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Quantum batteries are quantum-mechanical systems with many degrees of freedom which can be used to
store energy and that display fast charging. The physics behind fast charging is still unclear. Is it just due to the
collective behavior of the underlying interacting many-body system, or does it have its roots in the quantum-
mechanical nature of the system itself? In this work we address these questions by studying three examples
of quantum-mechanical many-body batteries with rigorous classical analogs. We find that the answer is model
dependent and, even within the same model, depends on the value of the coupling constant that controls the

interaction between the charger and the battery itself.
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I. INTRODUCTION

Recently, there has been a great deal of interest in quantum
batteries (QBs) [1-12], i.e., quantum-mechanical systems that
are able to store energy. These works have a key common
thread in trying to understand whether quantumness yields
a temporal speedup of the charging process. A first, abstract
approach [3,4] studied the possibility to charge N systems via
unitary operations. The authors introduced a parallel charging
scheme, in which each of the subsystems is acted upon
independently of the others, and a collective charging scheme,
where global unitary operations acting on the full Hilbert
space of all subsystems are allowed. In these works it was
shown that the charging time scales with N, decreasing for
increasing N. In the collective charging case and for large
N, the power delivered by a QB is much larger than the one
delivered by the parallel scheme. This speedup was dubbed
“quantum advantage” [3—6]. Furthermore, in Ref. [4] it was
shown that entanglement is not required to speed up the
evolution of a QB since states which are confined in the sphere
of separable states share an identical speedup. However, the
authors of Ref. [4] pointed out that such highly mixed states
host only a vanishing amount of energy, yielding therefore
a highly nonoptimal result from the point of view of energy
storage and delivery.

In the same spirit, the authors of Refs. [5-9] studied similar
issues but in realistic setups which can be implemented in
a laboratory, such as arrays of qubits in cavities [6-9] and
spin chains in external magnetic fields [5]. In Refs. [6-9], the
battery units are not charged via abstract unitaries but, rather,
by other quantum-mechanical systems dubbed “chargers.”
In this framework, the parallel scheme is the one in which
each battery is charged by its own charger, independently
of the others (see Fig. 1). On the contrary, the collective
scheme is the one in which all batteries are charged by
the very same charger. Also in this context, the collective
scheme outperforms the parallel one in terms of speed of the
charging process. Finally, the authors of Ref. [5] demonstrated
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that quantum batteries have the potential for faster charging
over their classical counterparts. As they noticed, however,
the classical counterparts were assumed to be composed of
noninteracting units.

In this paper we compare the performance of QBs with that
of their appropriate classical versions. Such a comparison is
clearly of great interest for foundational reasons but may also
have implications for the development of scalable solid-state
systems where energy transfer processes and their timescales
can be studied experimentally. Indeed, although any solid-
state QB device is going to operate on the basis of electrons,
photons, spins, etc., which are microscopically ruled by the
laws of quantum mechanics, often, classical descriptions of
their collective behavior may be applied. An example is
provided by the elementary charged collective excitations in
metals and semiconductors, i.e., plasmons, which are almost
always well captured by the random-phase approximation and
behave classically in the long-wavelength limit [13—15]. We
focus on three models. In the first one, a single bosonic mode
(the charger) is coupled to N harmonic oscillators (the proper
battery composed of N subunits). In the second one, N qubits
playing the role of charging units are coupled to another set
of N qubits playing the role of the proper battery. Finally,
the third one is the Dicke QB introduced in Ref. [6]. In the
first case, the performances of classical and quantum versions
of the model are identical. In the second case, the classical
version outperforms the quantum one. In the third case, there
is a range of values of the charger-matter coupling parameter g
for which the quantum (classical) model performs better than
the classical (quantum) one.

Our paper is organized as follows. In Sec. II we explain
how the classical versus quantum comparison is actually
carried out in this paper, briefly reviewing the correspondence
between quantum commutators and classical Poisson brack-
ets. In Sec. III we recap the charging protocol first introduced
in Refs. [6,7] and introduce the figures of merit needed to
evaluate the performance of classical and quantum many-body
batteries. In Sec. IV we discuss the first model (single bosonic
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FIG. 1. A sketch of the parallel (left) versus collective (right)
charging schemes.

mode coupled to N harmonic oscillators). We demonstrate
analytically that in this case classical and quantum versions
of the model display fast charging with the same timescale.
In Sec. V we introduce the second model (N qubits coupled
to N qubits) and demonstrate how the classical version of
the model outperforms the quantum one. In Sec. VI we
compare the Dicke QB model introduced in Ref. [6] with the
corresponding classical analog, showing numerically that the
relative performance depends on the charger-matter coupling
g. Finally, in Sec. VII we report a summary of our main
findings and our conclusions.

II. COMPARISON BETWEEN QUANTUM AND
CLASSICAL MECHANICS

In quantum mechanics, the evolution of an operator 9]
in time ¢ is described by the Heisenberg equation of mo-
tion i dO(t)/dt = i[H, O(t)], where # is the Hamiltonian.
Moreover, canonically conjugate variables, such as position §;
and momentum p;, fulfill the commutation relation [§;, p;] =
ihd; ;. In the case of angular momentum J, a similar relation
holds between different components: [/, fj] = Zk iheijkfk,
where €; j is the Levi-Civita tensor.

In Hamiltonian mechanics, a classical physical system
is uniquely described by a set of canonical coordinates
xT = (p, q), where the components ¢;, p; are conjugate vari-
ables obeying {g;, p;} = §; ;. Here, {u, v} = (3,ud,v —
0p,ud4,v) denotes the Poisson brackets.

The time evolution of the system is uniquely defined by
Hamilton’s equations:

dq; dpi .

d—z‘ = 9, H(x), % = —9, H(x). (1
A proper comparison between quantum and classical systems
can be made by following the canonical quantization pro-
cedure [16]. Once Hamilton’s function 4 (x) of a classical
system is written in terms of conjugate variables with Poisson
brackets {g;, p;} = §; j, quantization is carried out by replac-
ing classical coordinates by operators and enforcing canonical
commutation relations instead of canonical Poisson brackets.

While finding the classical analog of a quantum system
with degrees of freedom that are position and momentum
is straightforward and consists of making the replacements

gi — q; and p; — p;, the classical version of quantum-
mechanical angular momentum is subtler. It turns out [17,18]
that the right choice is to replace the components J; of the

angular momentum operator .J, with ]2 = i?J(J + 1), with
the classical canonical coordinates J, = Jcos(d) and ¢ =
arctan(J,/Jy), so that {Jcos(f), ¢} =1, i.e, JAZ — Jcos(9),
J. — Jsin(@) cos(¢), and f} — J sin(0) sin(¢).

In the remainder of this paper we set i = 1.

III. CHARGING PROTOCOL AND FIGURES OF MERIT

We start by reviewing a model for the charging process
of a QB [6-9]. As stated above, the classical and quantum
cases are both described by a Hamiltonian formalism. We
can therefore introduce the charging protocol in terms of a
general Hamiltonian, without specifying a priori whether we
treat the classical or quantum case. As such, we will describe
the protocol in general, commenting explicitly on the classical
and quantum cases only when it is needed.

In our charging protocol [6-9], a first system A acts as
the energy “charger” for a second system B, which instead
acts as the proper battery. They are characterized by local
Hamiltonians H and Hp, respectively, which, for the sake
of convenience, are both chosen to have zero ground-state
energy. We also assume B is composed of N nonmutually
interacting elements. (Effective interactions between these
elements are induced by the charger. In the Dicke QB case,
for example, the cavity mode induces effective interactions
between all the qubits.) In the quantum case, the system at
time t = 0 is in a pure factorized state | (0))ag = |¥)a ®
|0)g, with |0)p being the ground state of Hp and |y) 5 having
mean local energy EXV)(O) = A(V|Ha|¥)a>0, where N is the
number of elements which compose the battery. Analogously,
in the classical case we impose that the system B at time r = 0
is in the configuration with the lowest energy, and we fix the
energy in the charger A to be E/gN )(0)>0.

By switching on a coupling Hamiltonian 7; between A
and B, our aim is to provide as much energy as possible to
B, in some finite amount of time 7, the charging time of the
protocol. For this purpose, we write the global Hamiltonian of
the AB system as

H(t) = Ha +Hp + MOH, @

where A(¢) is a time-dependent parameter that represents the
external control we exert on the system, which we assume to
be given by a step function equal to 1 for ¢ € [0, t] and zero
elsewhere. Accordingly, in the quantum case, we denote by
[W())ag = exp[ — iH()t]|¥(0))ap the evolved state of the
AB system at time ¢, with 7 (¢) being constant at all times with
the exception of the switching points, # = 0 and ¢ = 7, and by
E(t) = ap(V(@)|H@®)| ¥ (1)) ap its total energy. We note that
the total energy is a constant of the motion, i.e., —idE(t)/dt =
AW @O [H @), H(2)] — idH(2)/(00)}¥ (1)) ap = O, with the
exception of the switching points, in which dH(¢)/dt # 0. At
the two time instants + = 0 and t = T a nonzero energy can
be transferred to AB by the external control. (See Ref. [7]
for a detailed analysis of the energy cost of modulating the
interaction.)

The same conditions hold in the classical case where
we denote by xT (1) = (p(¢), q(¢)) and E(t) = H(x(t)) the
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solution of Hamilton’s equations of motion and the total
energy at time ¢, respectively. Here, p and ¢ are classical
conjugate variables. It is also useful to define the vector
xg (t) = (pg(t), gg(t)), denoting the position in phase space
of B at time ¢.

In the quantum case, we are mainly interested in the mean
local energy of the battery at the end of the protocol, i.e.,

E{M (1) = u[Hpps(1)], 3)

with pg(7) being the reduced density matrix of the battery
at time 7. It is worth noticing that while ElgN )(‘L') does not
necessarily represent the amount of energy that one can
recover from the battery after charging, it has been shown
that for large enough N this is not a relevant issue [8]. In the
classical case, the corresponding quantity is the energy in B,
EgY(r) = i (xp (1)),

The performance of the charger-battery setup can be
studied by analyzing the average storing power PéN (1) =
EéN)(t)/t. Specifically, we define the maximum average
power as PéN ) = max; [PéN )(1:)]. Finally, we introduce the
optimal charging time 7, f_’éN) = P];N)(f), and the energy at
the maximum power, E](gN ) = EéN (7).

Our aim is to compare the parallel charging scenario to
the collective one [3,4,6]. As mentioned above, we define
as a parallel charging the protocol in which N batteries are
independently charged by N chargers. Each charger has an
energy E/(\])(O). Conversely, the collective charging case is the
one in which all N batteries are charged by the same charger.
In order to do a clear comparison, in the collective charging
case we impose that the charger has total energy equal to the
sum of the ener%ies of all the chargers of the parallel charging
scheme, i.e., E{"(0) = NE\"(0).

Since we are interested in comparing the power of the
protocols, we denote by the symbol P; (P)) the maximum
power in the collective (parallel) protocol. Following Ref. [4],
we introduce the so-called collective advantage:

= —-. “)

We have P, = P{") and P; = NP". The latter property fol-
lows from the fact that the power in the parallel charging
scheme is trivially extensive.

The figure of merit in Eq. (4) quantifies how convenient
it is to charge a battery in a collective fashion rather than in
a parallel way. While in Refs. [4,6] this quantity is named
“quantum advantage,”’ it is possible to define I' also in the
classical case. Since our main goal is to compare quantum
and classical batteries, we will denote by I'y, the collective
advantage produced by a quantum Hamiltonian and by Iy
the collective advantage produced by the analog classical
Hamiltonian. What matters is therefore the ratio

R= 5)
- 1—‘lcl '
If R=1, the QB and its classical analog share the same
collective boost in the charging process. Conversely, having
R > 1 means that there is a genuine quantum advantage.
Finally, R < 1 means that the collective dynamics in the
classical model is more beneficial.

The quantity R will be crucial below in determining if fast
charging is due to exquisitely quantum resources or, rather,
if it has a collective (i.e., many-body) origin due to effective
interactions between the battery subunits, which are present
also in the classical case. It is important to stress that we
considered only QBs charged via another quantum system.
Another possibility is to consider a battery charged via a
classical external source [9] or a quench in the Hamiltonian
[3.4].

IV. HARMONIC OSCILLATOR BATTERIES

In this section we study a system composed of N + 1 har-
monic oscillators, one acting as a charger while the remaining
N play the role of the proper battery. This system is described
by the following Hamiltonian:

Ha = wpa'a,

Hp = wo ) bjbi,
Hi =g (ab] +a'by), 6)

where a (b;) is the destruction bosonic operator acting on
A (on the ith unit of the battery B) and wy and g are the
characteristic frequency of both systems and the charger-
battery coupling parameter, respectively. For simplicity, we
choose E/(\l)(O) = wyp.

It is useful to introduce the bright mode [19] B =
3", bi/~/N, which is a bosonic mode fulfilling [B, B] = 1.
Expressing the Hamiltonian in terms of the bright mode, we
obtain

Hp = woB'B,
H, = gn(aB'" +a'B), (7
where
gv = +VNg. 3

Hence, the AB system is equivalent to two harmonic oscilla-
tors with a renormalized coupling gy. It is straightforward to
obtain the dynamics of the energy of B, which is independent
of the initial state [{), in A, once we fix the condition
EXV )(0) = Nwy. In order to calculate the stored energy (3)
we find it then useful to adopt the Heisenberg representation,
writing E](gN)(t) = tr[pag(0)Hgp(7)], where pag(0) is the den-
sity matrix of the full system at the initial time, with Hg(7) =
eM*Hge "7, Expressing a and b as functions of the normal
operators v+ = (a & B)v/2 and using the fact that the latter
evolves simply as y.(t) = e *'y,, with v+ = wy £ gy, We
obtain

Hp(t) = %{a*a +B'B

e—iZgNr .
—[ 5 (a'a—B'B+B'a—da'B)+ Hc“ 9)

and finally,
E{M (1) = Nayy sin*(gv/N). (10)
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I?eﬁning Y = maxx[sinz(x)/x], the maximum power reads
PéN )= NN, gwoY . Accordingly, we have

T = VN (11)

We note that if [), is a coherent state, the evolved state
| (t))ap remains factorized at all times [7,20]. This is an
example where the advantage is present, despite the total
absence of correlations.

Now we study the classical analog of the quantum model
in Eq. (6), which can be simply obtained by reversing the
quantization procedure and substituting quantum commuta-
tors with classical Poisson brackets. The corresponding clas-
sical Hamiltonian describes a set of coupled springs:

Hy = %(pi +q3),
[0
Hy == (ni, +4).
H' =2 (s, + paps), (12)

where (p,, q,) are conjugate variables of the charger and
(py,» 4p,) are conjugate variables of the ith battery. As before,
we choose Elgl)(O) = wy. We now introduce Q, = Zi qb,/\/ﬁ
and P, = ), p»,/ V/N. The classical Hamiltonian becomes

wo

5 (B +03),
H = gn(qaQp + PaPy). (13)

We conclude that also in the classical case the model maps
into that of two coupled oscillators with a renormalized cou-
pling gn.

Hamilton’s equations of motion follow from Egs. (1), (12),
and (13):

Hcl —

dpg

gy = @0da 8nvOb,
dqa
2 = @0Pa + gnPo,
dp,
e —woQ0b — §NYas
% = woPy + gnPa- (14)

Solving these equations, we find that, irrespective of the
particular initial condition, given the constraint E/iN)(O) =
Nay, the stored energy reads EéN)(r) = Nwy sinz(gﬁt).
This implies

Fa=+N 15)

and R = 1. This is the main result of this section. For the case
of harmonic oscillator batteries defined in (6), fast charging,
i.e., I o +/N, is solely due to the collective behavior of the
underlying many-particle system and does not have its roots
in the quantumness of its Hamiltonian.

(a) 107 e /
ST -
[lowg =
14 - . 14 T
10 50 100 10 50 100
N N
(c) 1
0.75 1
& 0.5

FIG. 2. Performance of quantum and classical spin batteries (see
Sec. V). (a) The advantage I'y, in the quantum case, plotted as a
function of N, in a log-log scale. The black dashed line represents
perfectly linear scaling in N, i.e., « = 1 in Eq. (17), with a propor-
tionality constant on the order of ~0.25. (b) Same as in (a), but for
the classical case. In this case the scaling is again linear in N with
a proportionality constant that is, however, equal to 1. (c) The ratio
R =Tg./T'q as a function of N. Notice that, for large enough N, R
approaches ~0.25, i.e., the ratio between the prefactors of the linear
scaling with N of the quantum and classical advantages. Results here
do not depend on g.

V. SPIN BATTERIES

In this section we study a system composed of N qubits,
acting as the charger, coupled to another set of N qubits, which
play the role of the battery. The quantum Hamiltonian is

N
Ha = wo (JZ@ + 5)7

N
Hp = U)O(J;b) + E>’

Hy = 4g(J0IP + 1 OTP), (16)

where J@ (J)), with & = x,y,z, are the components of
a collective spin operator of length J = N/2 acting on the
Hilbert space of the charger A (battery B), while all the other
parameters have the same meaning as in Eq. (6).

Defining Hy = Ha + Hsz, the propagator in the interaction
picture simply reads U, = ¢/"0'e="" = =1’ _Hence, in this
model there is no dependence of the dynamics on the energy
scale g, and U, depends only on the product g. As in the case
of Eq. (11), this scaling implies that the collective advantage
[qu of this model does not depend on the value of g but only
on N. In Fig. 2(a) we report the log-log plot of the collective
advantage I'g, as a function of N. Fits to the numerical data
(not shown) indicate a quasilinear dependence on N for large
N of the form

Tqu o N, (17)

with a~1 and a proportionality constant of ~0.25.
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We now move on to analyzing the classical case. Following
the discussion in Sec. II, we model the analog classical
Hamiltonian as

[cos(8,) + 1]

HCI = Na)() B .
Hcl — N(,l)() [COS(@[,) + l] ’
2
HS' = gN? sin(6,) sin(0) cos(dq — ). (18)

where (N cos(6,)/2, ¢,) and (N cos(6)/2, ¢p) are conjugate
variables [17,18].

Hamilton’s equations of motion follow from Egs. (1) and
(18). We find

d cos(0,)
dt
dda
dt
Since the Hamiltonian is invariant under the exchange of
variables a <> b, the equations of motion for cos(6,) and ¢,
can be simply obtained by exchanging a < b.

It is now useful to define ¢, = ¢, + wot and @, = ¢, +
wot, which allow us to write Eq. (19) as follows:

= 2gN sin(6,) sin(6,) sin(¢, — ¢),

= wo — 2gN cot(6,) sin(6) cos(p, — ¢p). (19)

d cos(6,) . . .

- 2gN sin(8,) sin(6p) sin(pa — @p),

dg, .

ar = —2gN cot(6,) sin(6p) cos(p, — @p). (20)

These equations show that the only energy scale in the prob-
lem is gN. On the basis of simple dimensional analysis we
therefore expect T o< 1/(gN). Accordingly, since the energy of
the system is always extensive, the power scales like P oc N/.
This will yield P oc N while P; oc N, leading to 'y o< N.
This argument is not asymptotic, i.e., does not apply only for
N > 1. In Fig. 2(b) we plot the classical collective advan-
tage obtained by solving numerically Hamilton’s equation of
motion. Indeed, we clearly see a linear growth in N also for
small values of N, perfectly consistent with the dimensional
argument.

Finally, in Fig. 2(c) we show the ratio R defined as in
Eq. (5) for the case of our spin batteries. We conclude that,
for this model, quantum-mechanical dynamics yields a disad-
vantage rather than an advantage, as R < 1 for all N. This is
the second main result of this paper.

VI. DICKE BATTERIES

In this section we study the case of Dicke batteries [6,8].
In a Dicke QB, one cavity mode, acting as charger, is coupled
to N qubits, which play the role of the battery. The quantum
Hamiltonian is [6] (see also Refs. [21,22])

Ha = wpa'a,

N
HB = a)()(]z + E),

Hy = 2g(a’ +a)s, (1)

0.7 T T T 0.4

N g/wo

FIG. 3. Performance of quantum and classical Dicke batteries
(see Sec. VI). (a) The advantage I" in the quantum case, plotted as a
function of N in a log-log scale. Different symbols refer to different
values of the charger-battery coupling parameter g: g = 0.01w, (red
circles), g = 0.5wy (blue triangles), and g = 2w, (green squares).
The black dashed line represents a scaling of the form I'y, o VN s
i.e., o = 0 in Eq. (22). (b) Same as in (a), but for the classical case.
(c) The ratio R plotted as a function of N for the same values of g
reported in (a) and (b). (d) The ratio R plotted as a function of g for
N = 50. A quantum advantage on the order of 10% can be observed
in a small interval around g ~ 0.5w.

where J,,, with ¢ = x, y, z, are the components of a collective
spin operator of length J = N/2, while all the other param-
eters have the same meaning as in Eq. (6). As in the other
models introduced in previous sections, we choose ES)(O) =
wy. Moreover, for the sake of simplicity, we fix [{), to be
a Fock state. In Refs. [7,8] it was shown that the particular
choice of the initial state does not change qualitatively the
collective advantage. While a detailed analysis of Dicke QBs
is reported in Ref. [6], here we summarize the main findings
[Fig. 3(a)] and compare them with those obtained for the
classical analog of a Dicke QB.

In Fig. 3(a) we plot the collective advantage I'y, of a
Dicke QB for different choices of the coupling parameter g. In
agreement with Ref. [6], fits to the numerical data (not shown)
suggest the following power-law scaling in the limit of large
N:

Fgo & V. (22)

We now analyze the classical case. In the literature there
is a well-established classical analog of the Dicke model
[17,23,24], which reads as follows:

H = %(pﬁ +4q;).
0)+1
M = N 12O+ 1T
2
HE' = gv/2Ng, sin(0) cos(¢), (23)
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where (p,, q,) and (N cos(0)/2, ¢) are classical conjugate
variables [17,18]. We remind the reader that this procedure
is carefully discussed in Sec. II. This Hamiltonian describes a
spring coupled to a nonlinear pendulum of length N.

We would like to stress that the model defined by Eq. (23)
is not a semiclassical approximation of the quantum Hamilto-
nian in Eq. (21) but represents instead an intrinsically classical
description of a classical spin coupled to a cavity, directly
obtainable from classical Hamiltonian mechanics. Our aim
is indeed not to approximate the quantum model but to un-
derstand the differences between the quantum and classical
batteries.

As in all previous cases, we choose E/il)(O) = wyp. We still
have the freedom to choose initial conditions since the pre-
vious condition imposes only the constraint p2(0) + ¢2(0) =
2Nwy. For the sake of simplicity, we choose p,(0) = ¢,(0).
We have checked that other initial conditions do not alter our
main conclusions.

From Egs. (1) and (23) we find Hamilton’s equations of
motion for the classical Dicke battery:

dpa
dt

= —woqa — V2Ngg, sin(0) cos(¢),

dq,
dt

= @WoPa,

L) — 22gq05in(0) sin(@),

fl_‘f — o — 2294, cos(d) cot(8). (24)

We can rescale these equations in such a way to have
P2(0) + Q%(0) = 2, ie., P, =+/Np, and Q, = v/Nq,. We
obtain

dP, .

5= —000a — V2gnQq sin(8) cos(¢),

dQ,

(th = a)OP(la

L) — 220 usin(®)sine),

‘fl—‘f = wy — 2v/2gy 0, cos(¢) cot(H), (25)

where gy = VN g has been defined in Eq. (8). We note that, in
these equations, the only parameters with physical dimensions
(of energy) are wy and gy. Since T has physical dimensions of
inverse energy (in our units), the optimal charging time must
have the following form:

1
T=—F(wo/gn), (26)
8N

where F(x) is an unknown dimensionless function. From this
expression we can conclude that, as long as F(x) does not
reach zero for x = 0, also in the classical scenario the col-
lective advantage parameter will exhibit a v/N scaling similar

to the one in Eq. (22) observed for the quantum counterpart,
ie., 'y x +/N. Indeed, assuming F(0) # 0, from (26) it
follows that for large enough N the charging time can be
approximated as 7 ~ F(0)/gy with a 1/+/N scaling. Accord-
ingly, since the energy is an extensive quantity, we will have
P o N/T. This relation yields, asymptotically, IséN) o N+/N,
which implies 'y o< +/N, as anticipated. To put this observa-
tion on firmer ground, we resort to numerical integration of
Egs. (24). In Fig. 3(b) we plot the collective advantage '
as a function of N for different values of g. A comparison
with the expected +/N scaling of Ty in the large-N limit
is also shown. (The expected saturation to the ~/N scaling
law requires gy/wp > 1 and is therefore difficult to reach
numerically for small values of g/wy.)

We now proceed with a more quantitative comparison
between I'q, and I'y. In Fig. 3(c) we report the plot of the
quantity R of Eq. (5) as a function of N for different values
of g. We clearly see that the ratio R can be smaller or larger
than unity depending on the value of g. This is emphasized in
Fig. 3(d), where we show R as a function of g for N = 50. This
is the third main result of this paper. The quantum advantage
shown by a Dicke QB in a window of values of g is on
the order of 10% and therefore not spectacular but clearly
indicates the possibility to engineer more complex quantum
Hamiltonians to achieve much better quantum performances.
These will be the subject of future work.

VII. SUMMARY AND CONCLUSIONS

In this paper we have compared three quantum battery
models against their rigorous classical versions in order to
better understand the origin of the fast-charging phenomenon
discussed in previous studies.

In particular, we have defined a genuine quantum advan-
tage (i.e., R > 1) via the ratio R in Eq. (5) between the
collective advantages in the quantum and classical cases, I'¢
and Iy, respectively.

In the case of harmonic oscillator batteries (see Sect. IV)
R = 1 for all values of N and g. Quantum harmonic oscillator
batteries defined as in Eq. (6) do not therefore display any
quantum advantage. The case of spin batteries, discussed in
Sec. V, is even worse. In this model, indeed, R < 1 for all
values of N and g.

We can safely conclude that, in these two cases, fast
charging in the quantum case (i.e., the fact that Iy, increases
for increasing N) is solely due to the collective behavior of the
many-body systems described by the quantum Hamiltonians
in Egs. (6) and (16), which is also present in the corresponding
classical Hamiltonians.

The case of Dicke batteries, discussed in Sec. VI, is far
richer. In this case, the ratio R depends on the charger-battery
coupling parameter g and, for each fixed N, can be larger than
unity in a range of values of g. As evident from Figs. 3(c) and
3(d), the quantum advantage displayed by a Dicke quantum
battery at optimal coupling is on the order of 10%. More work
is needed to discover quantum models of batteries with larger
values of R.

For the sake of completeness, we note that the authors of
Ref. [10] very recently proposed to study the evolution of the
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battery state in the energy eigenspace of the battery Hamil-
tonian. Combining this geometric approach with bounds on
the power, they were able to distinguish whether the quan-
tum advantage in a charging process stems from either the
speed of evolution or the nonlocal character of the battery
state.
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