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Local symmetry theory of resonator structures for the real-space control
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We propose a real-space approach explaining and controlling the occurrence of edge-localized gap states
between the spectral quasibands of binary tight binding chains with deterministic aperiodic long-range order. The
framework is applied to the Fibonacci, Thue-Morse, and Rudin-Shapiro chains, representing different structural
classes. Our approach is based on an analysis of the eigenstates at weak intersite coupling, where they are
shown to generically localize on locally reflection-symmetric substructures, which we call local resonators. A
perturbation theoretical treatment demonstrates the local symmetries of the eigenstates. Depending on the degree
of spatial complexity of the chain, the proposed local resonator picture can be used to predict the occurrence of
gap-edge states even for stronger couplings. Moreover, we connect the localization behavior of a given eigenstate
to its energy, thus providing a quantitative connection between the real-space structure of the chain and its
eigenvalue spectrum. This allows for a deeper understanding, based on local symmetries, of how the energy
spectra of binary chains are formed. The insights gained allow for a systematic analysis of aperiodic binary
chains and offers a pathway to control structurally induced edge states.
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I. INTRODUCTION

Aperiodic systems with deterministic long-range order
have long been a subject of intense study, in the endeavor
to systematically bridge the gap between crystalline period-
icity and complete disorder [1]. While providing a powerful
concept in theoretically modeling the transition to disorder,
aperiodic order has become an established property of matter
as well. A cornerstone of this was the actual observation of
“quasicrystals”—nonperiodic but space-filling structures sur-
passing the crystallographic restriction theorem—by Shecht-
man [2]. In nature quasiperiodicity occurs, e.g., in macro-
scopic constellations such as phyllotaxis [1,3]. Aperiodically
ordered systems even play an important role in material
science and technology [1,4]. Owing to their long-range order,
they can display interesting physical properties such as a low
electrical and thermal conductance [1,5], low friction [5,6],
and high hardness [6]. Specific quasicrystalline systems have
been shown to enhance solar cells [7], serve as a catalyst [8]
and could allow for superconductivity [9,10].

A general characteristic of aperiodic lattices is the cluster-
ing of Hamiltonian eigenvalues into so-called “quasibands”
resembling Bloch bands of periodic systems [11]. The corre-
sponding eigenstates generally neither extend homogeneously
across the system like Bloch states in regular crystals, nor
do they decay exponentially like in disordered systems, and
are therefore dubbed “critical” [1,12–15]. In specific cases,
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quasibands have been shown to originate from the localiza-
tion of different eigenstates on similar repeated substructures
in the system, yielding similar eigenenergies [16–20]. The
formation of quasibands typically becomes less distinct with
increasing spatial complexity, which in turn can be classi-
fied by the structure’s spatial Fourier transform—accordingly
altering from pointlike to singular continuous to absolutely
continuous [1,21–23]. The Fourier spectrum can further be
connected to the system’s integrated density of states by the
“gap labeling theorem” [24–28], which assigns characteristic
integers to the gaps between quasibands.

As ordered lattice systems are truncated in space into
finite setups, they may support the occurrence of eigenstates
localized along their edges, energetically lying within spec-
tral gaps. In periodic systems, such edge states (or “surface
states” [29]) may or may not appear depending on how
the underlying translation symmetry is broken by the lattice
truncation, that is, where in the unit cell the system is cut
off [30]. In various types of periodic setups, edge states can
also be given a topological origin in terms of nontrivially
valued invariants (winding numbers) assigned to the neighbor-
ing Bloch bands [31]. This has boosted an intensive research
activity in the field of topological insulators [32–34] and the
quest for interesting novel materials and applications [35],
including, e.g., robust lasing via topological edge states in
periodic photonic lattices [36].

Edge states may also be present between quasibands in
aperiodic systems, as has been shown for binary 1D sys-
tems [37–41] and recently demonstrated for 2D photonic
quasiperiodic tilings [18]. Notably, also here a topological
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character can be assigned to the edge states in correspondence
to the system’s bulk properties. Indeed, a position-space based
topological invariant, the so-called Bott index [42], can be
applied to aperiodically structured [18] or even amorphous
systems [43]. Moreover, for 1D quasiperiodic systems, the
winding of edge state eigenvalues across spectral gaps coin-
cide with the gap labels mentioned above [24,44–46], which
have recently also been measured in scattering [47] and
diffraction [48] experiments. Remarkably, edge modes occur
also as scattering resonances in open systems with different
types of deterministic aperiodic order incorporating long-
range couplings between lattice constituents, as demonstrated
very recently in terms of the eigenmodes of full vectorial
Green matrices [49].

The ubiquitous presence of edge states in aperiodic sys-
tems indicates that it derives primarily from the underlying ge-
ometrical structure and not from model-specific assumptions.
Departing from periodicity, however, there is no translation
symmetry whose breaking (at the boundary) would provide
a mechanism for edge state formation. On the other hand,
aperiodic systems are imbued with local symmetries, that is,
different spatially symmetric substructures are simultaneously
present in the composite system which possesses many differ-
ent domains of local symmetries. Indeed, local “patterns” are
known to occur repeatedly in deterministic aperiodic systems,
as expressed by Conway’s theorem [50]. In the specific case
of 1D binary lattices, local reflection symmetry is abundantly
present and follows, at each scale, a spatial distribution closely
linked to the underlying aperiodic potential sequence [51].
The encoding of such local symmetries into generic wave
excitations have recently been described within a theoreti-
cal framework of symmetry-adapted nonlocal currents [52],
which obey generalized continuity equations [52–55] and
whose stationary form allows for a generalization of the parity
and Bloch theorems to locally restricted symmetries [56] as
well as a classification of perfect transmission [57]. In the
context of finite, aperiodically ordered setups, an appealing
question is whether a real-space picture for the formation—
and thereby control—of edge states can be brought into
connection with local symmetries.

In the present work, we propose an intuitive real-space pic-
ture of the formation of quasibands and edge states in binary
aperiodic tight-binding chains. The approach is based on the
analysis of eigenstate profiles in the limit of weak intersite
coupling. In this regime, eigenstates generically fragment,
i.e., have non-negligible amplitudes only on a small number
of sites, as we show by means of a perturbation theoretical
treatment. The amplitudes on these fragments are in almost
all cases locally symmetric and can be identified as local
resonator modes (LRM), i.e., eigenmodes of local resonators
embedded into the full chain. Here, a resonator denotes a
substructure that can confine, at certain energies, the wave
function within its interior. The LRMs can be used to classify
states, and those belonging to quasibands are composed of
repeated LRMs hosted by resonators within the bulk, while
edge states are composed of unique LRMs occurring on the
edge. We further investigate the reasons for the formation of
quasibands by linking the energy ε of a state to that of its
constituting LRMs, where the energy of an LRM is defined
as its energy in the corresponding isolated resonator. From

this finding, we see that the multiple occurrence of identical
resonator structures automatically leads to the formation of
quasibands by their capability of hosting identical (and thus
degenerate) LRMs. We further use this energetical insight
to move a given edge state into a quasiband by perform-
ing tailored changes to the corresponding resonators on the
edge. The inference of those properties to moderate intersite
coupling depends on the type of aperiodic order used in
the model. We here apply the approach to the prominent
representatives of three main classes of structural complexity:
Fibonacci, Thue-Morse, and Rudin-Shapiro chains, featuring
pointlike, singular continuous, and purely singular spatial
Fourier spectra, respectively.

The paper is organized as follows. In Sec. II, we introduce
our setup and show examples of quasibands and edge states
in Fibonacci chains. We then develop our approach to edge
states based on locally symmetric resonators and apply it
to Fibonacci chains in Sec. III, to Thue-Morse chains in
Sec. IV A and to Rudin-Shapiro chains in Sec. IV B. In Sec. V,
we comment on the generality of our framework and on
the connection to related work. We conclude our paper and
give an outlook in Sec. VI. A perturbative treatment demon-
strating the localization onto reflection-symmetric resonators
is provided in the Appendix, together with further technical
details including proofs of major statements, complementary
explanations, and further comments.

II. PROTOTYPE QUASIPERIODIC ORDER:
THE TIGHT-BINDING FIBONACCI CHAIN

We consider a finite one-dimensional chain of N sites with
real next-neighbor hoppings hm,n described by the Hamilto-
nian

H =
∑

n

vn|n〉〈n| +
∑

|m−n|=1

hm,n|m〉〈n|, (1)

where vn is the onsite potential of site n. In the basis of single-
site excitations |n〉, the above Hamiltonian H can be written
as a tridiagonal matrix

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v1 h1,2 0 . . . 0

h1,2 v2 h2,3
. . .

...

0 h2,3
. . .

. . . 0
...

. . .
. . .

. . . hN−1,N

0 . . . 0 hN−1,N vN ,

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

Such a tight-binding chain is used in a plethora of in-
teresting model systems, examples including the Aubry-
Andre [58] model relevant in the study of localization [59]
and the Su-Schrieffer-Heeger model, a simple prototypical
chain supporting a topological phase [60]. It also effectively
describes one-dimensional arrays of evanescently coupled
waveguides [61,62]. We here fix the hoppings to a uniform
value h and restrict the onsite elements to be “binary,” that is,
the sites are of two possible types A and B, and the vn take on
corresponding values vA and vB, with the contrast defined as

c =
∣∣∣∣vA − vB

h

∣∣∣∣. (3)
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Without loss of generality we will set vA ≡ 0 and vB ≡ v

throughout, having a single control parameter c = |v/h| for
a given chain.

In the following, we will investigate the spatial profiles
of the eigenvectors |φν〉 = ∑

n φν
n |n〉 of H in relation to their

eigenvalues εν , given by

H |φν〉 = εν |φν〉, (4)

for chains with aperiodic order. Note that H represents a
generic finite tight-binding chain; the choice h < 0 corre-
sponds, e.g., to the kinetic energy of electrons on a lattice
with onsite potential vn, while h > 0 (made here) can be used
to model the coupling of photonic waveguides [61,62] with
propagation constants vn. Our analysis remains qualitatively
unaffected by this choice.

We start by presenting the eigenstates and spectral prop-
erties of a finite binary chain following the Fibonacci se-
quence [22], a prototypical case of quasiperiodic order. This
will serve as an initial point motivating the development of a
local resonator approach at high contrast in the next section.
Starting with A, the sequence is constructed by repeatedly
applying the inflation rule A → AB, B → A, resulting in F =
ABAABABAAB . . . This sequence is then mapped onto the
onsite elements vn of the tight-binding chain. The spectrum
and eigenvectors of this chain are shown in Fig. 1 for a
moderate contrast of c = 1.5 and N = 144 sites. Despite
the lack of periodicity, the eigenvalues cluster into so-called
quasibands, owing to the long-range order present in the
Fibonacci chain [63], and the spectrum attains a self-similar
structure of quasibands and gaps in the N → ∞ limit. For
presentation reasons, we have here chosen N large enough
to anticipate this spectral feature, though small enough to
visually discern the spatial characteristics of the eigenmodes.

The quasibands are occupied by bulk eigenmodes that ex-
tend along the interior of the chain. Those are known as “criti-
cal states,” with a spatial profile lying between the exponential
decay of modes in a randomly disordered chain and uniformly
extending Bloch eigenmodes in periodic chains[13–15]. Such
modes have recently been shown to consist of locally res-
onating patterns (i.e., characteristic sequences of amplitudes)
which occur on repeating segments of a quasiperiodic struc-
tures and are characteristic for a given quasiband [17,19,64].
This is particularly visible for the bulk modes of the upper-
most quasiband in Fig. 1. A close inspection reveals that the
bulk mode profiles tend to localize into locally reflection-
symmetric peaks (see black subregions of high amplitude for
a given mode). Those in turn follow the distribution of local
symmetry axes (or centers of “palindromes” [65]) which are
hierarchically present in the Fibonacci chain [51], as seen by
comparison with the bar plot on the top. Each bar shows the
maximal size Sn of a continuous domain of reflection sym-
metry centered at position n, where n can refer here to sites
(n = 1, 2, . . . ) or to links between sites (n = 1.5, 2.5, . . . ).
For instance, as the first few characters of F are

6 sites︷ ︸︸ ︷
ABAABA︸︷︷︸

3 sites

BAAB,

we have S3.5 = 6 and S5 = 3.

20 40 60 80 100 120 1400

max

0

FIG. 1. (Bottom) Eigenstate map of a N = 144-site Fibonacci
chain at contrast c = |v/h| = 1.5 (hopping h = 0.1): each horizontal
stripe shows

√|φν
n | at sites n for an eigenstate φν (ν = 1, 2, . . . , N).

The greyscale map is chosen such that it is possible to simultaneously
observe the spatial features of edge as well as those of bulk states.
Superimposed are the eigenvalues εν (orange circles) in arbitrary
units, with indicated origin ε = 0. Edge modes are distinguishable
as partially white stripes, with the most pronounced ones indicated
by black horizontal bars on the left. (Middle) Potential vn represented
by a stripe with white (black) boxes for vn = vA = 0 (vn = vB = v).
(Top) Distribution of local reflection symmerty domains, represented
by maximal domain size Sn centered at position n, as explained in the
text.
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20 40 60 80 100 120 140

FIG. 2. Spectrum in arbitrary units (orange) of a N = 144-site
Fibonacci chain for varying phason ϕ in Eq. (5) between the values
(chosen for presentation reasons) ϕ1 = 2.4097 and ϕ2 = 5.5513 for
contrast c = 1.5, superimposed on the variation of the onsite poten-
tial vn (vA: white, vB: light gray). Dark gray circles indicate local flips
AB ↔ BA in the chain. The inset shows a magnified view on one
representative flip. All together, there are 71 such flips between ϕ1

and ϕ2. The flips indicated by green circles create/annihilate (when
close to the edge) or energetically shift (when further from the edge)
the gap state in the purple box.

Within the gaps between quasibands there may appear
spectrally isolated modes, reminiscent of gap modes localized
on defects within a periodic lattice [66,67]. For the example
given in Fig. 1, i.e., an unperturbed but finite Fibonacci chain,
the gap modes are known [37,68,69] to be localized at the
edges, decaying exponentially into the bulk.

The control of edge states by local changes in the under-
lying potential sequence is a central aspect of this work. Our
approach is that, due to their localization, the occurrence and
spectral position of edge states can be influenced by local
modifications on the corresponding edge of the aperiodic lat-
tice. We demonstrate the feasibility of this approach in Fig. 2
by using the following representation [47] of the Fibonacci
potential sequence:

vn = vA + vB

2
+ vA − vB

2
signχn = v

2
(1 − signχn), (5)

χn(ϕ) = cos(2πτn + ϕ + πτ ) − cos(πτ ), (6)

where τ = 2/(1 + √
5) is the inverse golden mean and the

integer site index n runs from 1 to N . By continuously
varying the so-called “phason” ϕ, localized flips AB ↔ BA are
induced at discrete values of ϕ, forming a two-dimensional
pattern in the (n, ϕ) plane, see Fig. 2. The finite chain of
length N constitutes a different segment (or “factor”) of the
infinite Fibonacci sequence after each flip [47]. This allows
to investigate different Fibonacci-like configurations while
maintaining a constant length N . In Fig. 2, we visualize
the effect of these flips on the energy spectrum, shown in
orange. As one can see, the gap states in the purple rectangle,
which are localized on the right edge (not shown here), are
influenced only by flips acting on this edge, marked by green
circles. From bottom to top, the green flips (i) create the edge
state (ii) and (iii) modify its energy and (iv) finally annihilate
it. Note that in general for processes of type (ii) and (iii), the
energetical change accompanying the change of the edge is
stronger for a flip near to the edge than for a flip more distant
to the edge.

The occurrence of such edge-localized gap states in a
finite 1D quasiperiodic potential was recently very elegantly
described within a scattering setting [47,48] in a continuous
system as a consequence of a resonance condition when
varying the phason ϕ. At the same time, the connection of the
winding of ϕ to invariant integers labeling the spectral gaps
of the quasiperiodic structure through the so-called “gap la-
beling” theorem [70], renders the nature of the 1D edge states
topological [46]. On the other hand, the flip-induced edge state
creation/annihilation demonstrated in Fig. 2 suggests that
their origin could also be explained by viewing chain edges as
a generalized type of “defects” to the quasiperiodic long-range
order. In the following, we will develop this idea in terms of
the prototype Fibonacci chain. Our aim is to provide a simple
and unifying real-space picture for the appearance of edge
states in the energy gaps of nonperiodic structures. Contrary
to topological methods, as employed for one-dimensional sys-
tems in general e.g., in Refs. [24,44–48,71–75], our approach
does not rely on topology, but aims at connecting the real-
space structure of deterministic aperiodic binary chains and
their local symmetries to their quasibands and edge states.

III. EDGE MODES FROM TRUNCATED LOCAL
RESONATORS

The analysis of eigenstates at high contrast c [see Eq. (3)]
is at the heart of our approach, revealing structural infor-
mation that would remain hidden at lower contrast. Once
this information is retrieved, we leverage it to develop a
generic framework for the understanding and manipulation of
quasibands and edge states in binary tight-binding chains.

In the following, we will focus on a Fibonacci chain,
choosing a relatively small size for easier treatment and visu-
alization. The slight modifications needed for the treatment of
longer chains are commented on in Appendix E. We split the
presentation into three subsections, covering the concept of
fragmentation (Sec. III A), local resonator modes (Sec. III B),
the structural control of edge states (Sec. III C), and the
behavior at low contrast (Sec. III D).

A. Eigenstate fragmentation from degenerate
perturbation theory

Our starting point is an analysis of eigenstates at high
contrast. Those are shown in Fig. 3(a) for a 9th generation
Fibonacci chain (N = 55 sites) with relatively high contrast
c = 6. We see that each eigenstate is pinned to a small number
of sites where it has non-negligible amplitude, practically
vanishing on the remaining sites. This is quite different from
the states at low contrast (like in Fig. 1) which are smeared out
along the whole chain. An impression of how the transition
between those two regimes takes place is given in Fig. 3(b),
showing the amplitudes of a bulk (φ55) and edge (φ21) state
for varying contrast. When increasing the contrast, the spatial
profile of the bulk state becomes gradually fragmented: the
amplitudes on A sites become suppressed, and a characteristic
remnant of the initial distribution appears on a subset of B
sites. Fragmentation with increasing contrast c also occurs for
the edge state, with the difference that here the amplitudes
on B sites become suppressed, and that there is only a single
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FIG. 3. (a) Eigenstate map, potential, and local symmerty distri-
bution (bottom to top) like in Fig. 1 but for an N = 55-site Fibonacci
chain of contrast c = 6, and with density |φν

n |2 color-coded by the
signs of φν

n shown in the eigenstate map. Horizontal lines separate
the eigenstates into groups according to quasibands and gap states,
with corresponding characteristic local resonator modes (LRMs)
visualized on the right. The green box indicates the correspondence
of the state φ53 to the LRM A|BAB|A (see text). The three edge modes
of the setup are marked by colored circles. (b) Amplitudes of states
φ55 (extended in the bulk) and φ21 (localized at the left edge) for
different contrast values. (c) Absolute values of amplitudes of the
three edge states φ13, φ21, and φ22 with corresponding localization
lengths 0.37, 0.43, and 0.49, obtained by fitting a line (orange) to
local maxima (orange dots) on a logarithmic scale.

fragment remaining; in the present case the A site on the left
edge.

The fragmentation at high contrast can be understood by
means of a quantitative perturbation-theoretical treatment pro-
vided in Appendix C, applying to generic binary tight-binding
chains. In the following, we outline the main steps of this
analysis. In order to apply perturbation theory, the Hamil-
tonian is written as H0 + h · HI , where H0 solely contains

the diagonal part of H , i.e., isolated sites, while HI has 1’s
only on the first sub- and superdiagonal. For convenience, we
then rescale H ′ = H/v = H ′

0 + 1/c · HI , changing only the
energies εν → εν/v, but leaving all eigenstates unaffected.
For large contrast c, HI then acts as perturbation to H0, and
we can expand an eigenstate |φ〉(i) (1 � i � N ) of H ∈ RN×N

as well as its energy ε (i) as

|φ(i)〉 = |φ(i)〉0 + λ|φ(i)〉1 + λ2|φ(i)〉2 + . . . , (7)

ε (i) = ε
(i)
0 + λε

(i)
1 + λ2ε

(i)
2 + . . . , (8)

which, inserted into the Schrödinger equation, yields the
perturbation series. Due to the binary nature of H0, the only
two eigenvalues of H0, 0 and 1, are highly degenerate. In
particular, before any higher-order state correction can be
computed, the so-called “correct zeroth-order states” [76,77]

|φ(i)〉0 = lim
λ→0

|φ(i)〉 (9)

must be found. Although these are superpositions of the
known eigenstates of H0, the corresponding expansion co-
efficients are in general unknown at the beginning of the
treatment [76,77]. In degenerate perturbation theory [76,77],
the correct zeroth-order states can be found by diagonalizing a
series of recursively [77] defined matrices H1,H2, . . . More
precisely, the matrices Hn are constructed from the pertur-
bation series up to nth order by demanding that the correct
zeroth-order states fulfill certain consistency requirements.
One then has to solve

0〈φ(i)|Hn|φ( j)〉0 = δi, jε
(i)
n , ∀ i, j ∈ gn (10)

up to the order n in which all degeneracies are lifted, where
|φ(gn )〉 is the set of states which are degenerate up to nth order.
Now, contrary to simple examples where the degeneracy is
resolved in first order (where H1 is simply given by HI ), the
degeneracies of binary chains are usually completely resolved
only in higher orders. As a result, the procedure of obtaining
the correct zeroth-order states is rather complex [76,77].

In Appendix C, we explicitly follow this procedure of find-
ing the correct zeroth-order states up to third order and inves-
tigate the first-order state corrections as well. This procedure
provides a high degree of understanding of how binary chains,
their local symmetries, the fragmentation of eigenstates as
well as their symmetries are connected. In particular, it is
shown that each |φ(i)〉0 (1 � i � N ), with N being the length
of the chain, has nonvanishing amplitudes either only on either
A-sites or only on B sites (see statement 2 of Appendix C).
Thus we can assign each |φ(i)〉0 a type T ∈ {A, B}, depending
on the sites on which it has nonvanishing amplitudes. The
spatial distribution of the nonvanishing amplitudes can be
further specified by introducing the concept of maximally
extended blocks of potentials of the same kind (MEBPS). An
example for such MEBPS are

1

A B
1

2

AA B
1

1

A B
1

3

AAA

where MEBPS of type A (B) are marked by over (under)
brackets, with respective length denoted by integers. An
important conclusion of the analysis is that a given correct
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zeroth-order state |φ(i)〉0 of type T can have nonvanishing
amplitude on MEBPS of type T and of individual length
l1, l2, . . . , ln only if there exist integers 1 � k j � l j, 1 � j �
n such that (see statement 2 of Appendix C)

k1

l1 + 1
= k2

l2 + 1
= · · · = kn

ln + 1
.

As one can easily show, for l j � 6, this is possible only if all
l j are identical or if all l j are odd. As a consequence, for the
Fibonacci setup, where l j � 2, any |φ(i)〉0 can simultaneously
have nonvanishing amplitudes only on MEBPS of length 1 or
of length 2, but not on both. As a result, any state |φ(i)〉0 has
vanishing amplitudes on a large number of sites, ultimately
leading to its fragmentation. A closer evaluation reveals that
this fragmentation usually persists under inclusion of the
first-order state corrections |φ(i)〉1: if |φ(i)〉0 has nonvanish-
ing amplitudes only on A (B) sites, then |φ(i)〉1 will have
nonvanishing amplitudes only on a small number of B (A)
sites. As, at high contrast, |φ(i)〉 ≈ |φ(i)〉0 + |φ(i)〉1, our per-
turbation theoretical treatment thus explains the origin of the
fragmentation of eigenstates in binary tight-binding chains in
a rigorous quantitative way. Compared to the renormalization
group approach which has been used [68,78–81] to explain
the fractal nature of the spectrum of the Fibonacci chain and
which needs to be tailored to the system of interest, we stress
that our perturbation theoretical approach is much broader and
can be used to treat all binary chains where fragmentation oc-
curs. We demonstrate this generality by further analyzing the
spatial details of those fragmented states and connecting them
to the local symmetries of the chain and their environment
(neighboring sites) in Appendix C (see statements 3 and 4 as
well as following text).

B. Local resonator modes and local symmetry

Relying on the above perturbation theoretical results, we
now promote an intuitive picture for the cause of fragmen-
tation, where a chain is viewed as a collection of local res-
onators. The eigenvalues of this chain are then approximately
given by the union of the eigenvalues of the individual res-
onators. As a consequence, each eigenvector of the full chain
with energy ε then has very small amplitude on resonators
whose energy differs strongly from ε. A local resonator is here
a discrete substructure which, at high contrast, confines the
wavefunction within its interior for a certain eigenenergy. The
simplest case consists of a three-site structure B|A|B, where
the vertical lines demarcate the resonator “cavity” (the inner
part A) from its “walls” (the outer parts B). The resonator
character of this particular substructure is analyzed in more
detail in Appendix A. Two such resonators can be combined to
form a double resonator B|ABA|B, formed by overlapping one
wall of each B|A|B. Note that, for a substructure to function
as a local resonator, either (i) the resonator wall and its next-
neighboring site in the cavity must be of different type or (ii)
the resonator wall must coincide with one of the edges of the
chain (|X or X |, with X = A, B).

We now link the resonator concept to the eigenstate frag-
mentation seen in Fig. 3(a). As an example, each fragment of
φ55 [indicated by orange rectangles in Fig. 3(b)] is localized
on the B’s of the local resonator A|BAB|A. We denote this fact

as A|BAB|A, which represents an eigenmode of the isolated
resonator A|BAB|A and which we will call a local resonator
mode (LRM). The overlines here indicate sites with equally
signed and relatively much higher amplitude than nonover-
lined sites; see Appendix A. At high contrast, the state φ55

can thus be seen as a collection of identical, nonoverlapping
LRMs A|BAB|A (one on each fragment) with negligible am-
plitudes on the parts in between. In the same manner, each
eigenstate shown in Fig. 3(a) is composed of identical LRMs.
In particular, we notice that all states in a given quasiband
are characterized by the same resonator mode, different from
that of other quasibands. This is shown on the right side of
the figure, where LRMs are depicted schematically. Here,
overlines and underlines in an LRM such as A|BAB|A denote
amplitudes of opposite sign. Contrary to the bulk states of
quasibands, edge states feature unique resonator modes which
are not repeated elsewhere in the chain, with the underlying
resonators located at (one of) the chain edges. We thereby
distinguish these two types of LRMs as bulk and edge LRMs
(b-LRMs and e-LRMs, respectively).

The fact that each quasiband is characterized by a single
resonator mode can be understood as follows. If a given eigen-
state |φ〉 of energy ε is composed of K nonoverlapping LRMs
such that |φ〉 has very low amplitude on the next-neighboring
sites of the corresponding resonators, then each of the energies
εk=1,2,...,K of those LRMs (that is, their eigenenergies in the
isolated underlying local resonator) must fulfill εk ≈ ε. This
statement is proven rigorously in Appendix D. Now, applying
the perturbative treatment of Appendix C to the chain of Fig. 3
shows that for any two LRMs to be energetically nearly degen-
erate they must be identical. Thus each quasiband—having
quasidegenerate modes at high contrast—is characterized by
a single LRM.

A similar reasoning explains why bulk states of quasibands
are more spatially extended compared to edge states lying
in spectral gaps. Indeed, due to the quasiperiodicity of the
Fibonacci chain, any local resonator (that is, a binary sub-
structure) in the bulk occurs repeatedly (though not periodi-
cally) along the chain—specifically, at spacings smaller than
double its size. This is a general result known as Conway’s
theorem [50]. Thus a b-LRM hosted by a given local resonator
will also be correspondingly repeated along the chain. If the
b-LRM has energy εk , then a state with energy ε ≈ εk is
allowed to simultaneously occupy all copies of this b-LRM,
and is accordingly spatially extended. Edge states, on the other
hand, consisting of e-LRMs at high contrast, correspond to
local resonators induced by the presence of an edge, which
breaks the quasiperiodicity. Due to this truncation at the edge
[e.g., of the type · · · | · · · X | with X = A, B at the right edge,
compare Fig. 3(a)], the e-LRM generally does not match the
energy of any b-LRM, and therefore cannot occupy multiple
local resonators in the bulk: The eigenstate is confined to the
edge, lying energetically isolated in a gap. This is visualized
by the marked edge states in Fig. 3(a).

A remarkable observation in Fig. 3(a) is that each local
resonator hosting a b-LRM is reflection symmetric, such that
all isolated b-LRMs have definite parity; see schematic on
the right. This means that, at high contrast, the fragments
(occupied local resonators) of quasiband eigenstates feature,
to a very good approximation, local parity with respect to
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local reflection symmetries of the chain. The positions and
sizes of all such local symmetries are shown in the top panel
of Fig. 3(a). An example is given by the state φ53 which
is locally symmetric around, e. g., the position n = 48, and
corresponds to the b-LRM A|BAB|A, as indicated by the
green boxes. This behavior is predicted by the degenerate-
perturbative treatment of Appendix C. There, we rigorously
show that each |φ(i)〉0 is locally parity symmetric individually
on each MEBPS (see statement 1 of Appendix C), which
itself is by definition a locally symmetric structure. While an
MEBPS usually comprises only a few sites, we explicitly give
examples for cases where |φ(i)〉0 is locally symmetric also
in larger domains. One of this examples explains the local
symmetry of LRMs such as A|BAB|A (see statement 3 of
Appendix C). Overall, the perturbation theoretical treatment
demonstrates the crucial role of local reflection symmetries in
the eigenstate localization profiles of binary aperiodic chains.
A promising direction of research would thus be to treat this
class of systems within the recently developed theoretical
framework of local symmetries [52,53,56].

C. Structural control of edge states

Having understood the real-space mechanism for the for-
mation of edge-localized gap states in Fibonacci chains, we
can now utilize this insight to systematically manipulate these
states. In particular, let us show how structural modifications
at the edges of a Fibonacci chain can selectively “annihilate”
a given edge mode. Note that whether or not one considers
a particular state localized (near or on) the edge to lie in an
energetical gap is obviously a question of the scale under
consideration. This is due to the fact that any finite chain
naturally has a discrete spectrum, for which, strictly speaking,
no continuous energy-bands are defined. In the remainder of
this work, we will solely consider states as gap-edge ones
provided that, at a contrast of c = 6, they lie in a clearly
visible energetical gap. This simplifies our treatment, and in
Appendix E, we comment on the extensions of this simplifi-
cation.

For definiteness, we consider the edge state φ21 (orange
circle) of the chain in Fig. 4(a) which simply focuses on states
ν = 13 to 22 of Fig. 3(a). This state corresponds to the e-LRM
|A|B [see the right side of Fig. 3(a)] and is exponentially
localized, as shown in Fig. 3(c). The underlying resonator
|A|B is a left-truncated version of the resonator B|A|B, which
hosts the b-LRM B|A|B characterizing the quasiband below
(states 14 to 20). Now, as shown in Fig. 4(b), if we complete
the resonator |A|B into B|A|B by attaching a B site to the left
end of the chain, then the edge can accommodate the b-LRM
B|A|B instead of the e-LRM |A|B. Consequently, the edge
mode is replaced by a bulk mode of the quasiband. In other
words, the edge state is “absorbed” into a quasiband by
converting the e-LRM of the former to the b-LRM of the
latter through a structural modification at the edge. This
intuitive procedure can be applied similarly for the other two
pronounced edge states (green and purple circles) in Fig. 4(a),
by completing the corresponding edge local resonator into a
bulk one. Thus, the selective control of a specific edge state is
possible.
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FIG. 4. Selective annihilation of edge states of the Fibonacci
chain in Fig. 3(a); see text for details. (a) Original chain and excerpt
of the state map (states 13–22), with edge states marked by colored
circles. (b) Annihilation of left edge state (orange) by attaching a B
site to the left of the chain. (c) Complete annihilation of edge states
by removing (adding) an A (B) site on the left (right) end of the chain.
Color coding of each subfigure is as in Fig. 3.

Let us note, however, that in most cases such a selective
annihilation of one edge state leads to the creation of one (or
more) other edge state(s) located elsewhere in the spectrum, as
a result of the edge modification. For example, the left edge of
the modified chain in Fig. 4(b) features the resonator |BAB|A,
which is a truncated version of A|BAB|A hosting the b-LRM
A|BAB|A, thus yielding a new gap-edge state (not shown).

Interestingly, in special cases this issue can be overcome
by exploiting the local symmetry of bulk resonators, as we
now explain using the example shown in Fig. 4(c). Here, an
A site is attached to the right edge, which formerly hosted the
e-LRMs B|ABA| and B|ABA| [cf. Fig. 4(a)], corresponding to
the edge states φ13 (green) and φ22 (purple), respectively. In
the modified chain, the right edge features a local resonator
B|AA|. The key point now is that this resonator supports two
LRMs, B|AA| and B|AA|, which are degenerate to the b-LRMs
B|AABAA|B and B|AABAA|B, respectively, due to the reflec-
tion symmetry of the underlying resonator B|AABAA|B. This
symmetry-induced degeneracy is shown rigorously in Ap-
pendix B. As a result of their degeneracy, the respective e- and
b-LRMs can combine linearly to compose quasiband states, as
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seen in Fig. 4(c); see states in first and third quasiband from
bottom with marked edge resonators. The same procedure
can be performed on the left edge by removing an A site
from it, leaving the edge resonator |B|A hosting |B|A which
is degenerate to A|BAB|A [see state in top quasiband with
orange marked left edge resonator in Fig. 4(c)]. Note that both
(right and left) edge modifications above are consistent with
the Fibonacci order: The resulting chain is simply obtained
from the former one by a single-site shift to the right along
the infinite Fibonacci chain. We thus have a case of finite
Fibonacci chain with no edge-localized gap states.

From the above it is clear that edge states in binary
quasiperiodic chains can now be rigorously understood and
manipulated within the framework of local resonators. Struc-
tural creation and annihilation represents a first fundamental
step in edge state control. Indeed, once an edge state is
established, its energetic position within a gap can further be
tuned by allowing for nonbinary (freely varying) potentials at
the edges, while leaving the quasibands intact.

D. Behavior at low contrast

The local understanding and controllability of edge states
at high contrast levels raises the question if these properties
are retained also at lower contrast. To address this, in Fig. 5(a),
we show the eigenvalue spectrum of the original Fibonacci
chain studied previously [Fig. 3(a)] for varying contrast c. As
we see, gap states (localization on edges not shown here) are
clearly distinguished for all contrast levels. Figure 5(b) shows
the spectrum of the modified Fibonacci chain of Fig. 4(c)—
where all edge states were annihilated at high contrast—
for the same contrast values. Also here the structure of the
spectrum is retained with varying c. In particular, a real-space
analysis (not shown here) confirms that all quasiband states
in the modified chain remain extended in the bulk for varying
c. The effect of lowering the contrast is merely a reduction
in the fragmentation of the eigenstate profiles which become
more smeared out into regions between the LRMs defined at
high contrast.

This finding indicates that the mechanism of edge state
formation via truncated local resonators based on an analysis
at high contrast remains valid also for lower contrast, though
“hidden” due to the spatial smearing of the states. In other
words, the contrast parameter can be used as an intermediate
tool to manipulate edge states in binary aperiodic model
chains: It is first ramped up to reveal the eigenstate structure
in terms of LRMs subject to modifications, and then ramped
down again with the bulk/edge state separation retained.

IV. APPLICATION TO NONQUASIPERIODIC CHAINS

Featuring a pointlike spatial Fourier spectrum (rendering
it, by definition, a quasicrystal [1,21]), the Fibonacci chain
studied above represents the class of lowest structural com-
plexity when departing from periodicity towards disorder, as
mentioned in Sec. I. The question naturally arises whether
the local resonator framework developed in Sec. III, distin-
guishing edge from bulk states via LMRs, applies also to
other classes of aperiodic chains. In the following, we will
demonstrate the generality of our approach by applying it to
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FIG. 5. Eigenvalue spectrum for different values of the contrast
c (a) for the original Fibonacci chain of Fig. 3(a), with the three gap
modes indicated by horizontal stripes, and (b) for the modified chain
of Fig. 4(c). The ellipses highlight the removal of gap modes by the
modification, for all contrast levels.

cases of qualitatively different structural character, the Thue-
Morse and Rudin-Shapiro chains. We thereby essentially go
through the same analysis steps as in Sec. III—identification
of LRMs, edge state control, and low contrast behavior—and
assess the particularities of each structural case.

A. Singular continuous Fourier spectrum: Thue-Morse chain

A well-studied case of aperiodic order which is not
quasiperiodic is the Thue-Morse sequence [1], produced
by the inflation rule A → AB, B → BA yielding T =
ABBABAABBAAB · · · . Its Fourier spectrum is singular con-
tinuous, and from this viewpoint it is considered [82] closer to
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FIG. 6. Like in Fig. 1 but for a N = 144-site Thue-Morse chain.

the disorder limit (with absolutely continuous spectrum [83])
than quasiperiodic order (with pointlike spectrum). On the
other hand, a subset of eigenstates of the Thue-Morse chain
strongly resemble those of periodic chains [84]. The eigen-
states of a N = 144-site Thue-Morse chain [85] are shown
in Fig. 6. Indeed, while some bulk states are more strongly
localized into subdomains than in the Fibonacci chain for
equal contrast c = 1.5 (compare to Fig. 1), others are more
extended along the chain. As we see in Fig. 6, in spite of the
quasiband structure being more fragmented, there occur well
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FIG. 7. (a) Like in Fig. 3 (a) but for a N = 55-site Thue-Morse
chain, with three edge states marked by colored circles. (b) Absolute
values of amplitudes of the three edge states φ9, φ19, and φ28 with
localization lengths 0.61, 0.61, and 0.6, obtained by fitting a line
(orange) to local maxima (orange dots) on a logarithmic scale.
(c) Absorpion of the two right edge states into quasibands (green and
purple rectangles) and creation of a new right edge state (blue circle,
lying between quasibands as indicated by × in (a)) by attaching a B
site to the right chain end, as explained in the text. Color coding of
subfigures (a) and (c) is as in Fig. 3.

distinguishable states within gaps which are localized on one
of the chain edges.

Local resonator modes. Like in Sec. III, we consider a
smaller chain of N = 55 sites to visually facilitate the de-
tailed spatial analysis. Its eigenstates are shown in Fig. 7(a)
for contrast c = 6, together with the distribution of local
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reflection symmetries in the chain (top). As we see, the bulk
state profiles are fragmented in a well-defined manner for
different quasibands: Like in the Fibonacci case, each bulk
state is composed of copies of a b-LRM characterizing the
corresponding quasiband, as indicated schematically on the
right of the figure. In contrast, the three occurring prominent
edge states (marked by colored circles) consist of nonrepeated
e-LRMs at one of the chain ends. Like before, the local res-
onators underlying the e-LRMs can be identified as truncated
local resonators underlying the b-LRMs. This demonstrates
that our LRM-based framework for the formation of edge
states applies also for this class of aperiodic order. Notably,
also here the b-LRMs have definite local parity under reflec-
tion, and are present in the eigenstates following the local
symmetry axes shown in the bar plot [top of Fig. 7(a)]. This is
indeed predicted by the perturbation theory of Appendix C.
We thus see that also for the Thue-Morse chain its local
symmetries essentially provide the regions of localization of
the eigenstate fragments at high contrast.

Edge state control. The original Thue-Morse chain con-
tained three edge states, which were exponentially local-
ized [86] as shown in Fig. 7(b). Edge states in Thue-Morse
chains were also demonstrated very recently in terms of
the eigenmodes of full vectorial Green matrices [49], albeit
localized according to a power-law. Now, following the same
principle as in the Fibonacci case, Fig. 7(c) shows how two
edge states [marked by green and orange circles in Fig. 7(a)]
are annihilated by attaching a B site to the right end of the
original chain. Indeed, those edge states were localized on the
truncated resonator B|AA| which is completed to B|AA|B and
can thus host the b-LRMs B|AA|B and B|AA|B, so that the
edge states are “absorbed” into the corresponding quasibands.
However, the right edge of the modified chain now features a
new edge state (marked by blue circle) with resonator mode
A|B [its previous absence is indicated by a × in Fig. 7(a)]. It
lies, energetically, in the gap just below the quasiband with b-
LRM A|B|A. Note that, as expected from our real-space local
resonator picture, the left edge state (orange circle) remains
unaffected by the present modification on the right edge of
the chain, since it is localized on the opposite edge.

Contrast variation. Finally, we investigate how edge states
and quasibands behave for lower contrast in the Thue-Morse
chain. Figure 8(a) shows the spectrum of the chain of Fig. 7(a)
for varying contrast, starting from c = 3. As we see, the three
edge modes in the spectral gaps are clearly visible also at
lower contrast levels. The spectrum of the modified chain
(with right-attached B site) for varying c is shown in Fig. 8(b).
As is highlighted by the black circle and the ellipse, the two
former edge states are absorbed into the neighboring quasi-
bands [as shown in Fig. 7(a)] for all considered contrast levels.
Also, the left edge state as well as the modification-induced
right edge state [orange and blue in Fig. 7(c), respectively]
remain in their gaps as the contrast is varied. Overall therefore,
the impact of the modifications persists at lower contrast
levels.

B. Absolutely continuous Fourier spectrum:
Rudin-Shapiro chain

Taking a step towards higher structural complexity, we
finally investigate the case of a Rudin-Shapiro chain in
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FIG. 8. Eigenvalue spectrum for different values of the contrast
c (a) for the original Thue-Morse chain of Fig. 7(a), with gap modes
indicated by horizontal stripes, and (b) for the modified chain of
Fig. 7(c). The black circle and the ellipse highlight the removal of
selected gap modes by the modification, for all contrast levels.

terms of our local resonator framework. The Rudin-Shapiro
sequence [87] R is obtained by the inflation rule AA →
AAAB, AB → AABA, BA → BBAB, BB → BBBA, yielding
R = AAABAABAAAABBBAB · · · for an initial seed AA. Its
Fourier spectrum is absolutely continuous, a property shared
with completely disordered chains [83]. Further, there are in-
dications that the tight-binding Rudin-Shapiro chain has both
exponentially and weaker-than-exponentially localized eigen-
states [13,88–90], while even extended ones have been shown
to exist at low contrast. The different character of the Rudin-
Shapiro states compared to the Fibonacci or Thue-Morse
chain can be anticipated from the eigenstate map shown in
Fig. 9. As we see, at this low contrast (c = 1.5), there is now
no clear distinction between bulk and edge states. Moreover,
no clear energetic clustering into well-defined quasibands is
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FIG. 9. Like in Fig. 1 but for a N = 144-site Rudin-Shapiro chain.

present. Note also that the distribution of local reflection
symmetries along the chain (see top of figure) is much less
structured than in the Fibonacci or Thue-Morse chains (cf.
top of Figs. 1 and 6), with overall smaller symmetry domains
present. At the same time, there is clustering of symmetry
axes with gaps in between, caused by the occurrence of larger
contiguous blocks of single type (up to four A or B sites in a
row) along the sequence. In the following, we show that there
is still a strong link of the eigenstates and spectral features
of the Rudin-Shapiro to the presence of locally symmetric
resonators.

Local resonator modes. For the high-contrast analysis, we
consider a Rudin-Shapiro chain of N = 87 sites. The size
is now chosen slightly larger in order to better reflect the
structural properties of the Rudin-Shapiro sequence. Indeed,
in accordance with its higher complexity, a given substruc-
ture will here repeat at relatively larger distances along the
sequence. It may thus occur only once in a too short chain,
thereby obscuring its long-range order. Figure 10(a) shows
the eigenstate map of the considered chain at contrast c = 6.
We see that also here the eigenstates fragment onto locally
symmetric substructures, and are again composed of b-LRMs
corresponding to clustered eigenvalue quasibands, as shown
on the right. The difference is now that there are many more
different identified b-LRMs compared to the Fibonacci and
Thue-Morse chains. This is because the increased number of
contiguous block sizes allows for a higher diversity of local
resonator substructures, with larger resonators additionally
hosting a larger number of different LRMs each. In turn, there
is a higher possibility that different b-LRMs have (nearly)
the same energy, since the different resonators may have
partially overlapping individual eigenspectra. Therefore, it
may now more easily occur that different LRMs participate
in the same eigenstate (to which they are quasidegenerate;
see Appendix D). An example of this are the states indicated
by the green ellipse in Fig. 10(a): each of them consists of a
A|B|A on the left and two A|BBB|A on the right, consecutively
overlapping by one A site. The emergence of such modes
is explained in detail by means of perturbation theory in
Appendix C. Further, edge states appear which localize on
corresponding e-LRMs. Those are now, however, energeti-
cally not as clearly distinct from the clustered eigenvalues
of quasibands as in the Fibonacci and Thue-Morse cases.
For example, the states marked by blue circles are localized
on the left edge, but are composed of the e-LRMs (from
top to bottom) |AAA|B, |AAA|B, |AAA|B, which are nearly
degenerate to the b-LRMs of the corresponding quasibands
(see the right side of figure). Nevertheless, there are also
well-distinguished edge states lying in gaps (though close to
gap edges) marked by purple circles.

Edge state control. Contrary to the Fibonacci and Thue-
Morse cases, the edge states are not exactly exponentially
localized, but have different localization lengths in different
sections, as shown [86] in Fig. 10(c). The amplitude of state
φ31, though overall decaying, even rises again at around
n ≈ 20 and ≈70. Unaffected by this different localization
behavior compared to the previously treated examples, we
now manipulate the two states marked by purple color which
are localized on the right edge. These localize on the truncated
resonator B|AA|, and their energy is different from the energy
of states localized on the complete resonator B|AA|B which
occurs twice in the bulk. In (b), we add a B on the right
edge of the chain, completing this resonator. Due to this
completion, the two former gap-edge states move into the
respective energy cluster (or quasiband).

Contrast variation. In Fig. 11(a), we investigate the eigen-
values of the Rudin-Shapiro chain of Fig. 10(a) for varying
contrast. Compared to the case of the Fibonacci chain pre-
sented in Fig. 5 or the Thue-Morse chain presented in Fig. 8,
the energetic clusters form only at high contrast values. This
already indicates that modifications to the chain done at high
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FIG. 10. (a) N = 87 site binary chain corresponding to a trun-
cated Rudin-Shapiro sequence at contrast c = |v/h| = 6 (hopping
h = 0.1). To the right, the grouping of eigenstates into resonator
modes as explained in the text is shown. To simplify the figure,
resonator modes are only shown explicitly if they are shared by at
least two states. The two states marked by a green ellipse localize on
nonlocally symmetric structures. The two states marked by orange
ellipses are examples for states with different resonator modes but
nearly equal energy, as explained in the text. (b) The result of an
extension of the chain by adding a B to the right. Due to this
modification, the resonator A|BB| on the right edge is completed, and
the purple marked states in (a) are energetically shifted towards the
corresponding states localizing on the A|BB|A resonator located near
the right edge. Color coding of subfigures (a) and (b) is as in Fig. 3.
(c) Absolute values of amplitudes of the edge states φ9, φ14, φ31, φ38,
and φ45.

contrast can not directly be traced to energetic changes at low
contrast as was the case for the Fibonacci and Thue-Morse
chain. This can also be seen for the two edge states marked
by horizontal lines in Fig. 11(a). At high contrast, these are
caused by a truncated resonator B|AA| on the right edge. In
Fig. 10(b), we have completed this resonator, causing the two
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FIG. 11. (a) Evolution of the eigenvalue spectrum of the Rudin-
Shapiro chain shown in Fig. 10(a) for various values of the con-
trast c. The two gap states φ14,38 are denoted by horizontal lines.
(b) Same as (a), but now for the modified Rudin-Shapiro chain
shown in Fig. 10(b). For high contrast of c = 6, the two gap states
are removed. However, they reappear, though at slightly different
positions, already at a contrast c = 3, as shown in the insets.

edge states to move (at high contrast) closer to the nearest
eigenvalue cluster. As can be seen in Fig. 11(b), this manip-
ulation is only effective at high contrast. For low contrast,
the eigenvalue structure is nearly unchanged compared to the
original chain shown in Fig. 11(a).

In conclusion, we have applied our local-symmetry based
resonator strategy to the Thue-Morse and the Rudin-Shapiro
chain. The results show that our approach can be used to
explain and control gap-edge states of the Thue-Morse chain.
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At high contrast, the gap-edge states of the Rudin-Shapiro
chain are likewise explained. However, our approach can not
be used to make qualitative predictions at low contrast.

V. APPLICABILITY AND RELATION
TO OTHER APPROACHES

Let us briefly comment on the limitations of applicability
of the developed framework and its connection to similar
approaches in the literature. The presented methodology es-
sentially relies on the fragmentation of eigenstates at high
contrast and can thus only be applied onto chains featuring
such a behavior of eigenstates. A perturbation theoretical
treatment of binary tight-binding chains which serves as basis
for our methodology, see Appendix C, indicates that at high
contrast the fragmentation of eigenstates is indeed the generic
case. However, the necessary conditions for this behavior
still need to be determined in order to clarify the range of
applicability.

The connection between local resonators and quasi-
bands in quasiperiodic setups has been commented on in
Refs. [18,20,37]. For the Thue-Morse sequence, a similar
analysis has been achieved in Ref. [84]. However, to the best
of our knowledge, there is no systematic framework bringing
together the three concepts of LRMs, quasibands and edge
states into a unified context. An approach related to ours is
the renormalization group flow analysis. For the tight-binding
chains, this method aims at understanding the energetic be-
havior of a chain through a series of size reductions [68].
At each step, the size of the system is decreased, and the
behavior of the decreased one is linked to the bigger one by
a renormalization procedure, usually done in terms of pertur-
bation theory. The renormalization group flow is a powerful
method, and has been successfully used to explain the fractal
nature of the Fibonacci spectrum [68,78–81]. However, it
needs to be tailored to the system of interest, and as stated in
Ref. [81], finding an appropriate renormalization group flow
for a general quasiperiodic chain is not easy. This stands in
contrast to the very general method proposed in this work,
which was shown to be applicable to a broad range of different
setups.

VI. CONCLUSIONS AND OUTLOOK

We have presented a systematic approach to the analysis
of aperiodic binary tight-binding chains regarded as a com-
bination of different resonatorlike subsystems rather than a
single bulk unit. For low intersite coupling, each eigenstate
is seen to be composed of spatially nonoverlapping local
resonator modes of these resonator structures. This viewpoint,
supported by a rigorous perturbation theoretical treatment,
allows for an intuitive explanation of the emergence of both
quasibands and gap-edge states in such chains. We demon-
strate the power of our approach by applying it to Fibonacci,
Thue-Morse, and Rudin-Shapiro chains and show how gap-
edge states occurring in these chains can be manipulated.

A repeating motif in our analysis of eigenstates at high con-
trast is the fact that most resonator modes share the local sym-
metries of the underlying systems. This strong impact of local
symmetries is remarkable, especially as it is hidden at lower

contrast levels by a substantial background in the eigenstate
profiles. In this work, we have given an explanation for this
finding at high contrast, and we believe that the study of local
symmetries in complex setups is a very promising field with
rich perspectives and potential applications. The recently es-
tablished framework of local symmetries [52,53,56,57,91,92]
provides dedicated tools for this purpose, and extensions of
it are of immediate relevance. In this line, our work may
enable the local-symmetry assisted design of novel optical
devices that support desired quasiband structures and strongly
localized edge states at prescribed energies, offering exciting
opportunities to control light-matter coupling in complex
aperiodic environments.
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APPENDIX A: DISCRETE RESONATORS

The aim of this Appendix is to justify viewing substruc-
tures embedded in a larger binary aperiodic lattice as local
resonators. To this end, we investigate the behavior of the
simplest case of such a structure, BAB, in more detail. Its
Hamiltonian is

H =
⎛
⎝vB h 0

h vA h
0 h vB

⎞
⎠, (A1)

with the (unnormalized) eigenstates

φ1 =
⎛
⎝−1

0
1

⎞
⎠, φ2,3 =

⎛
⎜⎝

1
−δ±√

8+δ2

2

1

⎞
⎟⎠. (A2)

where δ = (vA − vB)/h, with c = |δ|. For high contrast c,
φ3 ≈ (1,−δ, 1)T localizes on the central site. The idea now
is to view BAB at high contrast as a resonator, where the site
A effectively plays the role of a cavity, while the outer sites B
play the role of cavity walls. The resemblance to a resonator
becomes clearer for a larger structure with more modes be-
tween the resonator walls, like the structure in Fig. 12. As one
can see, all but two eigenstates extend nearly exclusively on
the internal A sites, and the wavelike character of these states
is well recognizable. Two states exclusively localize on the
outer two B sites. The setup thus acts as an extended cavity
consisting of 14 A sites, with two B sites playing the role of the
cavity walls. The smaller structure BAB is of the same nature,
albeit with a cavity of only a single site A. Notationally, we
will divide the actual cavity and the cavity walls of a resonator
by a vertical line, writing, e.g., B|A . . . A|B. Similarly, we
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FIG. 12. All 16 eigenstates of the chain (depicted above)
BA . . . B with 14 A sites at a contrast of c = 20. All but the eigenstates
in the last row localize on the A sites.

also view the “inverse” structure A|B . . . B|A as a resonator
with resonator modes of higher energy, assuming vB  vA.
Moreover, closely neighboring resonators of the form

B|A|B|A|B, B|AA|B|AA|B, . . . (A3)

can be seen as coupled resonators. To indicate the composite
character of such resonators, we omit the inner vertical lines,
i.e., B|ABA|B, B|AABAA|B, . . .

APPENDIX B: SYMMETRY ARGUMENT FOR THE
ABSENCE OF EDGE STATES

Here we explain the absence of edge states in Fig. 4(c) us-
ing the concept of local symmetry. The underlying symmetry
concept is very general and not limited to the Fibonacci chain,
as we demonstrate in the last paragraph of this Appendix. Let
us denote an arbitrary sequence of A’s and B’s by X , its reverse
ordered counterpart by X −1, and by Y a single site A or B.
Then

σ ([X ]) ⊂ σ ([X −1Y X ]), (B1)

where σ denotes the eigenvalue spectrum and [X ] the tridi-
agonal Hamiltonian representing X . In words, the eigenvalue
spectrum of a resonator [X ] is completely contained in that
of the reflection-symmetric resonator [X −1Y X ]. For exam-
ple, if X = AB and Y = B, then X −1 = BA and σ ([AB]) ⊂
σ ([BABAB]).

To prove the above statement, we note that the Hamiltonian
[X −1Y X ] reads

H =
⎛
⎝[X −1] C 0

CT [Y ] D
0 DT [X ]

⎞
⎠, (B2)

where [X −1], [X ] ∈ Rm×m. The matrices C =
(0, . . . , 0, h)T ∈ Rm×1 and D = (h, 0, . . . , 0) ∈ R1×m

connect the central site [Y ] to [X ] and [X −1], respectively.
Now, using the “equitable partition theorem” from Ref. [93],
we can transform H by a similarity transform into a
block-diagonal form

H ′ =

⎛
⎜⎝

[X −1]
√

2C 0
√

2CT [Y ] 0

0 0 [X ]

⎞
⎟⎠. (B3)

The similarity transform conserves σ , and since H ′ is block-
diagonal, we have

σ (H ) = σ (H ′) ⇒ σ ([X ]) ⊂ σ (H ) = σ ([X −1Y X ]) (B4)

which proves Eq. (B1). Moreover, again using the equitable
partition theorem, one can show that the eigenvalues of [X ]
belong to eigenstates of [X −1Y X ] with negative parity with
respect to the central site Y .

Let us now apply the above statement to Fig. 4(c). Here,
for each resonator mode at the edge, there exists one resonator
mode within the bulk possessing a similar energy:

ε(|B|A) ≈ ε(A|BAB|A), (B5)

ε(A|BB|) ≈ ε(A|BBABB|A), (B6)

ε(A|BB|) ≈ ε(A|BBABB|A), (B7)

where ε(R) denotes the energy of the resonator mode R. In
the limit of high contrast, where the resonators present in
Eqs. (B5) to (B7) are disconnected from the remainder of the
system, the approximations become equalities, and the edge
state eigenenergies are thus “absorbed” into the corresponding
quasiband.

In a similar manner, the energetic near-equivalence of
resonator modes

ε(|AAA|B) ≈ ε(B|AAABAAA|B),

ε(|AAA|B) ≈ ε(B|AAABAAA|B),

ε(|AAA|B) ≈ ε(B|AAABAAA|B)

at high contrast as occurring in Fig. 10(a) can be explained.

APPENDIX C: PERTURBATION
THEORETICAL TREATMENT

In this section, we give an explanation for the fragmenta-
tion of eigenstates at high contrast in terms of a perturbation
theoretical analysis. This will also show why the dominant
entries of the eigenstates are in almost all cases obeying local
symmetries. Before we start, we note that a degenerate pertur-
bation theoretical treatment of binary chains has been done in
the past to retrieve its eigenenergies [94]. The main focus in
the following, however, lies on the behavior of eigenstates.

To apply perturbation theory, we write the Hamiltonian
Eq. (2) as

H = H0 + λHI ∈ RN×N , (C1)
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where H0 solely contains the diagonal part of H , i.e., isolated
sites, while HI connects them, i.e., contains the off-diagonal
elements of H . By means of λ, an eigenstate |φ〉(i), 1 � i � N
of H as well as its energy ε (i) are expanded as

|φ(i)〉 = |φ(i)〉0 + λ|φ(i)〉1 + λ2|φ(i)〉2 + . . . (C2)

ε (i) = ε
(i)
0 + λε

(i)
1 + λ2ε

(i)
2 + . . . . (C3)

Inserting Eqs. (C2) and (C3) into the Schrödinger equation
H |φ(i)〉 = ε (i)|φ(i)〉 yields the perturbation series which is
assumed to converge and thus solved order by order in λ.

At zeroth order, the perturbation series reduces to the
eigenvalue equation for the unperturbed H0. Since it is binary,
the N eigenstates of H0 are highly degenerate and form two
groups, satisfying

H0|ψ (α)〉 = vA|ψ (α)〉, 1 � α � gA

H0|ψ (β )〉 = vB|ψ (β )〉, gA + 1 � β � gA + gB = N

where gA,B denote the number of sites with potential A, B,
respectively. The so-called “correct” zeroth-order states which
fulfill

|φ(g)〉0 = lim
λ→0

|φ(g)〉, g = {α, β} (C4)

and which occur in Eq. (C2) and thus also in the perturbation
series are linear superpositions of the |ψ (g)〉. In the following,
we will always denote the two sets {α, β} by g and simple call
the |φ(g)〉0 the zeroth-order states.

At the start of the perturbation theoretical treatment, the
|ψ (i)〉, 1 � i � N are known, but the |φ(i)〉0 are usually not,
and the |φ(i)〉1,2,... can not be directly be determined. However,
it can be shown [76] that already the knowledge of the |ψ (i)〉
is sufficient to obtain a series of particular solutions to the
1, 2, . . . , nth order perturbation equation, yielding the energy
corrections ε

(i)
1 , . . . , ε (i)

n as a byproduct. Provided that the
degeneracy of a given state |φ( j)〉, 1 � j � N is lifted at
kth order, then the corresponding correct-zeroth order state
|φ( j)〉0 can be obtained by diagonalizing a R| j′|×| j′| matrix
which can be derived from the (k − 1)th order perturbation
equation [76]. Here, | j′| is the number of states |φ( j′ )〉 which
are degenerate with |φ( j)〉 up to order k − 1. Then, at order
k + 1, . . . , k + l , the state correction |φ( j)〉1, . . . , |φ( j)〉l can
be obtained. Note that for the problem at hand, all degen-
eracies are guaranteed to be lifted at a finite order, since
the eigenvalues of tridiagonal matrices with strictly nonva-
nishing sub- and superdiagonals (such as the one here) are
distinct [95] (i.e., nondegenerate). Though all degeneracies
will eventually be lifted, the order at which this happens is
in general different for different states. In many textbooks, all
degeneracies are resolved already at first order, and the zeroth-
order states |φ(i)〉0 are the ones that diagonalize the matrix
〈ψ (i)|HI |ψ (i)〉 in the corresponding degenerate subspace. This
results in simple expressions for the higher-order corrections
for both the states and the energy. For our binary H0, however,
degeneracies are usually resolved only at very high order,
and the process becomes complex. For Fibonacci chains, all
degeneracies are resolved at fourth order for generation g = 7,
at fifth order for g = 8, at sixth order for g = 10 but only in
eight order for g = 12.
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FIG. 13. (a) (Top) Distribution of axes of local symmetry do-
mains and potential sequence, which is identical to that in Fig. 3(a),
i.e., corresponds to a ninth generation Fibonacci chain. (Bottom) At
each site, the map shows the difference between the full eigenstate
|φ (i)〉 and the sum of the zeroth-order state and the first-order cor-
rection at a contrast of c = 6. (b) Detailed view on these differences
for the uppermost state. The sign of amplitudes is color coded, red
for positive and blue for negative values. (c) The amplitudes of the
eigenstate |φ (55)〉. Note that this particular state does not contain any
negative amplitudes. (d) The amplitudes of the zeroth-order state
|φ (55)〉0. (e) The amplitudes of the zeroth-order state |φ (55)〉0 plus that
of the first-order state correction |φ (55)〉1 (not normalized).

In the following, we will first show the feasibility of de-
generate perturbation theory by means of the Fibonacci chain,
showing that for high contrast already the zeroth-order states
are sufficient to explain the fragmentation of states. Next,
we will show the process of determining the zeroth-order
states in the first three orders, allowing for an intuitive picture
of the emergence of fragmentation and locally symmetric
amplitudes. We have numerically observed convergence of
the perturbation series if the contrast is larger than roughly
5, depending on the exact chain.

1. Application onto the Fibonacci chain

Figure 13 demonstrates the applicability of degenerate
perturbation theory to a ninth generation Fibonacci chain [the
same as shown in Fig. 3(a)] at a contrast c=6. In subfigure (a),
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at each site the difference

δ(i) = |φ(i)〉 − (|φ(i)〉0 + |φ(i)〉1

)
, 1 � i � N = 55

is shown. Note that the differences δ(i) are rather small, and
in Fig. 13(b), a detailed picture is given for the uppermost
state |φ(55)〉. In Figs. 13(c) and 13(d), the full state |φ(55)〉
and |φ(55)〉0 + |φ(55)〉1 are shown, respectively. As one can
see, already the zeroth-order state matches the fragmentation
behavior of the full state quite well, up to the two double
resonator modes A|BAB|A on the left half of the chain. In
Fig. 13(e), we include the first-order correction |φ(55)〉1. As
one can see, the resulting state |φ(55)〉0 + |φ(55)〉1 is very close
to the full state |φ(55)〉 shown in Fig. 13(c). Although we have
here only shown the 55-th state (i.e., uppermost) state in detail,
the behavior for all other states is similar. This shows that
already the first-order state corrections yield very good results.

If one goes to even higher contrast, already the zeroth-
order states |φ(i)〉0 are sufficient to get a full picture of the
fragmentation of a given state. This is demonstrated in Fig. 14
for a comparatively very high contrast of c = 20. Subfigure
(a) shows the difference |φ(i)〉 − |φ(i)〉0 at each site. The
subfigures (b) and (c) show the complete state |φ(55)〉 and the
zeroth-order state |φ(55)〉0, for which the main features (the
resonator modes) are visible very well. Again, this behavior is
the same for all other states, indicating that already the zeroth-
order states give a good representation of the localization
patterns occurring in the full state. Before we explicitly show
the computations for the first three orders in degenerate per-
turbation theory, let us comment on the connection between
the symmetry of the underlying potential sequence and that
of the non-negligible amplitudes of a given eigenstate by
means of Fig. 14(c). As can be seen, the zeroth-order state is
locally parity symmetric individually within the two domains
S1,2. However, as a whole this state |φ(55)〉0 is not locally
reflection symmetric with respect to an axis denoted by α. As
we will outline in the following, the reason for this is that
the environment of the two domains S1,2 is different, where
environment includes not only next-neighboring sites but also
the ones located further away (we will explain the notion of
“further away” in more detail below). In Fig. 14(d), we change
the environment of the right domain such that it matches that
of the first domain up to the first five neighbors. As a result, the
zeroth-order state is now symmetric with respect to a reflec-
tion through the axis α. In the following, we will investigate
the connection between local symmetries of the underlying
chain and that of the zeroth-order states in more detail. Finally,
we will investigate the first-order state corrections and their
relation to the fragmentation of eigenstates.

2. Emergence of localization patterns and their
locally symmetric character

We will now show the procedure of finding the zeroth-
order states, as can be found e.g. in Refs. [76,96]. Since
this procedure is quite technical, to help the reader we have
visualized the process in a concise form in Fig. 15 for the
easily traceable case of H0 = diag(B, B, A, A, B, A, A).
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FIG. 14. (a) Same as in Fig. 13(a), but now at a contrast c = 15
and without the first-order correction |φ (i)〉1. (b) The uppermost
eigenstate |φ (55)〉. (c) The zeroth-order state |φ (55)〉0. Within S1,2 the
state is locally symmetric with respect to a reflection at the respective
centers of these domains (indicated by dotted lines). However, the
state is asymmetric with respect to a reflection through the axis α.
(d) The environment of S1,2 has been made symmetric by adding
the sites ABAA on the right-hand side. As a result, the zeroth-order
state |φ (55)〉0 (and also, albeit only approximately, the corresponding
complete state, though not shown here) is locally symmetric with
respect to a reflection through α.
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FIG. 15. Visualization of the process of finding the zeroth-order states for H0 = diag(B, B, A, A, B, A, A).
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As stated above, |φ(g)〉0 can in general not be determined
before its degeneracy is not completely lifted. At higher
orders, the states |φ(g)〉 degenerate at zeroth order may split
into subsets |φ(g1 )〉, |φ(g2 )〉, . . . which are degenerate up to
first order, each of which can subsequently split into subsets of
states |φ(g1,1 )〉, |φ(g1,2 )〉, . . . , |φ(g2,1 )〉, |φ(g2,2 )〉, . . . , which are
degenerate up to second order, and so on. The determination
of the zeroth-order states can be done by means of recursively
defined auxiliary states [76,96]

|φ(g)〉0,0 = |ψ (g)〉, (C5)

|φ(g[k])〉0,1 =
∑

1�l�|g|
b(G)(k)

l |φ(g[l])〉0,0, (C6)

|φ(gi[k])〉0,2 =
∑

1�l�|gi|
b(Gi )(k)

l |φ(gi[l])〉0,1, (C7)

|φ(gi, j [k])〉0,3 =
∑

1�l�|gi, j |
b

(Gi, j )(k)
l |φ(gi, j [l])〉0,2 (C8)

... (C9)

appearing on the left-hand side of the above equations, where
g[k] denotes the kth element of the set g and k can run
from 1 to the number of elements |g| within the set. The
index G is equal to A if g ∈ α and equal to B if g ∈ β. Each
expansion coefficient b(S)(k)

l is the lth component of the vector
|b(S)(k)〉, S ∈ {G, Gi, Gi, j, . . . } defined as

V (G)
1 |b(G)(k)〉 = ε

(g[k])
1 |b(G)(k)〉,

V (Gi )
2 |b(Gi )(k)〉 = ε

(gi[k])
2 |b(Gi )(k)〉,

V
(Gi, j )

3 |b(Gi, j )(k)〉 = ε
(gi, j [k])
3 |b(Gi, j )(k)〉,

...

where the matrices V (G)
1 ,V (Gi )

2 , . . . are obtained by a recursive
process [76,96]. Explicitly, for the first three orders they are(

V (G)
1

)
k, j = 0,0〈φ(g[k])|HI |φ(g[ j])〉0,0,(

V (Gi )
2

)
k, j = 0,1〈φ(gi[k])|HI R

(g)HI |φ(gi[ j])〉0,1,(
V

(Gi, j )
3

)
k,l = 0,2〈φ(gi, j [k])|U (gi )|φ(gi, j [l])〉0,2,

where

U (gi ) = HI R
(g)HI R

(g)HI + HI R
(g)HI R

(gi )HI R
(g)HI

with HI = HI − ε
(gi )
1 and

R(g) =
∑
k /∈g

|ψ (k)〉〈ψ (k)|
ε

(g)
0 − ε

(k)
0

,

R(gi ) =
∑
k∈g j

j �=i

|φ(k)〉0,1 0,1〈φ(k)|
ε

(gi )
1 − ε

(k)
1

.

The above recursive process does the following: At the
start, we have |φ(g)〉0,0 = |ψ (g)〉. These are then superposed
according to Eq. (C6), obtaining |φ(g)〉0,1. Within each degen-
erate subspace gi, these are again superposed according to
Eq. (C7), obtaining |φ(gi )〉0,2. Again, within each degenerate
subspace gi, j , these are superposed according to Eq. (C8),
obtaining |φ(gi, j )〉0,3, and so on. Provided that the degeneracy

of a given state |φ(k)〉, 1 � k � N is solved at nth order, the
degenerate subspace for this state at orders l > n contains
only one state, so that naturally |φ(k)〉0,l = |φ(k)〉0,n and [76]
|φ(k)〉0 = |φ(k)〉0,n.

In the following, we will prove that the |φ(i)〉0, 1 � i � N
simultaneously localize on one or more maximally extended
blocks of potentials of the same kind (MEBPS) (statement
1) and determine on which such blocks a given state can
simultaneously localize (statement 2). Each MEBPS is the
cavity of a resonator, thus giving reason for the localization of
states on resonators. Statement 1 also shows that the |φ(i)〉0 are
locally parity symmetric individually on each MEBPS, and
statements 3 and 4 further deal with longer-range symmetries
of the zeroth-order states. Out of the many possible choices of
|ψ (i)〉 (due to its high degeneracy), in the following, we chose
them such that |ψ (α[k])〉 [|ψ (β[k])〉] is solely localized on the
kth site with potential A [B] (counted from the left).

Statement 1. Each state |φ(i)〉0, 1 � i � N simultaneously
localizes on one or more maximally extended blocks A . . . A or
B . . . B of potentials of the same kind (MEBPS) and is locally
parity symmetric on each of these blocks.

Proof. The proof is done in three steps. Firstly, we show
that V (G)

1 , G ∈ {A, B} is block-diagonal, where each block is
related to exactly one MEBPS. Secondly, we show that the
eigenvectors |b(G)(k)〉, 1 � k � |g| of V (G)

1 are locally parity
symmetric and subsequently the |φ(g)〉0,1 are locally symmet-
ric on each MEBPS. Thirdly, we show that any higher-order
states |φ(g)〉0,n with n > 1 show this local symmetry as well,
and thus the zeroth-order states |φ(g)〉0 are locally symmetric
as well.

We start by proving the following. For the case that HI

contains only next-neighbor couplings (as is the case here)
the V (G)

1 become block-diagonal, i.e., can be written as

V (G)
1 =

⎛
⎜⎝D(G)

1
. . .

D(G)
nG

⎞
⎟⎠, (C10)

where nG denote the number of blocks occuring in V (G)
1 and

each block

D(G)
i =

⎛
⎜⎜⎜⎜⎝

0 h

h
. . .

. . .
. . .

. . . h
h 0

⎞
⎟⎟⎟⎟⎠, 1 � i � nG (C11)

is a tridiagonal Toeplitz matrix. To prove that V (G)
1 is of the

above form, we note that by the definition of V (G)
1 and HI ,

two states |ψ ( j)〉, |ψ (k)〉, 1 � j, k � N are coupled to each
other by any of the two matrices V (G)

1 provided that (i) the
single sites on which they localize are direct neighbors and
(ii) they have the same zeroth-order energy, i.e., they must
be localized on states with identical on-site potential. If (i)
and (ii) are fulfilled for |ψ ( j)〉, |ψ (k)〉, j �= k with j, k ∈ g and
g[l] = j1, g[m] = j2, then the corresponding matrix element
(V (G)

1 )l,m = h due to the definition of these states. As a result,
for each MEBPS A . . . A [B . . . B] containing n sites, there is
one tridiagonal n × n block of the form Eq. (C11) present in
V (A) [V (B)].
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We now show that the |φ(g)〉0,1 are locally parity symmetric
on each MEBPS. To this end, we use the fact that the eigen-
vectors of the block-diagonal matrix V (G) are

|b(G)(k)〉 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

{w1,G}
0d2,G

0d3,G

...
0dnG ,G

⎞
⎟⎟⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎜⎝

0d1,G

{w2,G}
0d3,G

...
0dnG ,G

⎞
⎟⎟⎟⎟⎟⎠, . . . ,

⎛
⎜⎜⎜⎜⎝

0d1,G

0d2,G

0d3,G

...
{wnG,G}

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

with 1 � k � |g| and where 0di,G is the di,G × 1 vector with
identical zero entries and {wi,G} denotes the set of di,G

eigenvectors of D(G)
i ∈ Rdi,G×di,G . All vectors in a given set

{wi,G} have nonvanishing components only on one maximally
extended block of potentials of the same kind and are parity-
symmetric with respect to a reflection through the center of
this block. The latter is due to the fact that the D(G)

i are real
and bisymmetric, and the eigenstates of such matrices have
definite parity [97] (in the case of degeneracies, the eigenvec-
tors can be chosen accordingly). A matrix is bisymmetric if it
is symmetric both around the main and the antidiagonal. Since
we have ordered the state |ψ (g[k])〉, 1 � k � |g| such that it
has nonvanishing amplitude on the k-th site with potential G,
one can easily show that each of the |φ(g)〉0,1 has definite parity
on each MEBPS.

For second-order degenerate perturbation theory, the states
|φ(gi )〉0,1, which are degenerate up to first order, are super-
posed to obtain |φ(gi )〉0,2. Now, since all states in a given
set {w j,g}, 1 � j � nG have distinct eigenvalues, the states
|φ(gi )〉0,1 are constructed such that for each set gi there is
at most one state possessing nonvanishing amplitudes on
any given MEBPS. Thus, |φ(gi )〉0,2, . . . will keep the local
parity symmetry, and it is trivial to show that the zeroth-order
states |φ(g)〉0 are locally parity symmetric on each MEBPS
as well. �

Due to its maximal extension, each MEBPS is directly
neighbored either by potentials of the other kind on one or on
both sides, with the former being the case if the MEBPS forms
one edge of the chain. Thus the |φ(g)〉0 are seen to localize on
resonators. We now show that a given state |φ(i)〉0, 1 � i �
N can only simultaneously localize on resonators fulfilling
certain conditions.

Statement 2. A given zeroth-order state |φ(i)〉0, 1 � i � N
can simultaneously localize on a set of MEBPS with individ-
ual lengths l1, l2, . . . , ln only if the following conditions are
met. (i) All the MEBPS must have potentials of the same kind.
(ii) There exist integers 1 � k j � l j, 1 � j � n such that

k1

l1 + 1
= k2

l2 + 1
= · · · = kn

ln + 1
. (C12)

Proof. By definition, the zeroth-order state |φ(i)〉0 is
formed by superpositions of a subset of the states |φ(g j )〉0,1,
with i ∈ g j . Thus, a necessary condition to allow for the local-
ization on multiple MEBPS {Mi} is that among |φ(g j )〉0,1, for
each Mi there is one state localized on it. By definition, the set
|φ(g j )〉0,1 contains states with pairwise identical zeroth-order

ε
(g j )
0 and pairwise identical first-order energy corrections ε

(g j )
1 .

The zeroth-order energies are identical if all the MEBPS have
the same potential. To see when there is an equality of the

first-order energies, we use the fact that the first-order energy
corrections ε

(g)
1 can be given analytically. The block matrix

D(G)
i ∈ Rli×li occurring in V (G)

1 is of tridiagonal Toeplitz form,
and its eigenvalues are thus [98] given by

λ
D(G)

i
k = 2|h| cos

(
πk

li + 1

)
, k = 1, . . . , li. (C13)

Thus two blocks D(G)
1 , D(G)

2 with size l1, l2 only share common
eigenvalues provided that the integer-equation

k1

l1 + 1
= k2

l2 + 1
(C14)

is fulfilled for some 1 � k1 � l1 and 1 � k2 � l2. General-
izing the above to the case of n blocks with corresponding
length l1, . . . , ln directly yields Eq. (C12). �

For many combinations of l1 �= l2 (especially for small
l1,2), Eq. (C14) can not be fulfilled, with the prominent excep-
tion of l1,2 both being odd numbers. In this case, there exist
states |φ(i)〉0,1 which localize on two resonators of different
kind, and usually this behavior is kept also for |φ(i)〉0 as
well as the corresponding complete states |φ(i)〉. This is the
explanation for the emergence of the two states in Fig. 10(a),
which are marked by green ellipse.

We now show how the local symmetries of the zeroth-order
states can be explained by means of that of the underlying
potential sequence. Due do the complexity of binary tight-
binding chains, we only show two explicit cases, but stress
that the process can easily be applied to any given chain.

Statement 3. If H0 contains one or more of the substructures

[. . . ]AA BAB
S1

AA[. . . ] (C15)

or

[. . . ]AA BAB
S1

A (C16)

(where [. . . ] denotes a possibly larger extension of the chain)
then all zeroth-order states |φ(β )〉0 respect the local symmetry
S1 on each of these structures.

Proof. We label the sites of the substructure AABABAA
from left (s1) to right [s7 for Eq. (C15) and s6 for Eq. (C16)],
where the small s indicates a possible embedding of the
corresponding substructure into a greater system. Among the
N states |φ(i)〉0,1, 1 � i � N of this system, all but the two
states |φ( jk )〉0,1, 1 � k � 2 with 1 � jk � N, j1 �= j2 have
vanishing amplitudes on both of the sites s3 and s5. Moreover,
|φ( j1 )〉0,1 has nonvanishing amplitude only on site s3, while
|φ( j2 )〉0,1 has nonvanishing amplitude only on site s5. We
denote the set |φ(g1 )〉 to contain all states which are degenerate
with |φ( jk )〉 up to first order. As can be shown, V (G1 )

2 (just as
V (G)

1 ) is block-diagonal, and only states that are degenerate up
to first order and which are localized on MEBPS which are
separated by exactly one site are coupled to each other. Thus,
the two states |φ( j1 )〉0,1, |φ( j2 )〉0,1, j1, j2 ∈ g1 are not coupled
to the other |φ(g1 )〉0,1 by means of V (g1 )

2 , but only to each other.
If g1[1] = j1 and g1[2] = j2, then the submatrix

(
V (G1 )

2

)
l,m = h2

vB − vA

(
2 1
1 2

)
, 1 � l, m � 2 (C17)
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which is real-valued and bisymetric. Its eigenvectors are thus
parity-symmetric. As can be easily shown, thus |φ( jk )〉0,2
are parity symmetric within S1, i.e., respect this domain of
local symmetry. The matrix in Eq. (C17) has nondegenerate
eigenvalues referring to ε

( jk )
2 , and thus the two states |φ( jk )〉

are no longer degenerate to each other at second order. Since
|φ( jk )〉0,1 are the only ones out of the |φ(β )〉0,1 with nonva-
nishing amplitudes within S1, one can easily show that all
zeroth-order states |φ(β )〉0 must respect S1. �

The above is of relevance for the first and third quasiband
from top in Fig. 3(a). By means of another example, we
indicate the importance of the environment of a domain S such
that the zeroth-order states respect it.

Statement 4. If the right edge of H0 is given by

[. . . ]BAAB ABA
S1

(C18)

(where [. . . ] denotes a possibly larger extension of the chain)
then the zeroth-order states |φ(α)〉0 do not respect the local
symmetry S1. However, if the right edge of H0 is given by

[. . . ]BAAB ABA
S1

B (C19)

then all zeroth-order states |φ(α)〉0 respect the local sym-
metry S1.

Proof. We label the sites of the substructure BAABABA
from left (s1) to right [s7 for the first and s8 for the sec-
ond statement]. Among the N states |φ(i)〉0,1, 1 � i � N of
there system, all but the two states |φ( jk )〉0,1, 1 � k � 2 with
1 � jk � N, j1 �= j2 have vanishing amplitudes on both of
the sites s5 and s7. Moreover, |φ( j1 )〉0,1 has nonvanishing
amplitude only on site s5, while |φ( j2 )〉0,1 has nonvanishing
amplitude only on site s7. We denote the set |φ(g1 )〉 to contain
all states which are degenerate with |φ( jk )〉 up to first order.
Again, due to the block-diagonal character of V (g1 )

2 , the two
states |φ( j1 )〉0,1, |φ( j2 )〉0,1, j1, j2 ∈ g1 are not coupled to the
other |φ(g1 )〉0,1 by means of V (G1 )

2 , but only to each other. If
g1[1] = j1 and g1[2] = j2, then the submatrices(

V (G1 )
2

)
l,m

= h2

vB − vA

(
2 1
1 1

)
, 1 � l, m � 2 (C20)

for [. . . ]BAABABA and(
V (G1 )

2

)
l,m

= h2

vB − vA

(
2 1
1 2

)
, 1 � l, m � 2 (C21)

for [. . . ]BAABABAB. Both Eqs. (C20) and (C21) are real-
valued, but the former is not bisymmetric, while the latter
is. As can be easily shown, for the first case, the |φ( jk )〉0,2
are also not parity symmetric within S1, i.e., do not respect
this domain of local symmetry. The matrix in Eq. (C20) has
nondegenerate eigenvalues referring to ε

( jk )
2 , and thus the two

states |φ( jk )〉 are no longer degenerate to each other at second
order. Since |φ( jk )〉0,1 are the only ones out of the |φ(α)〉0,1
with nonvanishing amplitudes within S1, one can easily show
that no zeroth-order state |φ(α)〉0 respects S1. For the second
case, the line of argumentation essentially is the same with
the difference that, due to the bisymmetry of Eq. (C21), the
|φ( jk )〉0,2 are parity symmetric within S1, and thus all |φ(α)〉0
respect S1. �

The reason for the nonbisymmetry of Eq. (C20) is the
different environment of s5 and s7. In this particular case, the
environment is made up by the next-neighboring sites, but for
higher orders it comprises many more sites left and right to
the given domain. The fact that |φ(55)〉0 in Fig. 14(c) is not
locally symmetric with respect to a reflection through α is due
to the fact that the environment of S1,2 is not symmetric with
respect to a reflection through α in a sufficiently large radius,
while in Fig. 14(d) it is, so that |φ(55)〉0 is locally symmetric
with respect to a reflection through α.

3. First-order state corrections and eigenstate fragmentation

In the above, we have seen how the correct zeroth-order
states are related to the local symmetries of the underlying
potential. In particular, we have argued that each of the |φ(i)〉0
is fragmented, since it has nonvanishing amplitudes only on
one kind of site. We have further seen that, already at contrast
c = 6, |φ(i)〉0 + |φ(i)〉1 ≈ |φ(i)〉. In the following, we show
that, in general, the |φ(i)〉0 + |φ(i)〉1 are fragmented as well.

Contrary to the nondegenerate case, where the first-order
state corrections are given by

|φ(i)〉1 =
∑
j �=i

|φ( j)〉0 0〈φ( j)|
ε

(i)
0 − ε

( j)
0

HI |φ(i)〉0,

the corresponding expression in degenerate perturbation the-
ory depends on the order in which the degeneracy of |φ(i)〉
is completely resolved. A full, recursive expression for |φ(i)〉1
can be found in Ref. [77]. In this context, we only need the
easily provable fact that

〈ψ (ḡ[ j])|φ(g[k])〉1 = 〈ψ (ḡ[ j])|HI |φ(g[k])〉0

ε
(g[k])
0 − ε

(ḡ[ j])
0

, (C22)

where ḡ denotes the set of sites which are not elements of g.
In other words, if |φ(i)〉0 “lives” on, say, sites with potential
A, then |φ(i)〉1 will have nonvanishing amplitudes only on
directly neighboring B sites, but not on those further away.
As a result, if |φ(i)〉0 has nonvanishing amplitudes on a small
number of sites (which we have observed for Fibonacci, Thue-
Morse, and Rudin-Shapiro chains), then |φ(i)〉0 + |φ(i)〉1 is
fragmented.

APPENDIX D: DISCRETE ENERGY-LOCALIZATION
THEOREM AND APPROXIMATION OF EIGENVALUES

BY SUB-HAMILTONIANS

We here extend a theorem of Ref. [99], connecting the
localization of a state to its eigenenergy, to discrete Hamil-
tonians.

Theorem. The following equation holds

‖|φ〉‖∂D

‖|φ〉‖D
� min

εk

|ε − εk|
|h| , (D1)

where |φ〉 is an eigenvector of H with energy ε and εk are
eigenvalues of H restricted to the domain D which is a simply
connected subdomain of the whole system. ‖|φ〉‖D is the norm
of |φ〉 on D and ‖|φ〉‖∂D the norm of |φ〉 on next-neighbors
of D.

Proof. If D contains ND sites, define the ND × ND matrix
HD constructed from the corresponding matrix elements of the
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complete Hamiltonian H . In other words, HD is the restriction
of H onto D. Similarly, we further define |i〉 as the ND × 1
vector constructed from the full eigenvector |φ〉 by taking the
interior elements of D. If we now let HD act on |i〉, one can
easily show that

HD|i〉 = ε|i〉 − h|∂φ〉, (D2)

where ε is the eigenvalue of the complete state |φ〉. Here,
h denotes the next-neighboring hopping of H [as defined
in Eq. (2)] and |∂φ〉 denotes a ND × 1 vector with zeros
everywhere but on the first and last entry. These two nonva-
nishing entries are constructed by taking the corresponding
two elements of |φ〉 within ∂D̄. If ND = 1, then we define the
only entry of |∂φ〉 as the sum of the two amplitudes of |φ〉
within ∂D̄.

To make the notation introduced above more explicit, let us
assume that

H =

⎛
⎜⎝

v1 h 0 0
h v2 h 0
0 h v3 h
0 0 h v4

⎞
⎟⎠, |φ〉 =

⎛
⎜⎝

a
b
c
d

⎞
⎟⎠. (D3)

If D would denote the central two sites, then |i〉 = (b, c)T and
|∂φ〉 = (a, d )T .

Equation (D2) can be interpreted as follows:. Provided that
|φ〉 is identically zero on the next-neighboring sites of D,
|i〉 would be an eigenstate to HD. However, |φ〉 usually has
nonvanishing amplitudes on sites neighboring to D, and thus
|∂φ〉 �= 0. Thus this correction must be included in Eq. (D2).

We now proceed with our proof of Eq. (D1). Multiplying
from the left with 〈φk|, i.e., the kth eigenstate of HD, we get

h · 〈φk|∂φ〉 = (ε − εk ) · 〈φk|i〉. (D4)

Multiplying this expression by its complex conjugate, sum-
ming over k and taking the square root of the result, we get

|h|
(∑

k

|〈φk|∂φ〉|2
)1/2

=
(∑

k

(ε − εk )2 · |〈φk|i〉|2
)1/2

.

(D5)

Since the |φk〉 are a complete orthonormal basis set, the left-
hand side can be simplified by using the definition of the
norm, getting

|h|
(∑

k

|〈φk|∂φ〉|2
)1/2

= |h|‖|φ〉‖∂D. (D6)

The sum on the right-hand side can be estimated as∑
k

(ε − εk )2 · ‖〈φk|i〉‖2 � min
εk

(ε − εk )2 ·
∑

k′
‖〈φk′ |i〉‖2.

(D7)

Again, due to the definition of the norm, we can thus write
Eq. (D5) as

|h|‖|φ〉‖∂D � min
εk

|ε − εk|‖|φ〉‖D (D8)

which directly yields Eq. (D1). �
Roughly speaking, the theorem states the following. As-

sume that an eigenstate |φ〉 has a high integrated density on

min max0
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40

min max0

10 20 30 40 50

10 20 30 40 50

30

30

FIG. 16. (a) Shown is the third quasiband from top for the ninth
generation Fibonacci chain at contrast c = 3. (b) The three minor
quasibands and their respective LRMs. (c) The third quasiband from
top for a L = 55 sites truncated Thue-Morse chain at contrast c = 3.
(d) The two minor quasibands as well as the gap-edge state and their
respective LRMs.

some domain D, with low amplitudes on the next-neighboring
sites left and right of the domain. Then, the energy ε of this
eigenstate is approximately equal to the energy of one of
the eigenstates |φk〉 of the local Hamiltonian HD. If D is a
resonator and |φ〉 represents an LRM of HD within D and
suitably small amplitudes on next-neighboring sites of D, then
ε ≈ εi, where εi is the energy of the LRM.

APPENDIX E: COMMENTS ON THE APPLICATION
TO LONGER CHAINS

We now comment on how the treatment of longer chains
or the investigation of the subband structure can be pursued.
To this end, the core element of our approach, the analysis
of states in terms of their constituting LRMs needs to be
slightly changed by extending the class of resonators taken
into account. The process of finding the constituting LRMs
of a given state |φ〉 with energy ε is then as follows. Starting
from a domain D exclusively containing sites with very high
amplitudes, one forms a simply connected domain D′ by the
union of D and its surrounding sites (not limited to next neigh-
bors) such that |φ〉 has very low amplitude on next-neighbors
of D′. Then [guaranteed by Eq. (D1)], one eigenstate of the
Hamiltonian HD′ has nearly the same energy ε ≈ εi and is
(up to normalization), within D′, nearly equal to |φ〉 and thus
forms an LRM. As the maximum deviation between εi and
ε is bounded by means of Eq. (D1) and generally becomes
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smaller for larger D′, its size should thus be chosen large
enough to achieve the accuracy needed for an explanation of
the subquasibands and gap-edge states present but as small
as possible in order not to lose the local character of the
treatment. If the LRM obtained by the above process does not
explain all fragments of |φ〉, then one needs to repeat it for
each of the remaining fragments until all constituting LRMs
of |φ〉 are found.

We now exemplify in Fig. 16 some possible results of such
a deeper analysis. Subfigure (a) shows the third quasiband
from top of the ninth generation Fibonacci chain [the one
shown in Fig. 3(a)], but now at a lower contrast of c = 3. At
this contrast, the energetical substructure of the band becomes
apparent, denoted by the two dashed lines in Fig. 16(b). There

are three minor quasibands, comprising the three uppermost,
the two central and the three lowermost eigenstates within this
quasiband. The above process then yields the LRMs shown
on the right-hand side of this subfigure. Another example
is demonstrated in Figs. 16(c) and 16(d), showing the third
quasiband from top for a truncated L = 55 site Thue-Morse
chain [as shown in Fig. 7(a)] at contrast c = 3. Here, the main
quasiband features the resonator mode A|BB|A, but again
features a substructure as shown in subfigure (d). Each minor
quasibands is made up of two nearly degenerate LRMs, with
the underlying resonators having resonator walls each con-
sisting of two sites. The state in-between these minor bands
consists of the edge-LRM ¦A|BB|AB, where the ¦ indicates the
edge of the chain.
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