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A canonical quantization procedure is applied to elastic waves interacting with pinned dislocation segments
(“strings”) of length L via the Peach-Koehler force. The interaction Hamiltonian, derived from an action principle
that classically generates the Peach-Koehler force, is a power series of creation and annihilation operators.
The leading term is quadratic, and keeping only this term the observable quantities of scattering processes are
computed to all orders in perturbation theory. The resulting theory is characterized by the magnitude of kL,
with k the wave number of an incident phonon. The theory is solved for arbitrary kL, and different limits are
explored. A significant result at this level is the scattering cross section for phonons by dislocation segments.
As a function of frequency, this cross section has a much richer structure than the linear-in-frequency behavior
that is inferred from scattering by an infinite, static, dislocation. The rate of spontaneous phonon emission by
an excited dislocation is computed as well. When many dislocations are present, an effective mass operator
is computed in the weak and independent scattering approximation. The contribution of the cubic terms is
computed to leading order in perturbation theory. They allow for a comparison of the scattering of a phonon
by a string and the three-phonon scattering, as well as studying the dependence of scattering amplitudes on
the temperature of the solid. It is concluded that the effect of dislocations of Burgers vector 0.5 nm and length
50 nm will dominate for relatively modest dislocation densities: 108 cm−2. Finally, the full power series of the
interaction Hamiltonian is considered. The effects of quantum corrections, i.e., contributions proportional to
Planck’s constant, are estimated, and found to be controlled by another wave-number-dependent parameter kdq,
where dq is a length proportional to

√
h̄. The possibility of using the results of this paper in the study of the

phononic thermal properties of two- and three-dimensional materials is noted and discussed.

DOI: 10.1103/PhysRevB.99.214102

I. INTRODUCTION

The interaction of phonons with dislocations has long
been a subject of concern. Thermal transport, particularly in
insulators, and thermoelectric materials are two overlapping
perspectives where this concern is of central importance.
In a classic paper, Klemens [1] computed the scattering of
low-frequency (so that dispersion effects could be neglected)
phonons by a number of static imperfections, including in-
finitely long, straight dislocations. This configuration was
also considered by Carruthers [2], who considered a modified
version of the potential energy. One important insight that
came out of this very simplified approach is that dislocations
should be far more efficient scattering phonons that travel
perpendicular, rather than parallel, to the dislocation line.
Another is that phonon scattering by the strain field of a static
dislocation is characterized by a relaxation time inversely
proportional to frequency. To this day, these works appear
to be the main source of information to analyze the role of
dislocations in thermal transport experimental data [3–5].

Quite recently, it has become possible to bring out the
contribution of dislocations to thermal transport: Kim et al.
[6,7] obtained a significant lowering of thermal conductivity
in Bi0.5Sb1.5Te3 through the introduction of dense dislocation
arrays within grain boundaries. Xie et al. [8] report a 50%
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reduction in lattice thermal conductivity due to dislocations
in Si-based thermoelectric composites. Chen et al. [9] have
obtained very low values of lattice thermal conductivity in
Pb1−xSb2x/3Se solid solutions, by way of generating dense ar-
rays of uniformly distributed dislocations in the grains. Zhou
et al. [10] have rationally included point defects, vacancy
driven dense dislocations, and nanoprecipitates in a n-type
PbSe thermoelectric material to obtain a lattice thermal con-
ductivity approaching that of the amorphous limit. A precise,
quantitative, appraisal of the dislocation contribution to ther-
mal conductivity still faces considerable challenges, however,
as emphasized by Wang et al. [11]. The classical models are
simply not able to cope with the data and there is a clear need
for better models. This paper aims at filling this gap.

An interesting step has been taken by Sun et al. [12], who
have measured a significant thermal transport anisotropy in
micron-thick, single-crystal InN films with highly oriented
dislocation arrays. The influence of dislocations in these
results is quite unambiguous, and points to the very real
possibility of engineering defects, particularly dislocations, to
obtain desired thermal performances. The theoretical frame-
work currently available is, again, not enough to rationalize
these measurements and improvements are needed.

A dislocation that is hit by a phonon will typically re-
spond by bowing out, oscillating, and reradiating secondary
phonons. This process can lead to resonances which may
affect the scattering cross section, and the resulting relax-
ation time, considerably. At first sight, one could think that
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resonance would be effective only for phonons whose wave-
length is comparable to the distance between pinning points
for a pinned dislocation, say tens of nanometers, and hence
not relevant at most working temperatures when the dominant
phonon wavelength is much shorter. A closer look, however,
reveals that, thinking of the dislocation as an elastic string,
there will be resonant scattering not only when the phonon
frequency coincides with the fundamental mode of vibration
of the string, but also when it coincides with any of the higher-
order modes of vibration. This dynamical mechanism was
tackled by Ninomiya [13,14] for an infinitely long dislocation
line that can oscillate around a straight equilibrium position,
coupled to phonons through the kinetic-energy terms but not
through the potential-energy terms. Building on the work of
Ninomiya [13,14], Li et al. [15–17] have recently developed
a theory of phonons, and electrons, in interaction with the
quantum normal modes (termed “dislons”) of an infinitely
long straight dislocation. The question that naturally arises
is: what is the quantum description of dislocation segments
of finite length interacting with phonons? In this paper we
address this issue.

The interaction of classical elastic waves with infinitely
thin dislocations segments of finite length—the “string
model”—has been a topic of active research for decades
[18,19]. A comparatively recent result is the computation
of the scattering cross section for classical elastic waves by
pinned dislocation segments [20], as well as by prismatic dis-
location loops [21]. Use of the formalism developed therein,
together with multiple-scattering theory, has enabled the com-
putation of an effective, complex, index of refraction for the
propagation of coherent elastic waves in a medium filled
with randomly distributed and oriented, pinned dislocation
segments [22,23]. In turn, this has led to nonintrusive acoustic
characterization tools to describe the plasticity of metals and
alloys [24–26].

The quantum theory of elastic waves in interaction with
dislocations has been far less studied. In addition to the ana-
lytical work of Ninomiya [13,14] and Li et al. [15–17] already
mentioned, Wang et al. [27] have performed a numerical
ab initio calculation of phonon scattering by a dipole of
edge dislocations in silicon. They infer, from their calculation,
that high but realistic dislocation concentrations can signifi-
cantly influence thermal conductivity at room temperature and
above. Also, their results are qualitatively at variance with the
classic ones [1,2]

This paper is organized as follows: Section II has a brief re-
view of the classical theory that we shall quantize. Section III
describes the canonical quantization of the free theory. The
interaction term involves polynomial interactions between
phonons and quantum strings. Section IV solves the quantum
theory retaining only the quadratic interactions but to all
orders in perturbation theory, which turns out to be equiv-
alent to have a solution for arbitrary phonon wavelengths:
short, comparable, and long compared to string length L.
Sections IV A and IV B provide the scattering cross section
for phonons by dislocations, while Sec. IV C gives the mass
operator when many dislocations are present in the weak and
independent scattering approximation. Section V computes
the contribution of cubic terms in the interaction, to leading
order in perturbation theory. This allows for a comparison

of phonon-dislocation scattering with three-phonon processes,
including the effect of temperature. Finally, Sec. VI solves
the theory for the full polynomial interaction, to leading
order in perturbation theory in which a characteristic length
proportional to the square root of Planck’s constant emerges.
Section VII has concluding remarks. A number of technical
computations are provided in four Appendixes.

II. CLASSICAL ACTION

In this paper we work out the quantum theory of oscillating
dislocation segments, of length L, in interaction with elastic
waves in three dimensions.

We consider a homogeneous, isotropic, elastic, continuum
solid of density ρ and elastic constants cpqmr, (p, q = 1, 2, 3)
within which there is a stringlike dislocation line. The vari-
ables describing the solid are the displacements u(x, t ), at
time t , of a point whose equilibrium position is x. In addition,
there is a string described by a vector X(s, t ), where 0 < s <

L is a position parameter along the string whose ends are
fixed. The fact that the string is a dislocation is implemented
through the fact that the displacements u(x, t ) are multivalued
functions: They have a discontinuity equal to the Burgers
vector b when crossing a surface, part of whose boundary
includes the string with fixed ends. In addition to this ge-
ometrical fact, the coupling between elastic displacements
and elastic string is given by standard conservation of energy
and momentum arguments. When dislocation velocities are
small compared to the speed of sound, an assumption we
shall make throughout this paper, this leads to the well-known
Peach-Koehler force [28]. In the time-dependent case, and for
string velocities small compared to the speed of sound, the
dynamics is described by the following classical action [29]:

S = Sph + Sstring + Sint + S0, (1)

where

Sph = 1

2

∫
dt

∫
d3x

(
ρu̇2 − cpqmr

∂um

∂xq

∂up

∂xr

)
+ · · · (2)

Sstring = 1

2

∫
dt

∫ L

0
ds(mẊ2 − �X′2) + · · · (3)

Sint = −bi

∫
dt

∫
δS

dS jσi j, (4)

where the ellipses “· · · ” refer to higher-order terms in the
phonon or string actions, and S0 involves the interaction of the
elastic displacements with a static dislocation, part of whose
boundary is the straight line X0 (1). This is the interaction that
was considered by Klemens [1] when X0 is an infinite line and
will not be discussed further in this paper.

Let us start by describing the phonon action Sph: Clearly,
Sph describes elastic waves in an elastic continuum, wherein
the quadratic terms will lead to free phonons and the higher-
order terms will lead to phonon-phonon interactions. In the
isotropic case cpqmr = λδpqδmr + μ(δpmδqr + δprδmq) where λ

and μ are the Lamé constants.
Classically, and in the absence of the interaction term,

the free phonon theory has simple solutions in terms
of plane waves for the elastic displacement (phonons)
and normal modes for the pinned string. In the case of
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FIG. 1. The dislocation line has a static part X0, a portion of
which is a straight line segment. Oscillations about this straight line
segment are described by X(s, t ), where s is a position parameter and
t is time.

phonons, they are characterized by two different modes of
propagation: transversal waves of speed cT = √

μ/ρ with
two allowed polarizations, and longitudinal waves of speed
cL = √

(λ + 2μ)/ρ with one polarization. For future usage,
we define γ ≡ cL/cT >1.

On the other hand, we have a string described by a vector
X(s, t ), where 0 < s < L is a position parameter along the
string (see Fig. 1). We consider small deviations from a
straight equilibrium position X0, the ends of which are pinned
to their positions. Sstring describes oscillations (normal modes)
of an elastic string of finite length with fixed ends; higher-
order terms describe anharmonic effects on these oscillations,
which we will not address in this paper. The parameters m and
� characterize the dislocation segment. In this paper we shall
consider segments of edge dislocations only, in which case
they may be written in terms of the Burgers vector b as [29]

m = ρb2

4π
(1 + γ −4) ln(δ/δ0), (5)

where δ and δ0 are long- and short-distance cutoff lengths, and

� = μb2

2π
(1 − γ −2) ln(δ/δ0). (6)

m defines a mass per unit of length and � is the line tension.
The logarithmic cutoff is a dimensionless parameter of order
1; it has no influence on the results of this paper.

In the same manner as classically the phonons have
plane waves solutions, this term of the action has oscil-
latory solutions that may be expanded in Fourier series

Re{∑n ane−iωnt sin(nπs/L)}, where ωn = nπ
L

√
�
m is the fre-

quency of each normal mode. We take the string to have
one degree of freedom (i.e., one direction orthogonal to its
equilibrium position over which to oscillate) defined by the
direction of the Burgers vector b, the glide plane. For most of
our results, the generalization to more directions of oscillation
is straightforward.

In the Debye model, the Debye frequency is fixed by
imposing that the total number of normal modes of vibration
of the continuum must equal 3N , where N is the number of
atoms. In the present approach, we are not changing this way
of mode counting, and the string modes are simply added
up to the expected 3N modes. However, for a fairly high
dislocation density, say 1012 cm−2, and a 0.3-nm interatomic
distance, the number of additional degrees of freedom will be
about one-tenth of one percent. We shall neglect this small
overcounting.

Finally, Sint describes the interaction between these two
sectors. It is given by the well-known Peach-Koehler force:
bi is the ith component of the Burgers vector, σi j is the elastic
stress tensor, evaluated at the current position of the disloca-
tion line, and the surface δS describes the region bounded
by the string and its equilibrium position. As mentioned
in the Introduction, the classical scattering of phonons by
dislocations using this interaction term has already been dealt
with [22,23].

Having this realized, we now turn to quantize the theory by
introducing canonical commutation relations.

III. CANONICAL QUANTIZATION OF THE FREE FIELDS

We commence this section by implementing the corre-
spondence of the Poisson brackets to commutators {·, ·} →
− i

h̄ [·, ·]. According to standard practice [30], the mode coef-
ficients of the classical solutions are promoted to creation and
annihilation operators, in terms of which we may write the
displacement field as

u(x, t ) =
√

h̄

ρ

∫
d3k

(2π )3

∑
ι∈{pol.}

[
ε∗

ι (k)aι(k)eik·x−iωι(k)t

√
2ωι(k)

+ ει(k)a†
ι (k)e−ik·x+iωι(k)t

√
2ωι(k)

]
(7)

and the string displacement as

X (s, t ) =
√

h̄

mL

nD∑
n=1

(
ane−iωnt

√
ωn

+ a†
neiωnt

√
ωn

)
sin

(nπs

L

)
, (8)

where nD is a cutoff for the string wave number, as an
oscillating string with the action Sstring can only represent the
physical setting down to a given length where the idealization
breaks down. When comparing with experiments, if possible,
this number should be left as a free parameter to be fixed
by the actual results. In condensed matter a natural cutoff
is provided by the Debye frequency. However, as we will
comment in Sec. IV B 3, the precise value of the cutoff nD

is irrelevant for phonon frequencies well below the frequency
cutoff ωnD .

Now we proceed to impose canonical commutation rela-
tions:

[ui(x, t ), ρu̇ j (y, t )] = ih̄δi jδ
(3)(x − y), (9)

[X (s, t ), mẊ (s′, t )] = ih̄δ(s − s′), (10)

[ui(x, t ), u j (y, t )] = 0, [X (s, t ), X (s′, t )] = 0, (11)
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which fully define the quantum theory in the noninteracting
case. These relations in turn require

[aι(k), aι′ (k′)] = [a†
ι (k), a†

ι′ (k
′)] = 0, (12)

[aι(k), a†
ι′ (k)] = (2π )3δ(3)(k − k′)διι′ , (13)

[an, am] = [a†
n, a†

m] = 0, [an, a†
m] = δnm. (14)

In the preceding expressions, ι is an index that runs over
the possible polarizations for the phonons: two transversal
modes and a longitudinal mode. The corresponding frequen-
cies satisfy ωι(k) = cιk, where ι = L, T for the phonons (de-
noting longitudinal and transverse propagation respectively),

and ωn = nπ
L

√
�
m for the string. Finally, ει(k) represents the

polarization vector associated to each mode of propagation.
These vectors satisfy

ει(k) · ε∗
ι′ (k) = διι′ , (15)

∑
ι=T1,T2

ε∗
ι (k)iει(k) j = δi j − kik j

k2
, (16)

ε∗
L(k)iεL(k) j = kik j

k2
, (17)

where T1, T2 denote the two transversal polarizations and L
is the longitudinal polarization. The Hamiltonian of the free
theory is

H = Hph + Hstring (18)

with phonon and string terms given, respectively, by

Hph =
∫

d3k

(2π )3

∑
ι∈{pol.}

h̄ωι(k)a†
ι (k)aι(k), (19)

Hstring =
nD∑

n=1

h̄ωna†
nan. (20)

In characterizing the free theory, a fundamental object is
the two-point function, or more commonly known as the
propagator. Let T be the time-ordering symbol, instructing
operators evaluated at a later time to be placed at the left, and
let |0〉 be the vacuum state of the quantum-mechanical system,
with no excitations of the elastic displacements nor the string.
For the dislocation, it reads


(s, s′, t − t ′) ≡ 〈0|TX (s, t )X (s′, t ′)|0〉

= h̄

mL

nD∑
n=1

e−iωn|t−t ′|

ωn
sin

(nπs

L

)
sin

(
nπs′

L

)
.

(21)

Even though we can do the same for the elastic displace-
ment field, it turns out to be more useful for subsequent
computations to write down the propagator for its spatial

derivative:


i ji′ j′ (x − x′, t − t ′)

≡ 〈0|T ∂ui

∂x j
(x, t )

∂ui′

∂x j′
(x′, t ′)|0〉

= h̄

ρ

∫
d3k

(2π )3
k jk j′

[(
δii′ − kiki′

k2

)
e−iωT (k)|t−t ′|

2ωT (k)

+ kiki′

k2

e−iωL (k)|t−t ′|

2ωL(k)

]
eik·(x−x′ ). (22)

The reason behind writing down time-ordered quantities is
that when we compute scattering amplitudes in the interacting
theory, the S matrix will be given by [30]

〈�out|T exp

[
− i

h̄

∫ ∞

−∞
HI (t )dt

]
|�in〉 , (23)

where HI is the quantum-mechanical interaction picture
Hamiltonian operator, and thus the time-ordered quantities
will have a central role.

In the sections that follow, we will take the string to have
its equilibrium position along the ẑ = ê3 axis, and the Burgers
vector to be written as b = bê1 = bx̂.

IV. THE QUADRATIC INTERACTIONS: A SINGLE STRING

The lowest-order interaction, which classically means to
consider small strains, and small string excursions, away from
the equilibrium position, is given by

Sint = −μb
∫

dt
∫ L

0
ds Mkl

∂uk

∂xl
(x0 + (0, 0, s), t )X (s, t ),

(24)

which is quadratic in the fluctuations. With our choice of
coordinates, Mkl = (ê1)k (ê2)l + (ê2)k (ê1)l . This interaction
will give rise to the scattering of phonons by the strings, which
is described by

〈 f |i〉 = 〈0|aι(k)T exp

[
− i

h̄

∫ ∞

−∞
HI (t )dt

]
a†

ι′ (k
′)|0〉 , (25)

where

HI (t ) = μb
∫ L

0
ds Mkl

∂uI
k

∂xl
(x0 + (0, 0, s), t )X I (s, t ). (26)

For completeness, we also write down the Hamiltonian in the
Heisenberg picture (where it is naturally constant) in terms of
creation and annihilation operators:

Hint = h̄√
mL

∫
d3k

(2π )3

nD∑
n=1

∑
ι∈{pol.}

(
an + a†

n√
ωn

)

×
(

inπE (k; ι)aι(k)

L

eiL(k·ê3 )−inπ − 1

(k · ê3)2 − (nπ/L)2
+ H.c.

)
,

(27)

where H.c. stands for Hermitian conjugate. Furthermore, we
have defined ω ≡ ωι(k) = ωι′ (k′),

E (k; ι) ≡ μb√
2ρωι(k)

klMklε
∗
ι (k)keix0·k, (28)
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and we will denote its complex conjugate by E∗. Here we have
denoted kl = (k · êl ) and ει(k)k = (ει(k) · êk ).

In Eq. (26), uI and X I are the operator fields of the
interaction picture, i.e., they evolve as free fields. As a re-
minder to the reader, the passage to the Heisenberg picture
is implemented through

u(x, t ) = U †(t, t0)uI (x, t )U (t, t0) (29)

with

U (t, t0) = T exp

[
−i

∫ t

t0

HI (t ′)dt ′
]
, (30)

where t0 is the time at which both operators coincide (typically
it is taken to be −∞).

One may ask what is the nature of the approximation
involved in considering only the quadratic interaction terms
for the quantum theory. Since the only way to be sure of the
answer is to compute the subleading terms, we will leave this
question unanswered until the last section, where we study
explicitly the higher-order corrections.

For the moment, we can start with the leading contribution
to the phonon-phonon amplitude.

A. Lowest-order contribution in the phonon-string coupling

Given that we are interested in phonon-phonon amplitudes,
in order to have a nonvanishing contribution from (25) we
need to expand the time-ordered exponential up to quadratic
order. Employing our definition for the string propagator and
performing the relevant contractions, we see that

〈 f |i〉 |O(b2 ) = −b2μ2

h̄2

∫ ∞

−∞
dt

∫ ∞

−∞
dt ′

∫ L

0
ds

∫ L

0
ds′MklMk′l ′
(s, s′, t − t ′)

×
〈
0|aι(k)

∂uI
k

∂xl
(x0 + (0, 0, s), t )|0

〉 〈
0|∂uI

k′

∂xl ′
(x0 + (0, 0, s′), t ′)a†

ι′ (k
′)|0

〉
. (31)

If we define the T matrix through

〈 f |i〉 ≡ 2π δ[ωι(k) − ωι′ (k′)] T , (32)

then Eq. (31) yields, using (7),

T = 2iE∗(k; ι)E (k′; ι′)
mL

nD∑
n=1

(nπ/L)2

ω2
n − ω2

eiL(k′ ·ê3 )−inπ − 1

(k′ · ê3)2 − (nπ/L)2

e−iL(k·ê3 )+inπ − 1

(k · ê3)2 − (nπ/L)2
. (33)

An interesting feature of this result is that it is independent
of b, as we have m ∝ b2; that is, the mass per unit length of
the dislocation is proportional to the square of the Burgers
vector. While it is too soon to make a definitive statement
about the actual perturbative parameter of the problem, this
suggests that b per se does not play that role, contrary to what
one could at first think.

The observable that may be derived from the T matrix
is the scattering cross section. As we are interested in the
outgoing flux, i.e., the angular distribution of phonons, given
an incident phonon with well-defined momentum k′, one
obtains

dσ

d�
= ω2|T |2

4π2c3
ι cι′

. (34)

This dependence of the cross section on the scattering ampli-
tude holds independently of the order to which we compute
observables in perturbation theory, which is exactly our next
order of business.

B. Phonon scattering by dislocation segments
to all orders in the coupling

Now we turn to solving for the scattering amplitude to
all orders in the interaction Hamiltonian (26), that is, the
computation of all terms in the power series development of
the exponential that appears in (25). The object of interest is
the same as before (25), so we may proceed order by order

and then sum the terms to reconstruct the result. It turns
out that it will be sufficient to evaluate the fully connected
parts of the amplitude, i.e., those which cannot be separated
into independent factors, and that a power series results, that
can be summed. Because the expressions involved in the
derivation are quite lengthy, we shall present those details in
Appendix B, and here we will discuss the results.

In a very similar manner to the classical case [23], the T
matrix one obtains is given by

T = v†(k) · iE∗(k; ι)E (k′; ι′)
1 − T(ω)

· v(k′). (35)

The precise definitions of v and T(ω) are listed in
Appendix B. For the purposes with which we concern our-
selves, v may be seen as an nD-dimensional vector that
contains information on how an incident wave interacts with
each mode of the string, to first order. This is readily seen by
noticing that the amplitude to lowest order (33) is given by
iE∗(k, ι)E (k′, ι′)v†(k) · v(k′).

On the other hand, T(ω) may be regarded as an
nD × nD symmetric matrix quantifying the internal struc-
ture of the theory, being the object wherein to look for
a perturbative parameter. This object has a rich struc-
ture, which we will study thoroughly in the following
subsections.

214102-5



FERNANDO LUND AND BRUNO SCHEIHING H. PHYSICAL REVIEW B 99, 214102 (2019)

1. Finiteness of the theory

In previous works studying the problem of phonon scatter-
ing by dislocations [23], a renormalization procedure was nec-
essary to guarantee a finite result at every order in perturbation
theory. Specifically, one may be worried that the integral (B6)
involved in the definition of T may diverge:

F (n, n′) ≡ μbMkl√
ρ

∫
d3k

(2π )3
klkl ′

∫ L

0
ds sin

(nπs

L

)
eik3s

×
[

δkk′ − k̂k k̂k′

ωT (k)2 − ω2 − iε
+ k̂k k̂k′

ωL(k)2 − ω2 − iε

]

×
∫ L

0
ds′ sin

(
n′πs′

L

)
e−ik3s′ μbMk′l ′√

ρ
, (36)

where ε is a positive infinitesimal and ki ≡ k · êi. This object
may be regarded as a correction to the propagator of the string
modes, as it only involves indices labeling these states.

It turns out that one can perform the integration over
|k| by employing the prescription defined by ε. After doing
some residue calculus and performing the integral over the
azimuthal angle, one finds

F (n, n′) = iω3 μ2b2

8πρ

∫ L

0
ds

∫ s

0
ds′

∫ 1

0
du (1 − u2)

×
[

sin
(nπs

L

)
sin

(
n′πs′

L

)
+ (n ↔ n′)

]

×
[

1 + u2

c5
T

ei(s−s′ )ωu/cT + 1 − u2

c5
L

ei(s−s′ )ωu/cL

]
.

(37)

As expected [23], the real part of (37) vanishes as ω → 0
faster than the imaginary part, which goes as ω3 at low
frequencies. Furthermore, it is manifestly finite at all frequen-
cies, as every piece of the integrand is bounded.

2. Low- and high-frequency behavior

It is instructive to explore the behavior of the preceding
formulas in the low-frequency limit ωL/c ∝ kL 
 1 to see
whether this result is consistent with previous findings. As F
is finite and nonzero for small ω, we may simply evaluate
it at ω = 0 and only keep the leading factor ω3. To further
simplify matters, we will only take into account the dominant
contribution to scattering at large wavelengths: n = n′ = 1.
We then obtain

Tω
cT /L � iω3 μ2b2L

mρω2
1c5

T

4

5π3

[
1 + 2

3γ 5

]
, (38)

where we have also approximated ω2
1 − ω2 ≈ ω2

1 in the de-
nominator. This is exactly what was inferred in previous
papers [23] for the value of this operator, thus verifying that T
is purely imaginary at low frequencies.

Now we may infer the perturbative parameter involved in
expression (35) at low frequencies. As it turns out, Eq. (38)
is proportional to (ωL/cT )3. Although it might not be the
fundamental constant we could have hoped for (analogous to
the fine-structure constant), it is physically sound: the larger

the characteristic wavelength of a wave packet, the less it is
affected by dislocations.

On the other hand, in the high-frequency limit the integrals
in (37) vanish as the integrand turns highly oscillatory. This
result is generically known as the Riemann-Lebesgue lemma.
If one performs a change of variables s = xL and then takes
L → ∞, one concludes that the integrals should vanish on
the same grounds. However, this assumes that we leave n, n′
as constants, which is not of much physical interest. If we
instead take kz ≡ nπ/L fixed when L goes to infinity, we
recover a continuum of modes in an infinitely long string, and
as the system gains a translation symmetry along the z axis,
wave-number conservation along this direction emerges in
the scattering amplitudes. Mathematically, this feature arises,
again, due to the Riemann-Lebesgue lemma, as the integrand
becomes highly oscillatory unless the wave numbers ωu/cι

are equal. A detailed study of this regime will be undertaken
in future work.

3. Intermediate region: A numerical analysis

To study the behavior of the amplitude (35), or equivalently
the cross section, in the regime where the frequency ω is
close to the resonant frequencies of the string we will resort to
numerical computations. For these purposes, we find it more
instructive to define a dimensionless frequency ν ≡ ωL/cT

and write T as

T = ρb2L2c3
T

mcιcι′
w†(k) · iν

1 − T(ω)
· w(k′)

× k̂l Mklει(k)k k̂′
l ′Mk′l ′ει′ (k′)k′ei(k′−k)·x0 , (39)

where w is a nD-dimensional vector with entries

[w(k)]n ≡ nπ

L
cT

√
ω2

n − ω2

eiL(k·ê3 )+inπ − 1

(Lk · ê3)2 − (nπ )2
. (40)

Thus, we see that the usual scattering amplitude f such that
dσ/d� = | f |2 is given by

f (ω, k, k′) ≡ ρb2Lc4
T

2πm
√

c5
ι c3

ι′

w†(k) · iν2

1 − T(ω)
· w(k′)

× k̂l Mklει(k)k k̂′
l ′Mk′l ′ε

∗
ι′ (k

′)k′ei(k′−k)·x0 , (41)

where the vectors k, k′ satisfy ω = |k|cι = |k′|cι′ .
To show an example of this, Fig. 2 shows the absolute

value of the longitudinal to longitudinal scattering amplitude
for a range of frequencies in a typical scattering event. From
low frequencies until the first resonance ω1 the angular dis-
tribution is concentrated around the ê1 − ê2 plane. However,
after the first resonance the cross section starts experiencing
the effects of the incident direction, obtaining asymmetric
patterns with respect to ê3. Similar results can be obtained
for cross sections involving transverse polarization; the main
difference is that the angular distribution changes because of
the different polarization directions of the incident wave.

Having the differential scattering cross section for the
scattering of phonons by dislocation segments, the next step
is to compute the total cross section for a given mode of
transmission. This is obtained by integrating over all outgo-
ing modes of polarization and momenta consistent with the

214102-6



SCATTERING OF PHONONS BY QUANTUM-DISLOCATION … PHYSICAL REVIEW B 99, 214102 (2019)

FIG. 2. Absolute value of the scattering amplitude | f | for phonons by dislocation segments for nD = 10, γ = 2, ln(δ/δ0 ) = 3, with both
incident and outgoing phonons having longitudinal polarization, as a function of the outgoing direction k̂. The ingoing direction was set
to k̂′ = (1/2, 1/2, 1/

√
2). Different values for the incident frequency are shown in different plots. The coordinates (x, y) correspond to the

directions (ê1, ê2) respectively. The plots are to scale with respect to each other. Note that at low frequencies there is an up-down symmetry
that is lost when ν is gradually increased above ≈2π , that is, at frequencies higher than the second string resonance, which is the first that can
distinguish ê3 from −ê3 and is thus sensitive to the direction of incidence k̂′.

kinematical restrictions. In this case, these restrictions amount
to energy conservation. However, the resulting cross section
depends on the incident distribution of polarization, which is
particularly relevant in the case of transverse polarization. In
a general situation, given an initial density matrix ρ̂0

k,T for
the transverse modes of wave number k, we can compute the
fraction of scattered phonons as

tr
(
U ρ̂0

k,T U †P{k′:k′ �=k}
)
, (42)

where P{k′:k′ �=k} is an orthogonal projector to the space of
all single-particle states with wave number different than k,
which plays the role of selecting the scattered piece of the
time-evolved state.

Dividing the result by the incident flux, it is not difficult
to see that for an unpolarized incident beam of transverse-
polarized phonons, the total cross section is given by

σT (k) = πL2

2

(
ρb2

2πm

)2

(|k̂ × ê3|2 − 4(k̂ · ê1)2(k̂ · ê2)2)

×
∫ 1

−1
du

[
(1−u4)

∣∣∣∣w†
T (u, ν)

ν2

1−T(ω)
wT (k̂ · ê3, ν)

∣∣∣∣
2

+ (1 − u2)2

γ 5

∣∣∣∣w†
L(u, ν)

ν2

1 − T(ω)
wT (k̂ · ê3, ν)

∣∣∣∣
2
]
,

(43)

where {êi}i is the orthonormal basis used to describe the string,
and we have defined

[wT (u, ν)]n ≡ nπ

L
cT

√
ω2

n − ν2c2
T /L2

eiuν+inπ − 1

u2ν2 − (nπ )2
, (44)

[wL(u, ν)]n ≡ nπ

L
cT

√
ω2

n − ν2c2
T /L2

eiuν/γ+inπ − 1

u2ν2/γ 2 − (nπ )2
(45)

as a function of the dimensionless frequency ν and the angle
of the corresponding wave number k′ with respect to the axis
of the string u = k̂′ · ê3. Similarly, in the case of longitudinal
polarization we have

σL(k) = πL2

γ 3

(
ρb2

2πm

)2

(4(k̂ · ê1)2(k̂ · ê2)2)

×
∫ 1

−1
du

[
(1 − u4)

∣∣∣∣w†
T (u, ν)

ν2

1 − T(ω)
wL(k̂ · ê3, ν)

∣∣∣∣
2

+ (1 − u2)2

γ 5

∣∣∣∣w†
L(u, ν)

ν2

1 − T(ω)
wL(k̂ · ê3, ν)

∣∣∣∣
2
]
.

(46)

Plots of these results are shown in Fig. 3.
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FIG. 3. Surface plot of the scattering cross sections σT and σL in log-linear scale, as a function of frequency and angle of incidence, for
phonons by oscillating dislocation segments of finite length. In the figure, nD = 10, γ = 2, and ln(δ/δ0 ) = 3. Furthermore, we have defined
cos θ = k̂ · ê3 and chosen |k̂ · ê1| = |k̂ · ê2| as a representative instance of these quantities. Note the rich behavior of the cross sections as a
function of frequency, in contrast with the linear-in-frequency behavior inferred from the scattering by an infinitely long, static, dislocation
[1,2].

It is important to stress that the cross section for transverse
polarization is dependent on the particular polarization of
the incident wave, as both the polarization vector ε and
the wave number k must have projections over ê1 or ê2

to get a nonzero result. This can be readily appreciated by

looking at the scattering amplitude (41). For now, and for
all forthcoming purposes, we will proceed using the average
cross section for transverse modes, which is exactly what
one obtains with circular polarization, or with unpolarized
phonons.
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As a final note on this section, let us comment on the role of
the cutoff nD. Typically, it should be chosen so that the wave
number nDπ/L matches the Debye wavelength. However, if
one is interested in making predictions at frequencies below a
given eigenfrequency of the string ωn∗ , it is possible to choose
the cutoff as n∗ without losing predictive power because the
coupling to distant frequencies ωn in the scattering amplitude
(39) is suppressed by a factor of (ω2

n − ω2)−1, making them
irrelevant if the frequency of interest is well below ωn. In this
sense, the results shown in the plots of Figs. 2 and 3 always
hold (independently of our choice nD = 10), provided that,
roughly speaking, ν<30.

4. Resonances and decay rates

A recurring feature within the expressions for the phonon-
phonon scattering amplitude we have written down so far is
the apparent existence of poles at specific frequencies, namely
at the natural frequencies of oscillation of the string. However,
none of these creates any singularity, as should be obvious
from Fig. 2: the width and height of the peaks in the cross
section is finite. This is related to the fact that phonons at these
frequencies can decay into excited string states, thus avoiding
the resonant behavior of the interaction and giving the peak a
finite width.

Indeed, the interaction between the string and a phonon
with coinciding eigenfrequency will generate asymptotic
states (i.e., those that result from a scattering process) that
assign some probability to having an excited string. Con-
versely, an initially excited string is also an unstable particle,
and it will have a decay rate by emission of phonons, with a
probability amplitude equal to the phonon-string decay up to
an overall sign.

For instance, the decay rate of an excited string may be
evaluated by the same means that we evaluated the phonon-
phonon cross sections. The object of interest is

〈 f |i〉 = 〈0|aι(k)T exp

[
− i

h̄

∫ ∞

−∞
HI (t )dt

]
a†

n|0〉 , (47)

which after a completely analogous process, in terms of the T
matrix 〈 f |i〉 = (2π )δ(ωι − ωn)T , gives

T = (iE (k; ι)v(k))† · T(ω)

1 − T(ω)
· (Gnen), (48)

where we have defined Gn ≡ nπ/
√

mL3ωn and en as a unit
vector in the nD-dimensional space on which T acts, with
a nonzero component for the nth mode only. Since T(ω)
commutes with [1 − T(ω)]−1, we can write unambiguously

T(ω)
1−T(ω) ≡ T(ω)[1 − T(ω)]−1 = [1 − T(ω)]−1T(ω). The am-
plitude of the inverse process (phonon to string) is given by
interchanging the roles of iEv and Gnen.

Finally, the rate of spontaneous emission for excitations of
the string in its mode n is given by

�n = ω2
n

4π2

∑
ι

1

c3
ι

∫
d�|T |2, (49)

with T given by (48), which gives the typical lifetime of an
excited string.

The converse process, i.e., the absorption of a phonon by a
dislocation segment, is also allowed, and as such it contributes

to the total cross section of a phonon traveling through the
solid. However, since this scattering process will be subject
to energy conservation, the corresponding amplitude will be
either zero or formally infinite via the presence of the Dirac
delta. Therefore, it will not contribute to the bulk thermal
conductivity: if the amplitude is zero, the total cross section
will be described purely by phonon-phonon processes, and if
it is infinite, then that specific mode channel will contribute
zero, which renders it irrelevant as we have a continuum of
modes of transmission available, although the situation should
change in the presence of a continuous distribution of lengths,
because in this situation absorption to a continuum of modes
will be possible, and thus the macroscopic observables, such
as the thermal conductivity, should be modified.

C. Dislocations in a mesoscopic medium

In this section we discuss some methods and approxima-
tions that should be useful for dealing with a dislocation-filled
medium from a mesoscopic perspective. First we will write
down an expression useful in situations where the scattering is
well approximated by a single interaction with a dislocation,
imposing that these interactions should, on average, behave
as if the medium were homogeneous and isotropic. We also
present a compact expression for the propagator in this ap-
proximation. Then we proceed to outline the general situation,
where this approximation may or may not hold true.

1. An effective mass operator for weak and independent scattering

In many realistic situations, we will have randomly dis-
tributed dislocations within the solid. Therefore, if we want
to make practical predictions on phonon scattering within a
solid, we must account for this in some way. The weak and
independent scattering approximation [31] provides a solution
to this problem: average the T matrix over the internal degrees
of freedom of the system. In this case, we will average over
the dislocation position x0 and orientation (ê1, ê2, ê3). For
computational simplicity, however, we will keep a unique
string length.

It should be clear from Eq. (33) that averaging over the
position x0 of the string will give a Dirac delta in momentum
space, thus enforcing momentum conservation by demanding
the sample to have a homogeneous distribution of dislo-
cations. The result of averaging over dislocation directions
should then yield an isotropic result, and since δi j and k̂ik̂ j

are the only rank-2 tensors available, it should be possible to
express the average T matrix, T̄ , as

T̄ = i(2π )3δ(3)(k − k′)ει(k)iει′ (k′) j
nd Lμ2b2k2

8mρω

×
(

(δi j − k̂ik̂ j ) trnD

[
FT (k, ω)

1 − T(ω)

]

+ k̂ik̂ j trnD

[
FL(k, ω)

1 − T(ω)

])
, (50)

where nd is the dislocation number density and trnD stands for
taking the trace over the different modes of excitation of the
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string. Once the angular average is performed, one obtains

[FT ]n′n = nn′π2√
ω2

n − ω2
√

ω2
n′ − ω2

∫ 1

−1
du(1 − u4)

× eikLu(−1)n′ − 1

(kLu)2 − (n′π )2

e−ikLu(−1)n − 1

(kLu)2 − (nπ )2
(51)

and

[FL]n′n = nn′π2√
ω2

n − ω2
√

ω2
n′ − ω2

∫ 1

−1
du 2(1 − u2)2

× eikLu(−1)n′ − 1

(kLu)2 − (n′π )2

e−ikLu(−1)n − 1

(kLu)2 − (nπ )2
. (52)

The details of these computations are presented in
Appendix A. These results are consistent with those of
previous works [20,22,23] in the large wavelength limit
kL 
 1, and furthermore completely define the scattering
amplitude.

Now we may derive a macroscopic mass operator for
the phonon dispersion relation from this effective scattering
amplitude. Usually one defines the mass operator � as the
operator that solves the Dyson equation:

〈G〉 = [(G0)−1 − �]−1, (53)

where G0 is the Green’s function for the elastic continuum
without dislocations, which (up to normalization) we write as

(G0)−1
i j = −ω2δi j + c2

T k2(δi j − k̂ik̂ j ) + c2
Lk2k̂ik̂ j, (54)

and 〈G〉 is an effective Green’s function, that results from
performing the averages just described. By inspecting the
time-ordered two-point function associated to the amplitude
(25) we find that if we define a reduced amplitude T̄i j through

T̄ = i(2π )3δ(3)(k − k′)
ει(k)iε

∗
ι′ (k

′) j

2ω
T̄i j (55)

then the effective Green’s function is given by

〈G〉i j = G0
i j + G0

ik T̄kl G
0
l j . (56)

However, this considers single scattering through a single
mesoscopic region in space. If we take this, as we stated
earlier, to represent a single (effective) scattering process, this
would just be the first term for a macroscopic Born series,
which would read

〈G〉i j = G0
ik

∞∑
n=0

[(T̄ G0)n]k j

= [(G0)−1 − T̄ ]−1, (57)

from where we get the macroscopic mass operator as

�i j = T̄i j

= nd Lμ2b2k2

4mρ

(
(δi j − k̂ik̂ j ) trnD

[
FT (k, ω)

1 − T(ω)

]

+ k̂ik̂ j trnD

[
FL(k, ω)

1 − T(ω)

])
, (58)

which represents, as the name suggests, a frequency-
dependent mass term to be added to the Green’s function. It

should be noted that it also includes dissipative terms coming
from the interaction with the strings.

In order to illustrate this result, and given that the spirit
of the approximation is to model an elastic medium at a
mesoscopic scale, let us take nD = 1. This is justified as long
as the elastic waves of interest have wavelengths larger than
L, or equivalently frequencies below cT /L.

The dispersion relation that determines how elastic waves
propagate is given by the poles of the effective Green’s
function 〈G〉. Because FT , FL, and T are generically complex-
valued, one can expect dissipative effects to emerge. More-
over, by simple inspection one can determine that the presence
of dislocations changes the sound speed at arbitrarily low
wave number/frequency. The effective sound speeds at very
long wavelengths kL 
 1 are given by

c2
T,eff = c2

T

(
1 − 8

5π2

nd Lc2
T

ω2
1

ρb2

m

)
, (59)

c2
L,eff = c2

L

(
1 − 32

15π2

nd Lc2
L

γ 4ω2
1

ρb2

m

)
, (60)

which are exactly those found with the classical theory in
previous works [22] in the ω → 0 limit.

To find the full dispersion relation, we solve for the location
of the poles numerically, and present the results in Fig. 4.
These were computed searching for the propagative solution
of the poles, i.e., that with the lowest value for Im[k(ω)].
The curves shown have been smoothed by a Savitzky-Golay
filter. In the case of transverse wave propagation, we also
present, with discontinuous lines, the dispersion relation for
evanescent waves that appear because of having a complex
dispersion relation.

We start discussing the propagative solutions. Qualitatively
speaking, at frequencies below the first resonance the sound
speed of the medium decreases and the medium gets increas-
ingly dissipative as the frequency is increased. A maximum
is reached in the imaginary part of the wave number at a
frequency close to that of the first resonance peak of the
scattering amplitude, at which point the real part of the wave
number crosses the line of the free theory dispersion relation,
and then starts moving away from the resonant behavior,
reapproaching the free theory behavior at larger frequencies.
However, if the frequency is further increased, one should
expect the effects of the next resonance peaks to kick in.

At first sight in Fig. 4, the group velocity ∂ω/∂k appears
to exceed the free theory sound speed at frequencies close to
the resonance peak. However, as Jackson points out in his
classic textbook [32], the notion of group velocity through
∂ω/∂k is well defined when the variation of the refraction
index n(ω) is small, a condition that is utterly demolished in
regions of anomalous dispersion, which is exactly the case at
hand. Therefore, one should not worry about the apparently
causality-violating behavior of Re[k(ω)] that would appear
around the resonance peak if one took the group velocity
definition as meaningful for all frequencies.

Finally, we point out that the presence of evanescent waves
for transverse polarization and not for longitudinal polariza-
tion in the range of frequencies/wave numbers explored in the
plots is mostly due to the dislocations having combinations
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FIG. 4. Numerical solution of the dispersion relation k(ω) for
the propagation of phonons through a medium with many, randomly
located and oriented, dislocation segments for different values of
the dislocation density nD. In the plots, we have set γ = 2 and
ln(δ/δ0) = 3. Note that shear phonons are more strongly affected
that longitudinal phonons. The propagative solutions are plotted with
continuous lines and the evanescent waves with discontinuous lines.
See text for a discussion.

of eigenfrequencies/eigenstates that resemble more closely
ω = kcT than ω = kcL. This is because in ωn = nπ

L cd , we
can identify nπ

L as the wave number, and cd will always
satisfy cd <

√
2cT (in the plot, cd≈1.18cT ). Therefore, for

longitudinal waves it is less common to satisfy ω ∼ ωn and
k · ê3 ∼ nπ

L simultaneously than for transverse waves. Thus,
as longitudinal waves will consequently have fewer interac-
tions with the dislocations, their dispersion relation is less
affected. Nonetheless, evanescent solutions should also exist,
albeit with a shorter decay length. In this sense, increasing
the dislocation density makes it possible to have states that
are more extended throughout the solid, as one might have
intuited from the beginning.

Further analysis of the critical dislocation density nd L3, at
which the propagating waves’ dispersion relation intersects
with that of evanescent waves, remains pending for future
projects. It would be of interest to explore links, if any, and
possible research directions, with metamaterials, by trying
to tune the mass operator we have just derived to serve a
specific purpose. On the other hand, it is possible that in such
contexts, or in the present context, the weak and independent
scattering starts to deviate from the physical phenomena,
precisely because of a high dislocation density that makes
independent scattering unfeasible.

Therefore, we feel compelled to at least outline what a
more general situation would be, and how the quantities that
previously led to the mass operator would be computed.

2. Many dislocations: General case

Formally, we may write the interaction Hamiltonian for a
medium with many dislocations as

HI =
∫

x0,L,b,�
f (x0, L, b,�)

∫ L

0
ds μbMkl (�)

×∂uI
k

∂xl
(x0 + sê3(�), t )X I (s, t ; x0, L, b,�), (61)

where f (x0, L, b,�) is some distribution of positions x0,
lengths L, Burgers vector magnitude b, and orientation � char-
acterizing the triad defined by the equilibrium position of the
string and the direction of the Burgers vector b̂. This translates
into new commutation relations for the mode operators of the
string, which now are also a function of x0, L, b,�:

[an(x0, L, b,�), a†
m(x′

0, L′, b′,�′)]

= δnmδ(3)(x0 − x′
0)δ(L − L′)δ(b − b′)δ(� − �′) (62)

with the other commutators vanishing.
In this setting, we now have a dislon field

X (s, t ; x0, L, b,�) over the parameters of the string, with
f (x0, L, b,�) describing how the field is arranged and how
the positions x0 are correlated with the other variables.

Even though this may seem to be significantly more com-
plicated than what we have previously studied, some general-
ities are at hand. For instance, it is fairly easy to see that the
effective propagator F (n, n′) is now promoted to a function of
not only the mode of each interacting string, but also of their
position, orientation, and characteristic lengths. Concretely,
we have

F = iω3 μ2bb′Mik (�)M jl (�′)
4π2ρ

f (x0, L, b,�) f (x′
0, L′, b′,�′)

×
∫

d�+ k̂k k̂l

∫ L

0
ds

∫ L′

0
ds′ sin

(nπs

L

)
sin

(
n′πs′

L′

)

×
[

δi j − k̂ik̂ j

c5
T

ei|x0−x′
0+sn̂(�)−s′n̂′(�′ )|ω cos θ/cT

+ k̂ik̂ j

c5
L

ei|x0−x′
0+sn̂(�)−s′n̂′(�′ )|ω cos θ/cL

]
(63)

as a function of all the aforementioned variables. Here the
unit vectors n̂, n̂′ point along the direction in which the
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string is laid out. The differential d�+ indicates to integrate
over the upper hemisphere cos θ>0 only, and k̂ is the unit
vector that spans the surface of the corresponding sphere.
The integrals are less manageable than before because there
is no particular alignment between the direction defined by
x0 − x′

0 + sn̂(�) − s′n̂′(�′) and the local orientation matrices
Mik (�).

The complexity in dealing with this object resides in that
the product of operators that we used earlier was a standard
matrix product. However, now we have to deal with degrees
of freedom that are continuous, and thus these products are, in
general, operations of the sort

F3(x, y) =
∫

z
F1(x, z)F2(z, y), (64)

and thus the inverse operation appearing in the final scattering
amplitude, [1 − T(ω)]−1, must be taken with respect to all the
operations that are involved in taking products between ef-
fective propagators F . Finding analytic expressions for these
objects is highly nontrivial in general.

Nonetheless, if we consider a situation with a finite number
of dislocations, each with its own properties, the situation
becomes somewhat more tractable: the products between
T(ω) again reduce to matrix products, in a vectorial space of
dimension nD × N with N the number of dislocations in the
solid.

All computations in this section have been performed with
the interaction (26), which is quadratic in the fields. We now
go to the next level.

V. CUBIC INTERACTIONS

Even though the quadratic term in Sint fully captures the
usual Peach-Koehler force, the fact that this comes from an
action principle naturally suggests higher-order couplings. As
a starting point, in this section we consider the cubic interac-
tions, which give rise to scattering of phonons by strings with
an energy transfer from one to the other. These are given by

H (3)
I (t ) = μb

∫ L

0
ds Mkl

∂2uI
k

∂x1∂xl
((0, 0, s), t )[X I (s, t )]2. (65)

Even though one could also study the corrections to the mass
operator that arise from these terms, we shall postpone that
discussion for Sec. VI, where we will treat them inside a
broader context of quantum-mechanical corrections.

For simplicity, we shall take x0 = 0 throughout this sec-
tion, and denote ωι ≡ ωι(k) where a prime on the polarization
index will also imply a prime on the wave number. Since the
final purpose of this section will be to study in what regime
one would expect the interactions of phonons by dislocations
to compete with the cubic self-interactions of phonons, we
will include the quadratic theory only to the lowest com-
parable order in the perturbative expansion that generates
the processes of interest. The complete result, however, will
include (at least once per process) a [1 − T(ω)]−1 factor for
each external particle (be it a phonon or a dislon) involved in
the corresponding scattering process, accounting for the full
extent of the quadratic interactions.

We now proceed to examine the processes of phonon
scattering by excited strings and compare them to the effects

of cubic elastic nonlinearities. In between, we will take the
opportunity to explore what the scattering cross sections look
like in the presence of a thermal distribution for one of the
particles involved in each process.

A. Scattering of a phonon by an excited string

Consider the process of an ingoing elastic wave with
wave number k′ scattering with the string and producing an
outgoing elastic wave with wave number k, but this time
accounting for an excitation of the string in the initial state.
This is described by

〈 f |i〉 = 〈0|aι(k)T exp

(
− i

h̄

∫ ∞

−∞
dt HI (t )

)
a†

ι′ (k
′)a†

n|0〉 . (66)

We can now repeat the process of computing the scattering
amplitude as before by expanding the S matrix in powers of
b. The result is found to be given by 〈 f |i〉 = 2π δ(ωι − ωι′ −
ωn) T , with

T = −iE∗(k; ι)E (k′; ι′)

√
h̄

(mL)3ωn

×
nD∑

n′=1

4π3n′3

L3

[
(k · ê1)/(k · ê3)

ω2
n′ − ω2

ι′

eiL(k′ ·ê3 )−in′π − 1

(k′ · ê3)2 − (
πn′
L

)2

× e−iL(k·ê3 ) − 1

(k · ê3)2 − (
2πn′

L

)2 + (k ↔ −k′)

]
. (67)

Just as the mass operator of the phonon exhibits resonances
at the natural frequencies of the string, resonant scattering
of a phonon by a string through cubic interactions is also
possible. One only needs to notice the (ω2

n′ − ω2
ι′ ) factor in

the denominator of the previous amplitude, which provides a
distinctive signal to compare with other types of scattering.
However, it is possible to argue that the exact result, in
analogy with what we obtained for the quadratic theory, will
have resonance peaks of finite width.

Let us note that the opposite process, i.e., having a phonon
lose energy to a string, is also possible and has a scattering am-
plitude with similar behavior. The corresponding amplitude is
given by

〈 f |i〉 = 〈0|anaι(k)T exp

(
− i

h̄

∫ ∞

−∞
dt HI (t )

)
a†

ι′ (k
′)|0〉 , (68)

and analogously the T matrix is given by

T = iE∗(k; ι)E (k′; ι′)

√
h̄

(mL)3ωn

×
nD∑

n′=1

4π3n′3

L3

[
(k′ · ê1)/(k′ · ê3)

ω2
n′ − ω2

ι

e−iL(k·ê3 )−in′π − 1

(k · ê3)2 − (
πn′
L

)2

× eiL(k′ ·ê3 ) − 1

(k′ · ê3)2 − (
2πn′

L

)2 + (k ↔ −k′)

]
. (69)

Nonetheless, for the preceding computations to be of inter-
est in a typical setting, we should compare the typical mag-
nitude of the cross section for phonon scattering by a string
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versus phonon scattering by phonons, given by the cubic term
in the energy density of a continuous elastic medium.

B. Phonon-phonon-phonon scattering

Let us recall [33] that the cubic term in the energy density
of a continuous solid may be written as

H (3)
elastic =

∫
d3x cpqmrst

∂um

∂xq

∂up

∂xr

∂us

∂xt
. (70)

Using the standard techniques employed so far, a quick com-
putation for the amplitude of two incident phonons with wave
number k1, k2 and an outgoing phonon with wave number k
yields

〈 f |i〉ph3 = (2π )4δ(4)(k − k1 − k2)

√
h̄

8ρ3ωιωι1ωι2

× 6cpqmrst (k · êq)(k1 · êr )(k2 · êt )

× ει(k)mε∗
ι1

(k1)pε
∗
ι2

(k2)s, (71)

where δ(4)(k − k1 − k2) = δ(ωι − ωι1 − ωι2 )δ(3)(k − k1 −
k2) enforces overall energy-momentum conservation. In
what follows, we will use Tph3 defined implicitly through
〈 f |i〉ph3 = (2π )4δ(4)(k − k1 − k2)Tph3 .

However, in order to make a comparison with the scattering
amplitude by a string it is necessary to include a distribution
of phonons to scatter against, as the dimensionality of the
Dirac delta prevents us from making a direct comparison
between the constants of the problem. Even though we could
simply substitute it with a volume factor, this presents us with
the opportunity to write down cross sections through thermal
distributions.

C. Behavior at finite temperature

Although our present interests encourage us to explore
scattering of phonons through some distribution, the prospect
of writing down the cross section of an incident wave on a
solid at finite temperature T should be rather attractive. Let
us take an initial state characterized by a density matrix of
thermodynamic equilibrium at chemical potential μ̄ in the
grand canonical ensemble for the strings

ρ̂0 = a†
ι′ (k

′)|0〉〈0|aι′ (k′)

〈0|aι′ (k′)a†
ι′ (k

′)|0〉 ⊗ e−β
∑nD

n=1(h̄ωn−μ̄)a†
nan

tr[e−β
∑nD

n=1(h̄ωn−μ̄)a†
nan ]

, (72)

where β = (kBT )−1, and ⊗ is the tensor product between
the Hilbert spaces of the string and phonon states. To make
progress, it is helpful to write the exponential in terms of the
string eigenstates:

e−β
∑nD

n=1(h̄ωn−μ̄)a†
nan =

∑
{Ni}nD

i=1

e−β
∑nD

n=1(h̄ωn−μ̄)Nn

× |N1, . . . , NnD〉〈N1, . . . , NnD | , (73)

where the sum over {Ni}nD
i=1 represents the sum over all occu-

pation numbers Ni for each mode of the string i ∈ {1, . . . , nD}.
Proceeding as we did before, the cross section for outgoing
phonons scattered through a process with scattering amplitude

(67) will be given by

dσ = d3k

cι′ (2π )3
tr
(
U ρ̂0U †|k, ι〉〈k, ι| ⊗ InD

)
, (74)

where InD is the identity operator on the Hilbert space of the
string. This in turn implies

dσ = d3k

cι′ (2π )3
trstring

⎡
⎣ ∑

{Ni}nD
i=1

e−β
∑nD

n=1(h̄ωn−μ̄)Nn

× 〈k, ι|U |N1, . . . , NnD〉 ⊗ |k′, ι′〉

× 〈N1, . . . , NnD | ⊗ 〈k′, ι′|U †|k, ι〉
⎤
⎦ (75)

and thus, if we only keep track of the processes that originate
by (67), we get

dσ

d�
=

∑
{Ni}nD

i=1

e−β
∑nD

n=1(h̄ωn−μ̄)Nn

×
nD∑
i=1

Ni
(ωι′ + ωi )2

4π2cι′c3
ι

|T |2ωι=ωι′+ωn
, (76)

where the Ni factor comes from selecting one of the creation
operators in the states

|N1, . . . , NnD〉 ≡ (a†
1)N1 . . . (a†

nD
)NnD√

N1! . . . NnD !
|0〉 (77)

and normalizing appropriately when taking the trace.
Now one may execute the sum over the occupation num-

bers as usual in statistical mechanics. The resulting cross
section would be

dσ

d�
=

nD∑
n=1

|T |2ωι=ωι′+ωn

e(h̄ωn−μ̄)/kBT − 1

(ωι′ + ωn)2

4π2cι′c3
ι

(78)

with T given by (67). Here we have assumed that the disloca-
tions are in thermodynamic equilibrium with some reservoir
at temperature T and chemical potential μ̄, but not with
the phonons. That is, we have neglected the effects of the
interaction for this estimate.

On the other hand, the scattering of phonons under similar
assumptions gives

dσ

d�

∣∣∣∣
ph3

=
|Tph3 |2 k2 = k − k1

ωι2 = ωι − ωι1

eh̄(ωι−ωι1 )/kBT − 1

V ω2
ι

4π2cι1 c3
ι

K (k, k1; {cιi}),

(79)
where K (k, k1; cιi ) is a kinematical factor arising from the
restrictions imposed by energy-momentum conservation (de-
tails are given in Appendix C), and V is the volume of the
solid. Given that the volume of the solid is an extensive
quantity that does not depend on the specific constitution of
the solid, if there is only one dislocation present we could
always consider a “large volume” limit and neglect the effects
of the dislocation. Therefore, a meaningful comparison will
arise only if we let the dislocations increase in number with
the volume of the solid. Thus, the appropriate comparison
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between T matrices is Tph3 versus
√

ndT , where nd is the
dislocation number density.

To compare them, we will assume cpqmrst to be of the same
order as μ, and take a situation in which the incident and
outgoing frequencies are not too close to the resonances ωn,
so that (67) holds as written. This is because the exact result
will contain higher-order terms that after resummation should
render the peaks at ωn finite, in analogy with what happens in
(35).

Given that the temperature enters the differential cross
sections in the same manner in both (78) and (79), we can
take the corresponding factors to be equal as long as we are
interested in asymptotic states with the same ingoing and
outgoing frequencies in both situations. A rough estimate
gives

Tph3 ∼ μk3

√
h̄

ρ3ωιωι1ωι2

(80)

and, assuming that the preponderant eigenfrequency of the
string in the scattering process is ω1,

T ∼
√

h̄nd

(mL)3ωιωι′ωn

μ2b2L2

ρ

k3

ω2
1

, (81)

one thus obtains that the scattering by excited strings should
dominate provided that

nd L3 � b2/L2. (82)

Note that this estimate depends only on the intrinsic char-
acteristics of the dislocation: their “aspect ratio” b/L and
density completely determine whether scattering by disloca-
tions should dominate or not. This can be traced back to
the fact that the characteristic time scales of dislocations are
not independent of the properties of the elastic medium. In
fact, a close look at the eigenfrequencies of the string reveals
that ωn = nπcT

L O(1), where the O(1) number is given by√
2(1 − γ −2)/(1 + γ −4). Thus, the only sensitivity of (82) on

the characteristics of the material is, aside from b, through γ ,
and is a rather weak one.

Therefore, if there is a high density of scatterers compared
to the aspect ratio of the dislocations, it would be expectable
that string dislocations represent the dominant contribution to
the phonon cross section, without a strong dependence on the
material at hand (apart from the value of b). For example,
if we take a Burgers vector b = 0.5 nm and a dislocation
length L = 50 nm, we have that phonon-dislocation scattering
will dominate over phonon-phonon scattering for dislocation
densities � = nd L∼108 cm−2, which is, in the opinion of the
authors, a very modest bound.

All of the previous results could have been obtained
through a careful classical analysis of the original action
integral S. Now we turn to some intrinsically quantum-
mechanical effects that may be reflected on different observ-
able quantities.

VI. QUANTUM CORRECTIONS

As was mentioned earlier, the action integral Sint discussed
prior to Sec. V only includes quadratic terms. However, the

starting point is

Sint = −bi

∫
dt

∫
δS

dS jσi j . (83)

If we perform a Taylor expansion of σi j (sτ̂ + r �X ) about
the equilibrium position of the string r = 0 (r, s being the
coordinates parametrizing δS), we obtain

Sint = −bi

∫
dt

∫
δS

dS j

[ ∞∑
n=0

ci jkl
∂n+1uk

∂xn
1∂xl

rn

n!
X n

]

= −μbMkl

∫
dt

∫ L

0
ds

[ ∞∑
n=0

∂n+1uk

∂xn
1∂xl

X n+1

(n + 1)!

]
, (84)

which gives further couplings between phonons and string
dislocations. These terms will make a phonon be able to
interact with several modes of the dislocation in a single-
scattering event at the same time.

For the moment we will only deal with the effects of these
additional terms in action integral on the scattering of phonons
by a string to lowest order in the amplitude of the interaction,
which schematically would be O(b2) (as we have shown
earlier that this is not the true perturbative parameter, at least
in the quadratic theory). The main difference of this section
with our earlier computations is that now the internal structure
of the scattering will get richer. Namely, “loop” contributions,
as one would call them in quantum field theory, will emerge
when performing “contractions” (i.e., pairings through Wick’s
theorem when computing the quantum expectation value) of
fields in the interaction Hamiltonians with themselves.

A. Phonon-phonon amplitude

The object of interest is the same as in Sec. IV, and given
by Eq. (25),

〈 f |i〉 = 〈0|aι(k)T exp

[
− i

h̄

∫ ∞

−∞
HI (t )dt

]
a†

ι′ (k
′)|0〉 ,

only now we have a more complex Hamiltonian HI . However,
it is still linear in u, and therefore the factors E (k; ι) are still
present. This only leaves the aforementioned loop contribu-
tions yet to be accounted for. If n, n′ denote indices in the sum
of the interaction picture Hamiltonian derived from (84), we
are left with terms proportional to

(−ik · ê1)n

(n + 1)!

(+ik′ · ê1)n′

(n′ + 1)!

〈
0|TX n+1

I (s, t )X n′+1
I (s′, t ′)|0〉

, (85)

in which the unraveling of the products of creation and
annihilation operators may be performed as a combinatorial
exercise. After doing so, the expressions may be summed back
to obtain

T = − E∗(k; ι)E (k′; ι′)
h̄(k · ê1)(k′ · ê1)

∫ L

0
ds

∫ L

0
ds′

∫ ∞

−∞
dt

× e−i(k·ê3 )s−(k·ê1 )2
(s)/2

× e+iωt [e(k·ê1 )(k′ ·ê1 )
(s,s′,t ) − 1]

× ei(k′ ·ê3 )s′−(k′ ·ê1 )2
(s′ )/2, (86)
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where we have assumed ω �= 0, defined the T matrix through
〈 f |i〉 |O(b2 ) = 2πδ[ωι(k) − ωι′ (k′)]T , and further denoted


(s) ≡ 
(s, s, 0). (87)

We point out to the interested reader the existence of general
formulas in quantum field theory [34] that allow us to infer
this result by looking at the analytic structure of the interaction
Hamiltonian. The reason why this occurs is that the stress ten-
sor σi j appearing in the Lagrangian density may be formally
written as

σi j (sτ̂ + r �X ) = exp[r �X · ∇x]σi j (sτ̂ + x)|x=0

=
[

exp(r �X · ∇x)ci jkl
∂uk

∂xl
(x)

]
x=sτ̂

(88)

and then in momentum space the gradient takes the form of
a wave number, thus showing that the exponentials contained
in (86) are accounting for precisely this structure. These ex-
ponentials are preserved along the result because performing
the contractions of Eq. (85) is equivalent to computing an
expectation value over a Gaussian probability distribution,
and thus the outcome naturally involves exponentials of the
propagators.

It is important to stress that Eq. (86) contains the full extent
of the quantum corrections to the phonon-phonon scattering
amplitude implied by the action integral (84), to the lowest
order in the amplitude of the interaction, as the propagators in
the exponential are proportional to h̄. Indeed, one may treat
(86) as a power series on h̄, where the zeroth-order term gives
the contribution of the quadratic theory and the subsequent
terms reveal quantum-mechanical effects. It is interesting to
note that at this point a new characteristic length emerges:
the product of quantities that give the string propagator its
dimensions. Simple inspection gives that

dq ≡
√

h̄

ρb2cT
∼

√
h̄

mLω1
(89)

plays a similar role to L regarding how large the corrections
are with respect to the first-order computation. If we plug in
typical numerical values for ρ, b, and cT , for instance, those
of silicon, then we find dq∼10−9 cm.

In the spirit of alleviating the discussion while trying to
keep track of the quantum effects that emerge in the presence
of nonlinear interactions with dislocations, we will now study
the quantum corrections explicitly in the case nD = 1, and to
first order in h̄ for the general case.

B. nD = 1 case: An analytic exploration

Following the approach we have taken thus far, studying a
nD = 1 dislocation segment is equivalent to studying a string
with a single oscillation mode, which may represent a very
short dislocation in units of the interatomic distance of the
crystal. Conversely, imposing it should always give a reason-
able description of the physics at frequencies below cT /L, but
since we are currently exploring quantum corrections, we find
the former to be the most conservative attitude towards this
setting.

Nonetheless, it is the tractability of the computations at
hand that turns our attention towards this particular case. For
instance, the string propagators take simpler forms:


(s) = h̄

mLω1
sin2

(πs

L

)
, (90)


(s, s′, t ) = h̄

mL

e−iω1|t |

ω1
sin

(πs

L

)
sin

(
πs′

L

)
, (91)

and out of convenience we shall define


(s, s′) ≡ h̄

mLω1
sin

(πs

L

)
sin

(
πs′

L

)
. (92)

Using these expressions, the temporal integral in (86) may be
carried out explicitly in terms of incomplete Gamma func-
tions. The relevant result to this is

∫ ∞

−∞
dt eiωt ek1k′

1
(s,s′,t ) = −i

4πω

[
[−k1k′

1
(s, s′)]−ω2/ω2
1 γ

(
1 + ω2

ω2
1

,−k1k′
1
(s, s′)

)

− [−k1k′
1
(s, s′)]ω

2/ω2
1 γ

(
1 − ω2

ω2
1

,−k1k′
1
(s, s′)

)]
, (93)

where γ (a, x) is the lower incomplete Gamma function,
which admits an analytic expansion

γ (a, x) = xa�(a)e−x
∞∑

n=0

xn

�(a + n + 1)
. (94)

Then, what remains is an integral over a bounded domain of
an analytic function, which may be solved numerically for the
values of interest without issue. However, we will not proceed
to do so since for values of practical interest (dq∼10−11 m) we
can carry out a perturbative computation without losing much
accuracy.

Before concluding this discussion, there is one feature of
interest that is worth pointing out: by examining (93), we
see that the result has poles in the frequency variable ω for

each positive multiple of ω1 (i.e., ω = nω1, with n a positive
integer). Therefore, we expect that the scattering cross section
will have resonances at every frequency that is a multiple of
ω1, although their amplitude will be suppressed by factors of
(kdq)2 for every phononic excitation.

In the following subsection we give a concrete estimate of
these corrections, for the general nD case.

C. General O(h̄) corrections

For practical purposes, since most of the time we will have
kdq 
 1, in order to estimate the corrections to the scattering
amplitude due to quantum effects it is sufficient to keep the
first correction to the result of the quadratic theory, which
is proportional to h̄. As the difficulty of the computation is

214102-15



FERNANDO LUND AND BRUNO SCHEIHING H. PHYSICAL REVIEW B 99, 214102 (2019)

significantly reduced with respect to that of the exact quantity,
we can afford to leave nD as arbitrary.

Performing a Taylor expansion on h̄, we can approximate
(86) with

T = −E∗(k; ι)E (k′; ι′)
h̄k1k′

1

∫ L

0
ds

∫ L

0
ds′

∫ ∞

−∞
dte−ik3s

[
1 − k2

1

2

(s)

]
eik′

3s′
[

1 − k′2
1

2

(s′)

]
e+iωt

[
k1k′

1
(s, s′, t ) + k2
1k′2

1

2

(s, s′, t )2

]

= 2iLE∗(k; ι)E (k′; ι′)
m

[
nD∑

n=1

f (0)
n (−k3) f (0)

n (k′
3)

ω2
n − ω2

+ h̄k1k′
1

2mLω1

nD∑
n,n′=1

n + n′

nn′
f (1)
n,n′ (−k3) f (1)

n,n′ (k′
3)

(ωn + ωn′ )2 − ω2

− h̄k2
1

2mLω1

nD∑
n,n′=1

1

n′
f (2)
n,n′ (−k3) f (0)

n (k′
3)

ω2
n − ω2

− h̄k′2
1

2mLω1

nD∑
n,n′=1

1

n′
f (0)
n (−k3) f (2)

n,n′ (k′
3)

ω2
n − ω2

]
, (95)

where the functions f (i)
j(,k)(k3) are defined in Appendix D. This

constitutes the lowest-order correction in h̄ to the scattering
amplitude defined by the quadratic theory (at its respective
lowest order in perturbation theory).

For our present purposes, their most important property is
that they peak when k3L is a specific integer multiple of π .
Furthermore, at those points they take values of order O(1).
For instance, f (0)

n peaks in amplitude at k3L ∼ nπ , while f (1)
n,n′

has peaks at k3L ∼ (n + n′)π .
This makes it possible to estimate, approximately, the

precise order of magnitude of the quantum correction to
the scattering amplitude: we need only compare the factors
accompanying each term of the form (ω2

n − ω2), without wor-
rying about divergences at ω = ωn as the exact computation
will sum them into a finite expression. By rearranging the sum
inside the square brackets in (95) with prefactor h̄k1k′

1
2mLω1

into a

sum over n + n′ and n′, we may take f (1)
n,n′ as weakly dependent

on n′ because its peak value close to kL ∼ (n + n′)π will
remain nearly constant (i.e., roughly independent of n′ as long
as n + n′ remains fixed), preserving the dominant behavior as
a function of k. Thus, we are left with harmonic sums that
we can approximate by the means of

∑n∗
n′=1

1
n′ ≈ γe + ln(n∗),

with γe the Euler-Mascheroni constant.
Therefore, we find that the peak of the scattering amplitude

at the resonance frequency ωn∗ should be subject to correc-
tions of magnitude

∼ h̄k1k′
1

2mLω1
[γe + ln(n∗ − 1)] (96)

as a consequence of the term with f (1)
n,n′ factors, while the ones

with f (2)
n,n′ induce a correction of size

∼ h̄
(
k2

1 + k′2
1

)
4mLω1

[γe + ln(nD)] (97)

to each resonance peak. Consequently, as the dependence on
n∗ and nD is logarithmic, a short-wavelength phonon with
k∼2π × 109 m−1 will have its scattering amplitude corrected
by a factor of roughly

1 − π2 × 10−4 × [γe + ln(nD)], (98)

where we have taken γ = cL/cT ∼2 and ln(δ/δ0)∼3.
In terms of measurability, we would like nD to be as

large as possible. Recent experiments [12] show that it may

be possible to probe samples with dislocation lengths up to
L∼1 μm, which sets ln(nD) to be at most ∼10.

Thus, we deduce that in an optimistic scenario for the
detectability of quantum corrections, those effects will be of
relative size 1% to the classical predictions. While this may
seem far-fetched given that one would have to make a con-
trolled experiment with phonons of wavelength comparable
to the lattice constant in a carefully devised material with dis-
locations of mesoscopic length while assuming the continuum
model for the string still holds, the result doesn’t vary much
with nD: should L be of order ∼10 nm, the correction would
only get reduced by a factor of 1/2. Therefore, the greatest
challenge to test these predictions is to measure the scattering
amplitude for phonons with high wave number.

VII. CONCLUSION

In this paper we have studied a theory of phonons in
an elastic continuum interacting with quantum-dislocations
segments. The results contained herein establish a theory
incorporating the Peach-Koehler force, which had been unad-
dressed until now. In addition to that, for the quadratic action
we established the finiteness of the theory at all wavelengths,
avoiding the need to engage in renormalization procedures
previously used in classical settings [23].

A number of tools have been developed, allowing for
the computation of a number of quantities of interest. Chief
among them is the phonon-dislocation cross section. The re-
sult differs substantially from the classic result that considers
an infinitely long, static, dislocation line. The next subsection
discusses this topic. A subsequent subsection discusses how
the tools that have been developed can be put to use to solve a
number of current problems of interest.

A. Comparison with the classic model

As discussed in the Introduction, current understanding
on the scattering of phonons by dislocations relies on clas-
sic work by Klemens [1] and Carruthers [2]. Although in
that approach the phonon-dislocation scattering cross section
depends linearly on phonon frequency, Ohashi [35] has dis-
cussed how various estimates of the parameters on which
these models depend can lead to estimates for the phonon-
dislocation scattering cross section that differ by orders of
magnitude. The result of our calculation for the phonon-
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TABLE I. Classic and current modeling for the phonon-
dislocation interaction compared and contrasted.

Classic This work

Dislocation length infinite finite length L

Dislocation response static dynamic

Frequency dependence of
scattering cross section linear rich (see Fig. 3)

dislocation cross section is given by Eqs. (43) and (46) and
is plotted in Fig. 3. The first striking difference with the
classic results is the dependence on frequency, much richer
than simply linear. A second important difference that is less
apparent is that Eqs. (43) and (46) depend only on dislocation
segment length L, Burgers vector b, and the properties of the
elastic medium: mass density and elastic constants. While
a continuum approach does limit this model to wavelengths
larger than, say, five interatomic spacings, it is of great gener-
ality and can be applied to any material without adjustable
parameters. The more salient differences between the two
approaches are summarized in Table I.

B. Discussion and outlook

The findings laid out in this paper can be used and gener-
alized in a variety of ways. First would be the replacement
of a continuum solid by a crystal lattice. The free phonon
aspects of the theory would be straightforward. On the other
hand, the free dislocation term in the action would have
to be considered with some care, taking into account the
actual lattice that is considered, particularly its slip systems.
Moreover, the interaction term would have to be worked out in
a consistent fashion. Consideration of screw, rather than edge,
dislocations, should be a straightforward matter.

The theory of this paper has been developed in three
dimensions. It should not be difficult to specialize the action
(1) to two dimensions, in which dislocations are points rather
than strings so the whole formalism should be easier to
manage. Indeed, this could be a good place to start working
out the consequences of having a crystal lattice rather than a
continuum solid. It could also have significant consequences
for a number of materials of current interest [36,37].

Another direction of research is to study this model in the
L → ∞ limit, along with nD → ∞. While some qualitative
features of this limit have been explored throughout this paper,
it would be interesting to start with a translationally invariant

action along the equilibrium axis of the dislocation. The
features observed in this limit should be sharper, as momen-
tum conservation would be enforced through the aforemen-
tioned symmetry. Moreover, the length scale L would disap-
pear from the results, leaving a scale invariant theory where
in all likelihood the scattering amplitudes will only depend
on geometric features of the problem (angle of incidence,
polarization vectors).

We have considered in some detail the scattering of
phonons by quantum dislocations. It should be possible to use
these results, in conjunction with, say, kinetic theory argu-
ments, to compute the contribution of quantum-dislocations
segments to thermal conductivity. Results such as Eq. (35) for
the T matrix indicate that high-frequency phonons can have a
significant contribution, contrary to the classical intuition that
only phonons of wavelength comparable to the dislocation
length L, hence low frequency, would contribute. Indeed,
typical dislocation segments are 10–100 nm long. That is, say,
20–200 interatomic distances. A continuum approximation
should give a reasonable indication of material behavior up
to, say, five interatomic distances. So a 50-nm dislocation
segment would have ten harmonics in play within a reasonable
continuum approximation. Of course, in an experiment such
as that of Sun et al. [12] the dislocations have been tailored to
a micron length. In this case a continuum approximation will
be good for 200 harmonics.

Finally, we took into account the intrinsically quantum-
mechanical effects that would single out the interaction
Hamiltonian among others that could generate the Peach-
Koehler force at leading order. These corrections are small
even for phonons of wavelengths comparable to the lattice
constant, but at each order in perturbation theory include
distinct form factors that might render the signal identifiable
if detected.

On a longer term perspective, it should be possible to
study the interaction of quantum-dislocation segments with
electrons. Even at the level of a quadratic theory, the nontrivial
interaction studied in this work should give rise to distinct
correlations between electrons and phonons if the electron-
dislon coupling is included.
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APPENDIX A: AVERAGES OVER INTERNAL DEGREES OF FREEDOM IN THE QUADRATIC THEORY

If we have a solid filled with randomly oriented dislocations, then it is expectable that in the presence of weak scattering the
amplitudes and cross sections are well described by averaging over internal degrees of freedom. Namely, to start with a definite
object, we would like to average Eq. (33), which we now write in full in terms of the basic quantities of the problem:

T = iμ2b2eix0·(k′−k)klMklει(k)kk′
l ′Mk′l ′ει′ (k′)k′

mLρ
√

ωι(k)ωι′ (k′)

×
nD∑

n=1

nD∑
n′=1

nπ/L√
ω2

n − ω2

e−iL(k·ê3 )+inπ − 1

(k·ê3)2 − (nπ/L)2

[
1

1 − T(ω)

]
nn′

eiL(k′ ·ê3 )−in′π − 1

(k′ ·ê3)2 − (n′π/L)2

n′π/L√
ω2

n′ − ω2
, (A1)
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where summation over repeated indices k, k′, l, l ′ is implied. The first, and easiest, task to carry out is to perform a spatial
average on the distribution of dislocations. This translates into integrating the previous equation over x0 and multiplying by nd

(the dislocation number density):

T̄ spatial = nd

∫
x0

T |x0 = nd (2π )3δ(3)(k − k′) × T (k = k′). (A2)

Then, all that remains is to compute an angular average, i.e., over the possible orientations of the triad ê1, ê2, ê3.
At this point we note that k̂ is the only physically relevant spatial direction remaining after the average is performed. Thus,

for the purposes of computing an angular average, we may define integration angles around this axis. Let î, ĵ, k̂ be the basis of
reference, with î, ĵ fixed unit vectors orthogonal to k̂. Explicitly, if we let (θ, ϕ) be the spherical coordinate angles with respect
to {î, ĵ, k̂} and denote by {r̂, θ̂ , ϕ̂} the corresponding unit vectors,

ê1 = cos φ θ̂ + sin φ ϕ̂, (A3)

ê2 = cos φ ϕ̂ − sin φ θ̂, (A4)

ê3 = r̂. (A5)

These conventions allow us to represent the direction in which the string is laid out through the angles (θ, ϕ) and the relative
orientation of the Burgers vector through the angle φ. Therefore, an angular average of a function f of the angles (θ, ϕ, φ) is
given by

f̄ = 1

8π2

∫ 2π

0
dφ

∫ 2π

0
dϕ

∫ π

0
dθ sin θ f (θ, ϕ, φ). (A6)

Now we proceed to compute the averaged scattering amplitude T . The object of interest will be

1

8π2

∫ 2π

0
dφ

∫ 2π

0
dϕ

∫ π

0
dθ sin θklkl ′MklMk′l ′

e−iL(k·ê3 )+inπ − 1

(k·ê3)2 − (nπ/L)2

eiL(k·ê3 )−in′π − 1

(k·ê3)2 − (n′π/L)2
, (A7)

leaving the polarization vectors out of the discussion so as to obtain a rank-2 tensor as a result and thus be able to choose the
polarization modes later. In terms of the angles we defined earlier, Eq. (A7) is written as

k2

8π2

∫ 2π

0
dφ

∫ 2π

0
dϕ

∫ π

0
dθ sin θ [(cos φ θ̂k + sin φ ϕ̂k )(cos φ θ̂k′ + sin φ ϕ̂k′ ) sin2 θ sin2 φ

− (cos φ θ̂k + sin φ ϕ̂k )(cos φ ϕ̂k′ − sin φ θ̂k′ ) sin2 θ sin φ cos φ − (cos φ ϕ̂k − sin φ θ̂k )(cos φ θ̂k′ + sin φ ϕ̂k′ ) sin2 θ sin φ cos φ

+ (cos φ ϕ̂k − sin φ θ̂k )(cos φ ϕ̂k′ − sin φ θ̂k′ ) sin2 θ cos2 φ]
e−ikL cos θ (−1)n − 1

(k cos θ )2 − (nπ/L)2

eikL cos θ (−1)n′ − 1

(k cos θ )2 − (n′π/L)2
, (A8)

and now the trigonometric integrals over (ϕ, φ) are straightforward. Performing them gives

k2

8

∫ π

0
dθ sin3 θ [2 sin2 θ k̂k k̂k′ + (1 + cos2 θ )(δkk′ − k̂k k̂k′ )]

e−ikL cos θ (−1)n − 1

(k cos θ )2 − (nπ/L)2

eikL cos θ (−1)n′ − 1

(k cos θ )2 − (n′π/L)2
, (A9)

and changing variables to u = cos θ we get

k2

8

∫ 1

−1
du[2(1 − u2)2k̂k k̂k′ + (1 − u4)(δkk′ − k̂k k̂k′ )]

e−ikLu(−1)n − 1

(ku)2 − (nπ/L)2

eikLu(−1)n′ − 1

(ku)2 − (n′π/L)2
, (A10)

which upon substitution in T̄ yields the coefficients FT (k, ω), FL(k, ω).

APPENDIX B: PHONON SCATTERING BY DISLOCATION TO ALL ORDERS IN THE QUADRATIC COUPLING

Let us note that given a quadratic interaction Hamiltonian, the computation of expectation values acquires a simple form: by
expanding (25) in a power series of HI , one needs to evaluate

〈0|aι′ (k′)HI (t1) . . . HI (tn)a†
ι (k)|0〉 , (B1)

which can be solved through repeated use of the commutation relations for a, a† and a |0〉 = 0. Since every HI is quadratic,
and more precisely bilinear on u and X , each interaction Hamiltonian can be commuted exactly one time with aι(k)/a†

ι (k) and
exactly one time with an/a†

n. This means that one can build sequences, which are often written in terms of Feynman diagrams in
the standard approach to QFT, to represent each contribution to the scattering amplitude. Even though closed sequences (loops)
can appear, they arise in every scattering amplitude (even in the vacuum-vacuum amplitude) as a multiplicative factor, and thus
they can be treated as overall normalization to the observables.
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Therefore, we can restrict ourselves to studying the fully connected contributions only (i.e., those that cannot be separated into
products of scattering amplitudes of simpler processes), and evaluate only the sequences in (B1) that start with aι′ (k′) and end
with a†

ι (k). Furthermore, using time-ordered quantities reveals that every sequence is equivalent, and they may all be summed
together to obtain a compact result. Namely, if we define


kl (k, s, t ) ≡ 〈0|aλ(k)
∂uI

k

∂xl
((x0, y0, z0 + s), t )|0〉 =

√
h̄

ρ
ελ(k)k (−ikl )e

−ik3s eiωλ(k)t

√
2ωλ(k)

e−ix0·k, (B2)


klk′l ′ (s − s′, t − t ′) ≡ 
klk′l ′ ((x0, y0, z0 + s) − (x0, y0, z0 + s′), t − t ′), (B3)

then we may write

〈 f |i〉 |O(b2n ) =
(

−b2

h̄2

)n ∫ ∞

−∞
dt1

∫ L

0
ds1 . . .

∫ ∞

−∞
dt2n

∫ L

0
ds2n
k1l1 (k f , s1, t1)c12k1l1
(s1, s2, t1 − t2)c12k2l2

×
k2l2k3l3 (s2 − s3, t2 − t3)c12k3l3 . . . c12k2n−2l2n−2
k2n−2l2n−2k2n−1l2n−1 (s2n−2 − s2n−1, t2n−2 − t2n−1)c12k2n−1l2n−1

×
(s2n−1, s2n, t2n−1 − t2n)c12k2nl2n

∗
k2nl2n

(ki, s2n, t2n). (B4)

Now we use the known formula

e−iω|t−t ′ |

2ω
= 1

2π i

∫ ∞

−∞
dω′ e−iω′(t−t ′ )

−ω′2 + ω2 − i0+ , (B5)

where 0+ is the distributional positive infinitesimal that defines the prescription to be used when evaluating the integral, usually
denoted by ε. With this expression we can perform explicitly the time integrals and get an overall energy conservation factor. It
turns out that the integrals over the string coordinate s are also easy to do (this is because for each term in the string propagator,
the s and s′ contributions are separable within each sum): if we define

F (n, n′) ≡ μ2b2MklMk′l ′

ρ

∫ L

0
ds

∫ L

0
ds′ sin

(nπs

L

)
sin

(
n′πs′

L

) ∫
d3k

(2π )3
ei(k·ê3 )(s−s′ )

× kl kl ′

[(
δkk′ − kkkk′

k2

)
1

ωT (k)2 − ω2 − i0+ + kkkk′

k2

1

ωL(k)2 − ω2 − i0+

]
, (B6)

then we find that

T |O(b2N ) = iE∗(k; ι)
nD∑

n1=1

e−iL(k·ê3 )+in1π − 1

(k · ê3)2 − (n1π/L)2

2n1π/L

mL
(
ω2

n1
− ω2

) nD∑
n2=1

F (n1, n2)
2

mL
(
ω2

n2
− ω2

)
×

nD∑
n3=1

F (n2, n3)
2

mL
(
ω2

n3
− ω2

) . . .

nD∑
nN =1

F (nN−1, nN )
2nNπ/L

mL
(
ω2

nN
− ω2

) eiL(k′ ·ê3 )−inN π − 1

(k′ · ê3)2 − (nNπ/L)2
E (k′; ι′). (B7)

This can be written in a more succinct manner: if we define the following linear operator T(ω) through its matrix elements

[T]n,n′ (ω) ≡ 2

mL

F (n, n′)√
ω2

n − ω2
√

ω2
n′ − ω2

(B8)

and the nD-dimensional vectors

[v(k)]n ≡
√

2(nπ/L)2

mL
(
ω2

n − ω2
) eiL(k·ê3 )−inπ − 1

(k · ê3)2 − (nπ/L)2
, (B9)

then the scattering amplitude reads

T |O(b2N ) = iE∗(k; ι)E (k′; ι′) v†(k) · TN−1(ω) · v(k′), (B10)

and the resulting geometric series may be summed from N = 1 to ∞ to get

T = v†(k) · iE∗(k; ι)E (k′; ι′)
1 − T(ω)

· v(k′), (B11)

where 1
1−T(ω) denotes the inverse operator of [1 − T(ω)].
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APPENDIX C: KINEMATICAL FACTORS IN THE THREE-PHONON SCATTERING

Energy-momentum conservation dictates that in a scattering process of two massless particles, such as the phonons we have
at hand, only a reduced number of processes are possible. Namely, given two incident phonons (with polarizations ι1 and ι2) and
one outgoing phonon (with polarization ι), it is necessary that cι > cι1 or cι > cι2 if noncollinear scattering is to happen.

Thus, we have three possible situations that will yield different kinematical restrictions between k and k1, and factors

K (k, k1; {cιi}) ≡
∣∣∣ ∂ (ωι−ωι1 −ωι2 )

∂|k|
∣∣∣−1

as a consequence of performing the integral over possible outgoing momenta against the

energy-conservation Dirac delta δ[ωι(k) − ωι1 (k1) − ωι2 (k + k1)]. For all of these situations, let cos θ ≡ k1·k
|k1||k| .

(1) cι = cL and cι1 = cι2 = cT . Here we have

|k| = 2cT (cL − cT cos θ )

c2
L − c2

T

|k1|, (C1)

and

K (k, k1; {cιi}) =
∣∣∣∣cL − c2

T

|k| − |k1| cos θ

cL|k| − cT |k1|
∣∣∣∣
−1

. (C2)

(2) cι1 = cι = cL and cι2 = cT . Here we have

|k|2 − 2|k||k1|c2
L − c2

T cos θ

c2
L − c2

T

+ |k1|2 = 0, (C3)

and

K (k, k1; {cιi}) =
∣∣∣∣cL − c2

T

|k| − |k1| cos θ

cL(|k| − |k1|)
∣∣∣∣
−1

. (C4)

(3) cι2 = cι = cL and cι1 = cT . Here we have

|k| = c2
L − c2

T

2cL(cL cos θ − cT )
|k1|, (C5)

and

K (k, k1; {cιi}) =
∣∣∣∣cL − c2

L

|k| − |k1| cos θ

cL|k| − cT |k1|
∣∣∣∣
−1

. (C6)

APPENDIX D: FORM FACTORS OF THE QUANTUM CORRECTIONS TO THE SCATTERING AMPLITUDE

In Sec. VI, we have defined and used three functions that characterize the form factors of the scattering amplitudes. The
leading term includes the same factors as the quadratic theory:

f (0)
n (k) ≡ nπ

eikL (−1)n − 1

(kL)2 − (nπ )2
, (D1)

while the subleading terms (proportional to h̄) also involve

f (1)
n,n′ (k) ≡ 2i(nπ )(n′π )(eikL(−1)n+n′ − 1)

(kL)4 + (nπ )4 + (n′π )4 − 2(kL)2(nπ )2 − 2(kL)2(n′π )2 − 2(nπ )2(n′π )2
(D2)

f (2)
n,n′ (k) ≡ nπ (eikL(−1)n − 1)

4

[
1

(kL + 2πn′)2 − (nπ )2
+ 2

(kL)2 − (nπ )2
+ 1

(kL − 2πn′)2 − (nπ )2

]
. (D3)

By inspecting these functions, it is fairly straightforward to verify that they have peaks at kL ∼ (n + n′)π and at kL ∼ nπ

respectively. f (2)
n,n′ (k) also has peaks at kL ∼ π (n ± 2n′), but they can be shown to be of smaller amplitude by evaluating the

function at those points. Moreover, their peak values are of order O(1):

f (0)
n (nπ/L) = i/2, (D4)

f (1)
n,n′ ((n + n′)π/L) = −1/4, (D5)

f (2)
n,n′ (nπ/L) = i/4. (D6)

Let us stress that these functions peak close to those points in amplitude (which is why we have used the similar “∼” symbol),
and increasingly so as n, n′ take greater values.
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Nonetheless, even though these are approximate features, the ln(nD) scaling of the correction proportional to h̄ will always
be present as there is a term in f (2)

n,n′ (k) that is exactly independent of n′, and has greater amplitude relative to the other terms.
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