of εea with ε11 and related emergent elastic properties of SkXs in MnSi calculated at different
values of rescaled magnetic field b and rescaled exchange anisotropy coefficient Ãe. (a) ε11-εe

22 curves, (b) νe-ε11 curves, (c) ε11-εe
12 curves, and

(d) ε11-ωe curves calculated in the whole range of ε11 before failure. In (c) and (d), all the curves are plotted under the condition Ãe = −0.05,
where the insets show break points at around ε11 = 0.0001 of the two curves calculated at b = 0.1.

The primary effect of this parameter change lies in the phase
transition from DS-SkX to ERT-SkX changing from a second-
order phase transition to a first-order phase transition in
Fig. 5(b), while an intermediate phase, ERT1-SkX, appears
during this phase transition. Apart from this point, Fig. 5(b)
is generally similar to Fig. 5(a). Since the K̃ term in Eq. (5)
describes the renormalization of the second-order Landau
expansion term due to magnetoelastic coupling, it will not
cause any anisotropy deformation of SkXs under any kind of
mechanical load. In this case, our calculation shows that the
terms with L̃1, L̃2, and L̃3 describing the uniaxial anisotropy
due to magnetoelastic coupling dominate the behavior of
SkXs in MnSi suffering uniaxial distortion, while the L̃Oi

(i = 1, 2, . . . , 6) related terms describing the anisotropic DMI
due to magnetoelastic coupling play a subsidiary role.

E. Strain-magnetic-field phase diagrams for MnSi

We further study the phase diagrams for MnSi suffering
uniaxial distortion. We plot two types of ε11-b phase diagrams
under the conditions t = 0.5, Ãe = −0.05: the ε11-b phase
diagram of equilibrium states [Fig. 6(a)] and the ε11-b phase

diagram of metastability for the SkX [Fig. 6(b)]. It is found
that a thermodynamically stable SkX exists in a very narrow
range of ε11 and exists in only one state: the RT-SkX phase. On
the other hand, concerning the robustness of the SkX [12,36],
a metastable SkX exists in a much wider range of ε11 and is
present in a variety of different phases.

Concerning the wave nature of emergent crystals [36], all
metastable states are stabilized by nonlinear mode-mode in-
teraction, while the corresponding thermodynamically stable
state, the generalized-conical (G-conical) phase, is a single-Q
structure whose wave vector is free to rotate in space. That
is to say, the phase transition from any metastable emergent
crystalline state to the G-conical phase is realized by the can-
cellation of all the nonlinear mode-mode interactions (i.e., set-
ting all related Fourier amplitudes to zero). This is physically
difficult because unlike annihilating a localized skyrmion,
any Fourier component of magnetization exists globally and
is hard to cancel through any local fluctuation. As a result,
besides the well-known topological protection attributed to
isolated skyrmions, the SkX is additionally protected globally
by mode-mode interactions. In this sense, once we have a
stable strain-free SkX phase, the appearance of various types
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(a)

(b)

(c)

FIG. 4. Structural phase transitions of the SkX phase in MnSi suffering uniaxial distortion obtained at t = 0.5, b = 0.3. Different magnetic
states appear as (a) and (c) ε11 and (b) ε22 increases, where (a) and (b) are calculated under the condition Ãe = −0.05 and (c) is calculated
under the condition Ãe = 0. The existence of different phases is characterized by εe

11 (on the left axis) and ωe (on the right axis). The insets
show the typical field configuration of magnetization for the corresponding phases, where the vectors illustrate the distribution of the in-
plane magnetization components with length proportional to their magnitude, while the colored density plot illustrates the distribution of the
out-of-plane magnetization component.
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(a)

(b)

FIG. 5. Structural phase transitions of the SkX phase in MnSi suffering uniaxial distortion on the x axis obtained at t = 0.5, b = 0.3, Ãe =
−0.05. (a) is plotted at L̃O1 = −0.38, L̃O2 = 0.76, L̃O3 = −0.38, while (b) is plotted at L̃O1 = 0, L̃O2 = 0, L̃O3 = 0. The existence of different
phases is characterized by εe

11 (on the left axis) and ωe (on the right axis). The new phase appearing in (b) marked with and asterisk (*) is
defined as the ERT1-SkX phase.

of metastable SkXs predicted in our calculation is anticipated,
especially in the low-temperature range. This viewpoint is
supported by the successful observation of the DS-SkX phase
in uniaxially stretched FeGe [23].

III. DISCUSSION

A. Nonlinear emergent elasticity of a skyrmion crystal
in MnSi suffering uniaxial tension

In Fig. 2(b), the ε11-εe
11 curves correspond to the classic

stress-strain curve of solid-state materials if one multiplies the
y axis by Young’s modulus of the material hosting the SkX.
In this sense, the ε11-εe

11 curves characterizing the emergent
elastic property of the SkX under uniaxial tension exhibit a
shape similar to the stress-strain curve of any typical ductile
metal (e.g., an aluminum alloy). As ε11 increases, the SkX
“yields” before “failure,” characterized by an emergent yield-
ing strain εY and an emergent failure strain εF . Imitating the
definition of the yielding point for ductile materials such as
an aluminum alloy, we define the emergent yielding point
by the intersection of the ε11-εe

11 curve and the straight line
determined by the strain-free λ11 right shifted by 2% on the εe

11
axis. Different from atomic crystals, the yielding and failure of
an emergent crystal describe, respectively, a nonlinear elastic
behavior and a structural transition, which is recoverable after

removing the applied strains. Similar to λ11, εY and εF are
both sensitive to variation of the applied magnetic field, as
illustrated in Fig. 2(c).

On the other hand, we define the emergent Poisson’s ratio
as νe = −εe

22/ε
e
11 and plot in Fig. 3(b) the νe-ε11 curves

calculated under various conditions. Under all calculated con-
ditions, SkXs always possess a negative emergent Poisson’s
ratio in a considerable range of positive ε11, which means
the density of skyrmions in the SkX suffering mechanical
forces is not conservative. This negative emergent Poisson’s
ratio of SkXs reminds one of auxetics, i.e., ordinary materials
or structures with a negative Poisson’s ratio. The similarity
between the two is the presence of an internal structure in
the unit cell. Nevertheless, the emergent elastic strains of the
SkX are not work conjugates of the stresses. As a result,
some deformation patterns that are forbidden in auxetics can
occur in SkXs under external forces (e.g., at high b a SkX
can shrink in the direction in which the underlying material is
being stretched; such a deformation pattern cannot occur for
auxetics).

B. Polymorphism and unlimited elasticity
of magnetic emergent crystals

As shown in Fig. 4, under strong uniaxial distortion,
the SkX possesses (a) polymorphism and (b) “unlimited
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(a)

(b)

FIG. 6. ε11-b phase diagrams of MnSi calculated at Ãe = −0.05.
(a) ε11-b phase diagram for the equilibrium states and (b) ε11-b phase
diagram for the metastable SkX phases.

elasticity” in the sense that the IPSQ phase can be regarded
as a SkX with skyrmion particles infinitely stretched, and
after removing the tension, the system recovers to its initial
state. The many possible deformed SkX states appear mainly
because of the complicated competition between the effects of
uniaxial anisotropy and DMI anisotropy induced by uniaxial
tension as described in Eq. (1). Since Eq. (1) is derived based
on the symmetry requirement of B20 compounds, this exotic
polymorphism under strain exists for any emergent crystals
appearing in them. The unlimited elasticity of SkXs stems
from a fundamental difference between atomic crystals and
emergent crystals: the emergent deformation is realized by
field configuration redistribution and is intrinsically nonde-
structive. We find that these two features dominate the non-
linear behavior of SkXs suffering all kinds of external fields,
including not only mechanical loading but also magnetic field
[39], electric field [20], and temperature field [40].

IV. METHODS

A. Thermodynamic potential for cubic helimagnets
incorporating magnetoelastic interactions

To study the interaction between the elastic deformation
of the material and the emergent elasticity of the skyrmion
crystal, we consider the following rescaled free-energy

density functional [34]:

w̃(m, εi j ) =
3∑

i=1

(
∂m
∂ri

)2

+ m · (∇ × m) − 2b · m

+ tm2 + m4 +
3∑

i=1

Ãe

(
∂mi

∂ri

)2

+ w̃el + w̃me,

(3)

where the first six terms on the right-hand side of Eq. (3)
denote, respectively, the exchange energy density, the DMI,
the Zeeman energy density, the second- and fourth-order
Landau expansion terms, and the exchange anisotropy with
a rescaled parameter Ãe and

w̃el = 1
2C̃11

(
ε2

11 + ε2
22 + ε2

33

) + C̃12
(
ε2

11ε
2
22 + ε2

22ε
2
33

+ ε2
22ε

2
33

) + 1
2C̃44

(
γ 2

12 + γ 2
13 + γ 2

23

)
(4)

denotes the elastic energy density of materials with cubic
symmetry, γi j = 2εi j denote the engineering shear strains, and

w̃me = K̃m2εii + L̃1
(
m2

1ε11 + m2
2ε22 + m2

3ε33
)

+ L̃2
(
m2

3ε11 + m2
1ε22 + m2

2ε33
) + L̃3(m1m2γ12

+ m1m3γ13 + m2m3γ23) +
6∑

i=1

L̃Oi f̃Oi (5)

denotes the magnetoelastic energy density, where

f̃O1 = ε11(m1,2m3 − m1,3m2) + ε22(m2,3m1

− m2,1m3) + ε33(m3,1m2 − m3,2m1),

f̃O2 = ε11(m3,2m2 − m2,1m3) + ε22(m1,2m3

− m3,2m1) + ε33(m2,3m1 − m1,3m2),

f̃O3 = ε11m1(m2,3 − m3,2) + ε22m2(m3,1 − m1,3)

+ ε33m3(m1,2 − m2,1),

f̃O4 = γ23(m1,3m3 − m1,2m2) + γ13(m2,1m1

− m2,3m3) + γ12(m3,2m2 − m3,1m1),

f̃O5 = γ23(m3,1m3 − m2,1m2) + γ13(m1,2m1

− m3,2m3) + γ12(m2,3m2 − m1,3m1),

f̃O6 = γ23m1(m3,3 − m2,2) + γ13m2(m1,1 − m3,3)

+ γ12m3(m2,2 − m1,1), (6)

with mi, j = ∂mi
∂r j

. In Eq. (5), the magnetoelastic functional
is derived for B20 helimagnets according to the symme-
try requirement of point group T , where we have incor-
porated all necessary terms that matter. K̃, L̃1, L̃2, L̃3, and
L̃Oi (i = 1, 2, . . . , 6) are thermodynamic parameters char-
acterizing different orders of magnetoelastic interactions.
To be more specific, the K̃ term describes the renormal-
ization of the second-order Landau expansion term due
to magnetoelastic coupling, the terms with L̃1, L̃2, and
L̃3 describe the uniaxial anisotropy due to magnetoelas-
tic coupling, and the L̃Oi (i = 1, 2, . . . , 6) related terms
describe the anisotropic DMI due to magnetoelastic cou-
pling. The thermodynamic parameters of MnSi used in the
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calculation are presented in a rescaled form [34] as C̃11 =
1.51 × 106, C̃12 = 3.42 × 105, C̃44 = 6.28 × 105, Ãe =
−0.05, K̃ = −292.40, L̃1 = −10.24, L̃2 = 8.77, L̃3 =
12.03, L̃O1 = −0.38, L̃O2 = 0.76, L̃O3 = −0.38. The effect-
iveness of this set of parameters has been proved in explaining
various types of magnetoelastic-related phenomena of SkXs
[34]. To see the effect of a specific term during the calcula-
tion, we can intentionally set the corresponding parameters
to zero and then see the changed outcomes (e.g., by com-
paring the results obtained at Ãe = −0.05 and Ãe = 0, we
can see the effect of exchange anisotropy; by comparing the
results obtained at L̃O1 = −0.38, L̃O2 = 0.76, L̃O3 = −0.38
and L̃O1 = 0, L̃O2 = 0, L̃O3 = 0, we can see the effect of
magnetoelastic-coupling-induced DMI anisotropy). Equation
(1) can be derived from Eq. (3) by setting all components of
elastic strains to zero except ε11. When the uniaxial distortion
is applied along the axis y, by setting all components of elastic
strains to zero except ε22, we have from Eq. (3)

w̃(m) = w̃0 +
3∑

i=1

(
∂m
∂ri

)2

+ 2m · (∇ × m) − 2b · m

+ tm2 + m4 +
3∑

i=1

Ãe

(
∂mi

∂ri

)2

+ ε22
[
K̃m2

+ L̃1m2
2 + L̃2m2

1 + L̃O1(m2,3m1 − m2,1m3)

+ L̃O2(m1,2m3 − m3,2m1)

+ L̃O3m2(m3,1 − m1,3)
]
. (7)

To determine a metastable emergent crystal in helimagnets,
the rescaled magnetization m should be described mathemat-
ically as a Fourier series [38]:

m = m0 +
∞∑

i=1

ni∑
j=1

mqi j e
iqi j (εea )·r. (8)

It is convenient to expand mqi j as mqi j = c̃i j1Pi j1 + c̃i j2Pi j2 +
c̃i j3Pi j3, where c̃i j1 = c̃re

i j1 + ic̃im
i j1, c̃i j2 = c̃re

i j2 + ic̃im
i j2, c̃i j3 =

c̃re
i j3 + ic̃im

i j3 are complex variables to be determined and Pi j1 =
1√
2siq

[−iqi jy, iqi jx, siq]T , Pi j2 = 1
siq

[qi jx, qi jy, 0]T , Pi j3 =
1√
2siq

[iqi jy,−iqi jx, siq]T , with q0
i j = [qi jx, qi jy]T , |q0

i j | = siq.

Assume that the undeformed wave vectors are q0
11 = q[0, 1]T ,

q0
12 = q[−

√
3

2 ,− 1
2 ]T for a hexagonal lattice; the deformed

wave vectors are related to the emergent elastic strains and
emergent rotation angle (in terms of the Green’s strain tensor)
by [32]

q11 = q

s

[
ωe − εe

12, 1 + εe
11

]T
,

q12 = q

2s

[ −
√

3 −
√

3εe
22 + εe

12 − ωe

− 1 − εe
11 +

√
3
(
εe

12 + ωe
)]T

, (9)

where s = 1 + εe
11 + εe

22 + εe
11ε

e
22 − (εe

12)2 + (ωe)2. The av-
eraged rescaled free-energy density for emergent crystalline
states can be obtained by substituting Eqs. (8) and (9)
into Eq. (3) and taking the volume average w̄ = 1

V

∫
w̃dV .

The equilibrium state of any emergent crystal is determined
through minimization of w̄ with respect to εεεea, c̃re

i jk , and c̃im
i jk .

B. Emergent elasticity for 2D hexagonal emergent
crystals in helimagnets

To formulate the theory of emergent elasticity [32] for
emergent crystals in helimagnets, we first have to determine a
metastable emergent crystal under the condition of interest. At
small disturbance around this metastable state and neglecting
possible periodic elastic fields, the averaged rescaled free-
energy density for emergent crystalline states can be expanded
in a quadratic form of all the independent variables as

w̄ = w̄u + 1
2 (dεea)T C̃edεea + 1

2 (dmq)T μ̃qdmq

+ 1
2 (dε)T C̃dε + (dε)T h̃dεea

+ (dεea)T g̃eqdmq + (dε)T g̃qdmq, (10)

where quantities with the prefix d denote a small disturbance,
w̄u denotes the undisturbed averaged rescaled Helmholtz free-
energy density, and

εea = [
εe

11, ε
e
22, ε

e
12, ω

e
]T

, (11)

ε = [ε11, ε22, ε12, γ23, γ13, γ12]T , (12)

mq = [
m01, m02, m03, c̃re

111, c̃im
112, c̃re

113, c̃re
121,

c̃im
122, c̃re

123, c̃re
131, c̃im

132, c̃re
133, c̃re

211, . . .
]T

, (13)

C̃i j =
(

∂2w̄

∂εi∂ε j

)
0

, h̃i j =
(

∂2w̄

∂εi∂εea
j

)
0

,

g̃q
i j =

(
∂2w̄

∂εi∂mq
j

)
0

, C̃e
i j =

(
∂2w̄

∂εea
i ∂εea

j

)
0

,

g̃eq
i j =

(
∂2w̄

∂εea
i ∂mq

j

)
0

, μ̃
q
i j =

(
∂2w̄

∂mq
i ∂mq

j

)
0

. (14)

One should notice that the form of Eq. (13) has been simpli-
fied after canceling the degrees of freedom related to the in-
plane rigid translation [32]. The linear constitutive equations
are derived from Eq. (10) as

dσea = C̃edεea + h̃T dε + g̃eqdmq,

dσ = C̃dε + h̃dεea + g̃qdmq, (15)

dbq = μqdmq + (̃gq)T dε + (̃geq)T dεea,

where

σea = [
σ e

11, σ
e
22, σ

e
12, 


e
12

]T
, (16)

σ = [σ11, σ22, σ33, σ23, σ13, σ12]T , (17)

bq = [
b1, b2, b3, d̃ re

111, d̃ im
112, d̃ re

113, d̃ re
121,

d̃ im
122, d̃ re

123, d̃ re
131, d̃ im

132, d̃ re
133, d̃ re

211, . . .
]T

(18)

denote work conjugates of εea, ε, and mq, respectively. When
the material is subject to a disturbance of elastic strains, we
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have dbq = 0 and dσea = 0. In this case, after deduction we
have from Eq. (15)

dεea = λdε, (19)

where

λ = −(C̃e∗)−1(̃h∗)T ,

C̃e∗ = C̃e − g̃eq(μ̃q)−1(̃geq)T ,

h̃e∗ = h̃e − g̃q(μ̃q)−1(̃geq)T .

(20)

Equation (19) provides the linear relation between the emer-
gent elastic strains, emergent rotations, and the elastic strains,
and λ is called the crossover strain ratio matrix.

One should notice that the compliance matrices defined
in Eq. (14) provide necessary information to determine the
metastability of a magnetic phase. For a state obtained from
free-energy minimization based on Fourier representation, the
positive definiteness of the following matrix [38] guarantees
the intrinsic stability of the state:

� =
[

C̃e g̃eq

(̃geq)T μ̃q

]
. (21)

When the positive definiteness of � is destroyed, the eigen-
vector corresponding to the smallest eigenvalue (softest mode)
of � indicates the direction of evolution for the system from
the current state.

C. Free-energy minimization based on Monte Carlo simulation

We perform Monte Carlo simulation based on an annealing
algorithm to minimize the free energy of the system. To
process the simulation, we discretize the free-energy density
functional shown in Eq. (1) with 2D grids in Cartesian
coordinates. Periodic boundary conditions are used in the
calculation. For given elastic strains, the energy density
functional can be written as

w̃ = w̃(mx(x, y), my(x, y), mz(x, y)), (22)

where mx, my, mz denote the components of the rescaled
magnetization m.

We use the central difference method to calculate the value
of partial derivatives

∂mk

∂x
[i][ j] = mk[i + 1][ j] − mk[i − 1][ j]

2�x
,

∂mk

∂y
[i][ j] = mk[i + 1][ j] − mk[i − 1][ j]

2�y
,

k = x, y, z,

(23)

where the values of �x and �y determine the error of the
Monte Carlo simulation.

In order to calculate the emergent strain of the SkX, �x
and �y are also set as variables. In this case, we calculate
the averaged free-energy density for different values of �x
and �y to obtain the smallest one. And corresponding values
of �x and �y determine the emergent elastic strains of

the SkX,

εe
11 = �x′ − �x

�x
,

εe
22 = �y′ − �y

�y
.

(24)

This method is applicable to only moderate emergent defor-
mation of the SkX. When the difference between equilibrium
values of �x and �y is too large, the precision can no longer
be guaranteed, and a new set of grids is needed.

D. Comparison between different methods to calculate the
emergent deformation of SkXs

We have introduced three different methods to study
the emergent deformation of SkXs, including the theory of
emergent elasticity (EE), the free-energy minimization based
on fourth-order Fourier representation (MF), and the Monte
Carlo simulation method (MC). In terms of the range of
applicability, we have for the three methods MF, MC > EE.
In principle, MF and MC can both be used to determine the
emergent deformation of SkXs for any given condition of
t, b, and εi j . Nevertheless, for MC, when there is emergent
shearing and emergent rotation of the SkX, the shape of the
calculated region and the periodic boundary condition both
change, which is technically hard to deal with. In this work,
we use MC only for the case where there is no emergent shear-
ing and emergent rotation. EE, on the other hand, presumes a
linear relation between the emergent elastic strains and the
elastic strains. When such a linear assumption is no longer
valid as εi j increases, the results obtained by EE are no longer
reliable. In fact, the emergent yielding strain εY defined and
calculated in this work provides the upper limit where such
an assumption is valid. In terms of the precision of results, we
have for the three methods MF ≈ MC > EE. At given con-
ditions of t, b, and εi j , the emergent deformation of the SkX
determined by the two methods (MF and MC) through free-
energy minimization can be as precise as one wants, where the
precision of MF can be enhanced by increasing higher-order
Fourier representation of the SkX and the precision of MC
can be enhanced by increasing the size calculated and the
density of the grids. The precision of results obtained by EE
depends on the correctness of the linear assumption between
the emergent elastic strains and the elastic strains. In terms of
efficiency, we have for the three methods EE > MF > MC.
When using EE, one calculates components of the linear com-
pliance matrices at given t, b assuming a strain-free condition;
then the emergent deformation of the SkX is determined by
multiplying the corresponding compliance matrices by the
given εi j . When using MF, the most time-consuming step is to
derive the analytical expression of the free-energy functional
in terms of the chosen order of Fourier representation of
the SkX. Once this is obtained, the free-energy minimization
can be performed at given conditions of t, b, and εi j with
considerable speed, usually one order of magnitude faster than
that of MC.

While all free-energy minimization has to be performed
numerically, MF is intrinsically superior to MC as a solution
method. The reason is that MF always yields an analytical
expression of emergent crystals, while MC provides only

214412-9



YANGFAN HU, XIAOMING LAN, AND BIAO WANG PHYSICAL REVIEW B 99, 214412 (2019)

a discrete numerical distribution of the order parameters in
space and/or time. Therefore, MF is recommended whenever
it is suitable. Nevertheless, when there is a local field de-
stroying the long-range order of magnetization, for which an
analytical expression of m is no longer available, MC seems
to be the only option.
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Bartkowiak, H. Berger, A. Magrez, J. L. Gavilano, G. Nagy, J.
Zang, and H. M. Rønnow, Phys. Rev. Lett. 113, 107203 (2014).

[23] K. Shibata, J. Iwasaki, N. Kanazawa, S. Aizawa, T. Tanigaki,
M. Shirai, T. Nakajima, M. Kubota, M. Kawasaki, H. Park et
al., Nat. Nanotechnol. 10, 589 (2015).

[24] Y. Nii, T. Nakajima, A. Kikkawa, Y. Yamasaki, K. Ohishi, J.
Suzuki, Y. Taguchi, T. Arima, Y. Tokura, and Y. Iwasa, Nat.
Commun. 6, 8539 (2015).

[25] A. Chacon, A. Bauer, T. Adams, F. Rucker, G. Brandl, R.
Georgii, M. Garst, and C. Pfleiderer, Phys. Rev. Lett. 115,
267202 (2015).

[26] J. Wang, Y. Shi, and M. Kamlah, Phys. Rev. B 97, 024429
(2018).

[27] E. Karhu, S. Kahwaji, T. L. Monchesky, C. Parsons, M. D.
Robertson, and C. Maunders, Phys. Rev. B 82, 184417 (2010).

[28] S. X. Huang and C. L. Chien, Phys. Rev. Lett. 108, 267201
(2012).

[29] X.-X. Zhang and N. Nagaosa, New J. Phys. 19, 043012 (2017).
[30] D. M. Fobes, Y. Luo, N. León-Brito, E. Bauer, V. Fanelli, M.

Taylor, L. M. DeBeer-Schmitt, and M. Janoschek, Appl. Phys.
Lett. 110, 192409 (2017).

[31] S. Kang, H. Kwon, and C. Won, J. Appl. Phys. 121, 203902
(2017).

[32] Y. Hu and B. Wang, arXiv:1608.04840.
[33] O. Petrova and O. Tchernyshyov, Phys. Rev. B 84, 214433

(2011).
[34] Y. Hu and B. Wang, New J. Phys. 19, 123002 (2017).
[35] Y. Nii, A. Kikkawa, Y. Taguchi, Y. Tokura, and Y. Iwasa, Phys.

Rev. Lett. 113, 267203 (2014).
[36] Y. Hu, Phys. Status Solidi RRL 12, 1800247 (2018).
[37] X. Wan, Y. Hu, and B. Wang, Phys. Rev. B 98, 174427 (2018).
[38] Y. Hu, Commun. Phys. 1, 82 (2018).
[39] C. Wang, H. Du, X. Zhao, C. Jin, M. Tian, Y. Zhang, and R.

Che, Nano Lett. 17, 2921 (2017).
[40] D. Morikawa, X. Yu, K. Karube, Y. Tokunaga, Y. Taguchi, T.-h.

Arima, and Y. Tokura, Nano Lett. 17, 1637 (2017).

214412-10

https://doi.org/10.1038/382332a0
https://doi.org/10.1038/382332a0
https://doi.org/10.1038/382332a0
https://doi.org/10.1038/382332a0
https://doi.org/10.1038/35082010
https://doi.org/10.1038/35082010
https://doi.org/10.1038/35082010
https://doi.org/10.1038/35082010
https://doi.org/10.1038/nature05056
https://doi.org/10.1038/nature05056
https://doi.org/10.1038/nature05056
https://doi.org/10.1038/nature05056
https://doi.org/10.1103/PhysRevLett.117.226401
https://doi.org/10.1103/PhysRevLett.117.226401
https://doi.org/10.1103/PhysRevLett.117.226401
https://doi.org/10.1103/PhysRevLett.117.226401
https://doi.org/10.1038/nphys4245
https://doi.org/10.1038/nphys4245
https://doi.org/10.1038/nphys4245
https://doi.org/10.1038/nphys4245
https://doi.org/10.1103/PhysRevB.96.144412
https://doi.org/10.1103/PhysRevB.96.144412
https://doi.org/10.1103/PhysRevB.96.144412
https://doi.org/10.1103/PhysRevB.96.144412
https://doi.org/10.1038/ncomms7012
https://doi.org/10.1038/ncomms7012
https://doi.org/10.1038/ncomms7012
https://doi.org/10.1038/ncomms7012
https://doi.org/10.1126/science.1166767
https://doi.org/10.1126/science.1166767
https://doi.org/10.1126/science.1166767
https://doi.org/10.1126/science.1166767
https://doi.org/10.1038/nmat4402
https://doi.org/10.1038/nmat4402
https://doi.org/10.1038/nmat4402
https://doi.org/10.1038/nmat4402
https://doi.org/10.1103/PhysRevLett.112.167202
https://doi.org/10.1103/PhysRevLett.112.167202
https://doi.org/10.1103/PhysRevLett.112.167202
https://doi.org/10.1103/PhysRevLett.112.167202
https://doi.org/10.1021/acs.nanolett.5b02653
https://doi.org/10.1021/acs.nanolett.5b02653
https://doi.org/10.1021/acs.nanolett.5b02653
https://doi.org/10.1021/acs.nanolett.5b02653
https://doi.org/10.1038/nmat4752
https://doi.org/10.1038/nmat4752
https://doi.org/10.1038/nmat4752
https://doi.org/10.1038/nmat4752
https://doi.org/10.1038/nature09124
https://doi.org/10.1038/nature09124
https://doi.org/10.1038/nature09124
https://doi.org/10.1038/nature09124
https://doi.org/10.1016/j.physrep.2017.08.001
https://doi.org/10.1016/j.physrep.2017.08.001
https://doi.org/10.1016/j.physrep.2017.08.001
https://doi.org/10.1016/j.physrep.2017.08.001
https://doi.org/10.1038/ncomms8637
https://doi.org/10.1038/ncomms8637
https://doi.org/10.1038/ncomms8637
https://doi.org/10.1038/ncomms8637
https://doi.org/10.1088/1367-2630/15/5/053003
https://doi.org/10.1088/1367-2630/15/5/053003
https://doi.org/10.1088/1367-2630/15/5/053003
https://doi.org/10.1088/1367-2630/15/5/053003
https://doi.org/10.1126/science.1195709
https://doi.org/10.1126/science.1195709
https://doi.org/10.1126/science.1195709
https://doi.org/10.1126/science.1195709
https://doi.org/10.1103/PhysRevLett.107.136804
https://doi.org/10.1103/PhysRevLett.107.136804
https://doi.org/10.1103/PhysRevLett.107.136804
https://doi.org/10.1103/PhysRevLett.107.136804
https://doi.org/10.1103/PhysRevLett.102.186602
https://doi.org/10.1103/PhysRevLett.102.186602
https://doi.org/10.1103/PhysRevLett.102.186602
https://doi.org/10.1103/PhysRevLett.102.186602
https://doi.org/10.1038/nphys3883
https://doi.org/10.1038/nphys3883
https://doi.org/10.1038/nphys3883
https://doi.org/10.1038/nphys3883
https://doi.org/10.1103/PhysRevB.88.064409
https://doi.org/10.1103/PhysRevB.88.064409
https://doi.org/10.1103/PhysRevB.88.064409
https://doi.org/10.1103/PhysRevB.88.064409
https://doi.org/10.1103/PhysRevLett.113.107203
https://doi.org/10.1103/PhysRevLett.113.107203
https://doi.org/10.1103/PhysRevLett.113.107203
https://doi.org/10.1103/PhysRevLett.113.107203
https://doi.org/10.1038/nnano.2015.113
https://doi.org/10.1038/nnano.2015.113
https://doi.org/10.1038/nnano.2015.113
https://doi.org/10.1038/nnano.2015.113
https://doi.org/10.1038/ncomms9539
https://doi.org/10.1038/ncomms9539
https://doi.org/10.1038/ncomms9539
https://doi.org/10.1038/ncomms9539
https://doi.org/10.1103/PhysRevLett.115.267202
https://doi.org/10.1103/PhysRevLett.115.267202
https://doi.org/10.1103/PhysRevLett.115.267202
https://doi.org/10.1103/PhysRevLett.115.267202
https://doi.org/10.1103/PhysRevB.97.024429
https://doi.org/10.1103/PhysRevB.97.024429
https://doi.org/10.1103/PhysRevB.97.024429
https://doi.org/10.1103/PhysRevB.97.024429
https://doi.org/10.1103/PhysRevB.82.184417
https://doi.org/10.1103/PhysRevB.82.184417
https://doi.org/10.1103/PhysRevB.82.184417
https://doi.org/10.1103/PhysRevB.82.184417
https://doi.org/10.1103/PhysRevLett.108.267201
https://doi.org/10.1103/PhysRevLett.108.267201
https://doi.org/10.1103/PhysRevLett.108.267201
https://doi.org/10.1103/PhysRevLett.108.267201
https://doi.org/10.1088/1367-2630/aa6322
https://doi.org/10.1088/1367-2630/aa6322
https://doi.org/10.1088/1367-2630/aa6322
https://doi.org/10.1088/1367-2630/aa6322
https://doi.org/10.1063/1.4983473
https://doi.org/10.1063/1.4983473
https://doi.org/10.1063/1.4983473
https://doi.org/10.1063/1.4983473
https://doi.org/10.1063/1.4983848
https://doi.org/10.1063/1.4983848
https://doi.org/10.1063/1.4983848
https://doi.org/10.1063/1.4983848
http://arxiv.org/abs/arXiv:1608.04840
https://doi.org/10.1103/PhysRevB.84.214433
https://doi.org/10.1103/PhysRevB.84.214433
https://doi.org/10.1103/PhysRevB.84.214433
https://doi.org/10.1103/PhysRevB.84.214433
https://doi.org/10.1088/1367-2630/aa9507
https://doi.org/10.1088/1367-2630/aa9507
https://doi.org/10.1088/1367-2630/aa9507
https://doi.org/10.1088/1367-2630/aa9507
https://doi.org/10.1103/PhysRevLett.113.267203
https://doi.org/10.1103/PhysRevLett.113.267203
https://doi.org/10.1103/PhysRevLett.113.267203
https://doi.org/10.1103/PhysRevLett.113.267203
https://doi.org/10.1002/pssr.201800247
https://doi.org/10.1002/pssr.201800247
https://doi.org/10.1002/pssr.201800247
https://doi.org/10.1002/pssr.201800247
https://doi.org/10.1103/PhysRevB.98.174427
https://doi.org/10.1103/PhysRevB.98.174427
https://doi.org/10.1103/PhysRevB.98.174427
https://doi.org/10.1103/PhysRevB.98.174427
https://doi.org/10.1038/s42005-018-0071-y
https://doi.org/10.1038/s42005-018-0071-y
https://doi.org/10.1038/s42005-018-0071-y
https://doi.org/10.1038/s42005-018-0071-y
https://doi.org/10.1021/acs.nanolett.7b00135
https://doi.org/10.1021/acs.nanolett.7b00135
https://doi.org/10.1021/acs.nanolett.7b00135
https://doi.org/10.1021/acs.nanolett.7b00135
https://doi.org/10.1021/acs.nanolett.6b04821
https://doi.org/10.1021/acs.nanolett.6b04821
https://doi.org/10.1021/acs.nanolett.6b04821
https://doi.org/10.1021/acs.nanolett.6b04821

