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The transmission across a graphene bilayer region is calculated for two different types of connections to
monolayer leads. A transfer-matrix algorithm based on a tight-binding model is developed to obtain the ballistic
transmission beyond linear response. The two configurations are found to behave similarly when no gate voltage
is applied. For a finite gate voltage, both develop a conductance gap characteristic of a biased bilayer, but only one
shows a pronounced conductance step at the gap edge. A gate voltage domain wall applied to the bilayer region
renders the conductance of the two configurations similar. For a microstructure consisting of equally spaced
domain walls, we find a high sensitivity to the domain size. This is attributed to the presence of topologically
protected in-gap states localized at domain walls, which hybridize as the domain size becomes of the order of
their confining scale. Our results show that transmission through a bilayer region can be manipulated by a gate
voltage in ways not previously anticipated.
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I. INTRODUCTION

The unique band structure of graphene gives rise to several
alluring phenomena which have been the subject of intense
research since its experimental discovery in 2004 [1–4].
In particular, its high charge-carrier mobility has rendered
graphene a highly attractive and promising component for
electronic and optoelectronic devices [5,6]. Another appealing
feature of graphene for device application is its stability at
the nanometer scale, ensured by the covalent bonds among
the carbon atoms [7], which is highly desirable for device
miniaturization. A graphene-based electronic device, entirely
made out of microstructured graphene sheets, is thus expected
to significantly reduce energy dissipation and optimize device
miniaturization and functionality [8–10]. The recent realiza-
tion of a short channel field-effect transistor, using just 9- and
13-atom-wide graphene nanoribbons [11], is a convincing step
in that direction. This is to be contrasted with mainstream
semiconductor technology which usually integrates different
materials and where component interfacing can be difficult to
scale down [12].

Although a gapless conductor, the versatility of the elec-
tronic properties of graphene make it possible to easily in-
duce a gap. This can be done by several means: cutting it
into nanoribbons with zigzag or armchair edges [13–16]; by
breaking inversion symmetry with an appropriate substrate
[17]; or applying an out-of-plane electric field in graphene
bilayer structures [18–21].

Compared to monolayer graphene, the possibility of tuning
the induced gap by an external, perpendicular electrical field,
which is easily introduced through a gate potential, makes
the bilayer more suitable for device applications [22]. Not
only the gap can be tuned by a gate bias, but also a twist
angle can be engineered between the two layers [23,24]. This

leads to a strong reconstruction of the band structure at low
energies [25]. The recent observation of superconductivity
and insulating behavior in twisted bilayer graphene at the
magic angles clearly shows the high degree of tunability
of this system [26,27]. Further manipulation of the bilayer
response is possible by inserting an insulator between the two
graphene layers, out of which tunnel field-effect transistors
have been realized [9,28–32].

One other advantage of the graphene bilayer is that its
electronic structure can be manipulated by a layer-selective
potential, induced by a gate voltage. The possibility of sharply
reversing the sign of voltage, thus creating a well-defined one-
dimensional boundary separating regions of constant poten-
tial, has been demonstrated recently [33]. These domain walls
support confined one-dimensional states that are topologically
protected and can be used as purely one-dimensional channels
[34,35].

The ballistic transport across a bilayer graphene region
has been studied at length [36–45]. Particular attention has
been given to a setup where a gate voltage is applied within
the bilayer region [37,38,41,45–47]. These studies already
revealed a high degree of tunability of the transport prop-
erties. However, the effects of further manipulations of the
gate voltage, namely, through the creation of a domain wall
affecting the bilayer region [33], are yet to be investigated.
Furthermore, the possibility of a microstructured gate voltage
with several built-in domain walls opens up new avenues to
engineer electronic transport at the nanoscale.

The aim of this paper is to study ballistic transport of
microstructured bilayer graphene flakes with different types
of connection to monolayer. Using a tight-binding model
of an AB stacked bilayer flake, taken to be infinite in the
transverse direction, we observe that the conductance displays
aperiodic oscillations as a function of chemical potential. The
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FIG. 1. System setups with a bilayer region used in this work:
(a) the 1 → 1 setup; (b) the 1 → 2 setup. (c) Primitive vectors a1

and a2, sublattice labels A (blue) and B (red), and unit cell labeling
of the monolayer strucuture.

conductance in the presence of a single voltage domain is
shown to be compatible with previous results obtained within
a low-energy approximation. We compute the conductance in
the presence of a domain wall in the gate bias and show that,
in this case, geometries with different types of connection to
monolayer leads behave similarly. We further study the effect
of a microstructured gate bias with multiple domain walls.
By changing the separation between domain walls we explore
the crossover from well separated domain-wall states to the
fully hybridized regime where in-gap states start to contribute
to the conductance. Finally, we have studied the viability
of an integrated nanotransistor for experimentally reasonable
conditions finding that this setup can achieve on/off ratios of
the output current within 50 � Ion/Ioff � 200.

The structure of the paper is as follows: In Sec. II, we in-
troduce the model of the physical setup and the corresponding
tight-binding formulation as well as the method for obtaining
the transmission across the bilayer region using the transfer-
matrix formulation. In Sec. III, some representative results
of transmission are presented, including the new types of
microstructured gated bilayer graphene. Section IV contains
a short summary and the conclusions. In the Appendix, we
present some of the details of the calculation of the transmis-
sion.

II. MODEL AND METHODS

Schematics of the setup for which the transmission and
the conductance are studied is shown in Fig. 1. The case of
Fig. 1(a) consists of a single-layer graphene with a flake of
another layer on top, the 1 → 1 setup. The second configura-
tion is obtained from two sheets of graphene that are partially
overlapped, the 1 → 2 setup, as shown in Fig. 1(b). In both
we consider AB stacking. Translational invariance along the

(a)

(b)

FIG. 2. 1D effective chain obtained after Fourier transform, as
described in the main text: (a) the 1 → 1 configuration; (b) the 1 → 2
configuration.

transverse direction (y axis) is presumed. We are interested
in the ballistic regime where the electronic mean free path is
larger than the typical length of the device. For simplicity, we
consider the case of perfect contacts, which can be replaced
by infinite leads.

We model electrons in the structure using the conventional
tight-binding approach for pz electrons [4] hopping between
nearest-neighbor carbon sites of the atomic lattice shown in
Fig. 1(c), which can be written as H = H1 + H2 + H⊥. Here,

Hj = −t
∑
m,n

a†
j,m,n[b j,m,n + b j,m+1,n + b j,m,n+1] (1)

+
∑

m,n∈BL

Vj[a
†
j,m,na j,m,n + b†

j,m,nb j,m,n] + H.c. (2)

is the Hamiltonian of the j = 1, 2 layer, and

H⊥ = −t⊥
∑

m,n∈BL

a†
1,m,nb2,m,n + H.c. (3)

is the interlayer hopping term, with a†
j (b†

j ) the creation op-
erators of a particle in sublattice A (B) in the (m, n) unit cell
of the jth layer. The effect of an applied gate voltage within
the bilayer region is modeled by Vj . The BL restriction in the
summation stands for sites belonging to the bilayer region.

After Fourier transformation in the y direction, the station-
ary states of the one-dimensional (1D) effective chain for the
two cases shown in Fig. 2 can be written as

|ψk〉 =
∑
j=1,2

∑
m

(
ψ

A, j
m,ka†

j,m,k + ψ
B, j
m,kb†

j,m,k

)|0〉, (4)

with k the wave number along the y direction. Within
the monolayer (lead) region, we define the column vec-
tor �

j
k (m) = [ ψ

A, j
m−1,k, ψ

B, j
m,k ]T , which obeys the transfer-

matrix equation (see Appendix),

�
1(2)
k (m + 1) = TL�

1(2)
k (m), (5)

where TL is given by

TL = 1

ξη∗

[−|ξ |2 −εξ

εξ ∗ ε2 − |η|2
]
, (6)
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with η = t (1 + eik ) and ξk = t . For the bilayer region (1 �
m � p) we define �k (m) = [ �1

k (m) �2
k (m) ]T obeying

�k (m + 1) = TBL�k (m), (7)

where the transfer matrix TBL is given by

TBL = 1

η∗ξ

⎡
⎢⎢⎢⎣

−|η|2 −εη 0 0
εη∗ ε2 − |ξ |2 0 −t⊥

t⊥ |η|2
ξ∗ t⊥ εη

ξ∗ −|η|2 −εη

−t⊥ εη∗
ξ∗ −t⊥ ε2

ξ∗ εη∗ ε2 − |ξ |2

⎤
⎥⎥⎥⎦.

(8)

The amplitudes at the left and the right interfaces can be
related by

�k (p + 1) = (TBL )p�k (1) (9)

and by the boundary conditions: ψA2
0,k = ψB2

p+1,k = 0 for the
1 → 1 case, and ψA2

0,k = ψB1
p+1,k = 0 for the 1 → 2 case, as can

be seen in Figs. 2(a) and 2(b). With these boundary conditions
one obtains the matrix M1→1(2) relating the layer 1 in the left
to layer 1(2) in the right,

�
1(2)
k (p + 1) = M1→1(2)�

1
k (1), (10)

where M1→1(2) are defined from Eq. (9) in the Appendix.
Within the semi-infinite leads, Eq. (5) can be solved by

assuming the ansatz

�
1(2)
k (m) = α+λm−1

+ ζ+
k + α−λm−1

− ζ−
k ,

with TLζ±
k = λ±ζ±

k . The eigenvalues λ± and the eigenmodes
ζ±

k are explicitly derived in the Appendix. In the leads we only
consider propagating modes, so that |λ| = 1. The eigenmodes
are thus interpreted as left moving, ζ−

j , and right moving, ζ+
j ,

modes, according to their group velocity (see Appendix). We
then use the ζ±

k eigenbasis to write the wave function in the
leads,

�
1(2)
k (m) = λm−1

+ ζ+
k + λm−1

− rkζ
−
k , m < 1, (11)

�
1(2)
k (m) = λ

m−p−1
+ τkζ

+
k , m > p, (12)

from which we define transmission and reflection coefficients,
respectively τ and r. The transmission and reflection coeffi-
cients are given by[

τk

0

]
= U −1M1→1(2)U

[
1
rk

]
, (13)

where U = [ζ+
k , ζ−

k ].
The transmission probability is then defined as T (ε, k) =

1 − |rk|2 = |τk|2, and the overall transmission per transverse
unit length is given by

T̄ (ε) = 1

2π

∫ π

−π

dk T (ε, k). (14)

Using the Landauer formula [48], we find the current per
transverse unit length across the bilayer region,

I = 2e

h

∫
dε T̄ (ε)[ f (ε − μL ) − f (ε − μR)], (15)

where f (ε) is the Fermi distribution function and μL (μR) are
the chemical potential in the left (right) lead (in the following

FIG. 3. Transmission per transverse unit length near the Fermi
level for the 1 → 1 (blue) and 1 → 2 (red) geometries plotted for
p = 200 (a) and p = 1500 (b). The transmission for an infinite
graphene layer (black dashed-dotted) and for an infinite bilayer
(green dashed) are plotted for comparison. Inset: Transmission for
the whole bandwidth for p = 200.

we assume μL > μR). Assuming μ ≡ μL = μR + δμ, with
δμ � μ, we can linearize the Landauer formula [49] to obtain
the conductance G ≡ eδI/δμ, which can be written as

G(μ) = −G0

∫
dε T (ε)

∂ f (ε − μ)

∂ε
, (16)

where G0 = 2e2

h is the conductance quantum. For a system at
zero temperature, Eq. (16) can be simplified to G = G0T (μ).

III. RESULTS AND DISCUSSION

A. Transmission through a bilayer graphene region

In this section, we compute the transmission amplitudes
for the 1 → 1 and 1 → 2 cases. A simplifying feature is that,
for both cases, there is only one propagating incident mode
associated with given ε, hence the corresponding transfer
matrix of the leads is two by two. Note that, due to electron-
hole symmetry, T (ε, k) = T (±ε, k).

Figure 3 shows the conductance for energies near the Fermi
level for the 1 → 1 (blue) and 1 → 2 (red) geometries and
for two values of the scattering region size, p = 200 (a) and
for p = 1500 (b). For comparison, the conductance through
an infinite system consisting of a single (black dashed-dotted)
or a double (green dashed) graphene layer is also depicted.
Note that, in these cases the total transmission in Eq. (14) is
simply determined by the dispersion relation. Therefore, for
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FIG. 4. Conductance for a gated bilayer region. Upper panels refer to the geometry 1 → 1 [(a)–(c)] and lower panels to 1 → 2 [(d)–(f)].
(b) Blue and (e) red correspond to V1 = 0.04t and V2 = 0, computed for p = 400. For (b) green and (e) red. the values of the voltage are
swapped, i.e., V1 = 0 and V2 = 0.04t . Notice that the geometry 1 → 2 is unchanged under swapping the gate voltage. The unbiased case
V1 = V2 = 0 is depicted as a gray line for comparison. The dispersion relations at low energies, computed for an infinite system, corresponding
respectively to the setups (b) blue, (b) green, and (e) red are given in (a), (c), (d), and (f). In each panel, the central dispersion corresponds to
the bilayer region and the color (and the circle’s radius) encodes whether the wave function is localized in the bottom (blue and larger radius)
or in the upper (red and smaller radius) layers. The left and right dispersions correspond to a single layer and follow the same color coding.
Inset: The height of the jump in the conductance as a function of gate voltage.

low energies it behaves as ∝|ε| for the single layer and as
∝ |ε|1/2 for the bilayer.

For both geometries, the low-energy conductance is almost
twice as low as for pristine graphene and vanishes faster, with
a ∝|ε|2 scaling behavior. The inset of Fig. 3(a), depicting G
for all energies within the bandwidth, shows that, even away
from the Fermi level, G never attains the value of the pristine
case.

Another pronounced low-energy feature of the transmis-
sion is the sudden increase for energies around t⊥. Thus, as
also seen in the pristine double layer case, the conductance
resolves the appearance of the higher energy band, after which
two propagating modes become available for transport within
the bilayer region.

The differences between the 1 → 1 and 1 → 2 geometries
are more pronounced for higher energies. At low energies,
they can be completely masked out by the finite-size ef-
fects that yield the characteristic jumps in the conductance
[Fig. 3(a)]. For larger values of p, when the finite-size oscil-
lations are reduced, the 1 → 1 case is seen to have a higher
conductance. This is to be expected since in this case, the
transmitted electrons do not have to change layer, which is
suppressed for low values of t⊥.

B. Conductance through a gated bilayer graphene region

1. Homogeneous case

In this section, we study the effect on the transmission of
a gate voltage applied within the bilayer region. We assume
that only one of the layers is affected by the gate while the

other remains at zero voltage. We study the cases for which
the voltage of the lower, V1, or upper layers, V2, is 0.04t or ten
times larger 0.4t , which correspond to typical values of gate
voltages that can be implemented experimentally.

Figure 4 shows the conductance through a gated bilayer
graphene region in different cases together with a plot of the
band structure of the bilayer and the single layer leads around
zero energy (computed assuming an infinite system).

Figure 4(b) depicts the 1 → 1 geometry for V1 = 0.04t
and V2 = 0 (blue) and for the swapped voltage configuration
V1 = 0 and V2 = 0.04t (green). The most pronounced features
are the suppression of transport for ε ∈ {0, |�V |} and a jump
in the conductance for ε ≈ |�V | seen in Fig. 4(b) blue, which
is not present when the gate voltages are swapped in Fig. 4(b)
(green). The illustrations of the band structures in Figs. 4(a)
and 4(c) help to understand this behavior. The effect of the
gate voltage is to open up a gap in the dispersion relation
of the bilayer. Moreover, while for V1 = V2 = 0, the wave
function’s amplitudes are equally distributed between the two
layers of the bilayer system, for finite voltages their distri-
bution changes drastically near the gap edges (valence band
maximum and conduction band minimum). The color coding
in Figs. 4(a) and 4(c) shows the localization of the wave
function in the upper or lower layers. This energy-dependent
layer distribution can simply explain the conduction jump:
in the case depicted in Fig. 4(a), after passing the energy
gap the system has suddenly available a large density of
transmission modes within the lower layer. Such matching
conditions (same color, at a given energy, for the leads and
the bilayer region) never arise in the opposite case, Fig. 4(b)
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FIG. 5. (a) Conductance for a gated bilayer region computed for
p = 400 for the 1 → 1 (blue) and 1 → 2 (red) geometries with V1 =
0.4t and V2 = 0. The inset depicts the opposite voltage configuration:
V1 = 0 and V2 = 0.4t . (b) The dispersion relations at low energies,
computed for an infinite system, corresponding to the setup (a).
The central dispersion corresponds to the bilayer region and the
color (and the circle’s radius) encodes whether the wave function
is localized in the bottom (blue and larger radius) or in the upper (red
and smaller radius) layers. The left and right dispersions correspond
to a single layer and follow the same color coding.

green, as can be seen in Fig. 4(c). The height of the jump as a
function of V1 is shown in Fig. 4(b) as an inset.

Figure 4(e) depicts the transmission for the 1 → 2 geome-
try. This case is symmetric under the swapping of the voltages.
In this case Figs. 4(d) and 4(f) show that the perfect matching
conditions seen in Fig. 4(a) are never attained and thus no
jump in conductance is observed.

The conductance attained when the gate voltage is in-
creased by one order of magnitude is depicted in Fig. 5(a)
for the two geometries 1 → 1 (blue) and 1 → 2 (red) for
V1 = 0.4t and V2 = 0. The inset shows the voltage swapped
case, V1 = 0 and V2 = 0.4t . Figure 5(b) depicts the band
structure, with the same color coding as before, corresponding
to the case 1 → 1 and V1 = 0.4t and V2 = 0. An interesting
feature of the transmission in Fig. 5(a) is that there are two
regions where the conduction seems to vanish. One, at higher
energies, corresponds to the band gap and thus the suppression
of the conductance is not surprising. However, the second
arises within a region where the density of states is finite.
Again, the plot of the band structure in Fig. 5(b) can simply
explain this effect: the gap in conductance corresponds to a
region where the conducting states with support on the lower

FIG. 6. Conductance for the bilayer region with a gate voltage
domain wall in the middle, computed for p = 400 in the 1 → 1
(blue) and 1 → 2 (red) geometries with V0 = 0.04t .

layer become gapped, so although the total density of states is
finite, there are no states contributing to transport.

2. Inhomogeneous case: Single domain wall

In this section, we study how the transmission is af-
fected by the presence of an inhomogeneous gate voltage.
We consider the simplest case where a gate voltage domain
wall is present in the bilayer region. We assume that the
local potential at cell m, layer j (see Fig. 2) is given by
Vm, j = V0�[(−1) j (m − p

2 )], with �(x) the Heaviside func-
tion. Therefore, the potential difference on the left half (m <

p/2) is V1 − V2 = V0 while on the right half (m > p/2) it
is V1 − V2 = −V0, which implies a domain wall right at the
middle of the bilayer region. This domain-wall structure is
known to support confined states, localized in the transverse
direction and extending along the wall [34], with important
consequences regarding transport in the direction of the wall
[33]. The impact of a domain wall on charge transport in the
perpendicular direction has not been studied before and is
analyzed in the following.

In Fig. 6 we show the conductance for the geometries
1 → 1 (blue) and 1 → 2 (red) for V0 = 0.04t . The two ge-
ometries now have very similar conductance, which contrasts
with the case when no domain wall is present, depicted in
Figs. 4(b) and 4(f). A noticeable difference is the absence of
the jump in conductance observed for the 1 → 1 geometry in
Fig. 4(b). Since the domain wall reverses the layer distribution
of the wave function’s amplitudes, the perfect matching con-
ditions seen in Fig. 4(a) are never attained and thus no jump
in conductance is observed. We conclude that the domain wall
erases the difference between the two geometries.

As shown in Ref. [34], the states confined at the domain
wall originate one-dimensional bands dispersing inside the
bulk gap. In Fig. 6 the impact of those states is unnoticeable,
as a well resolved gap of order ∼V0 is still apparent. This can
be understood as a consequence of transverse confinement.
At low energies, the wave function of these states has a
decay length of the order β ≈ a0t/

√
V0t⊥  a0, where a0 is

the carbon-carbon distance [34]. For V0 = 0.04t the decay
length is β ≈ 8a0, much smaller than the distance l = 200a0
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FIG. 7. Conductance for the 1 → 1 (blue) and the 1 → 2 (red)
geometries in the presence of multiple domain walls separated
by l lattice spacings, computed for V0 = 0.04t . (a) l = 80a0  ξ .
(b) l = 20a0 > ξ . (c) l = 5a0 ≈ ξ .

between the domain wall and the edges of the scattering
region. Therefore, for a single domain wall, these states do
not contribute in propagating charge across the bilayer region.

C. Conductance through a microstructured biased bilayer
graphene region

We now generalize our study to multiple domain walls.
Our aim is to show how these microstructures, which are now
routinely fabricated, can be used to engineer the transmission.
We consider the potential of the previous section generalized
for a periodic gated region of size l , Vm,1 = V0�l [m], where

�l [m] =
{

1 if 2kl/a0 < m < (2k + 1)l/a0 for k ∈ Z
0 if else,

FIG. 8. Current as a function of gate voltage for the setup of
Fig. 4(b) as a function of V1 (for V2 = 0) computed for p = 200
and different values of the temperature for the 1 → 1 (a) and
1 → 2 (b) geometries. For ease of reading the curves are equally
shifted.

and Vm,2 = V0(1 − �l [m]). As a function of l , there are two
qualitatively different cases that we consider in the following:
a large domain length, l  β, where the edge modes along
the domain wall do not hybridize and thus do not contribute to
the transport properties; and a small domain length, l � β, for
which there is hybridization of edge modes and thus transport
for energies within the bulk gap becomes possible.

Figure 7 shows the evolution of the conductance curves
with l . We consider, as before, V0 = 0.04t corresponding
to β ≈ 8a. In Fig. 7(a) we show the conductance for l =
80a0  β. As for the l = p/2 case in the previous section,
the differences between the two geometries are not signifi-
cant and there is almost no conductance within the gap, for
ε ∈ {0,V0}.

Figure 7(b) depicts the conductance for a smaller value of
l = 20a0. Here, there are already some states within the gap
that contribute to transport which result from the hybridization
of the edge modes along the domain walls.

In Fig. 7(c) we set l = 5a0, for which the domain-wall
states are already fully hybridized. Note the striking similarity
between the low-energy conductance and that obtained for an
unbiased bilayer region, shown in Fig. 3 and as a background
in Figs. 4(b), 4(c) 4(f), and 4(g). It is clear that the effect of the
gap has been completely washed out. At higher energies, how-
ever, the system still shows the conductance asymmetry typ-
ical of a gate biased bilayer region [see Figs. 4(b), 4(c), 4(f),
and 4(g)].

205436-6



TRANSMISSION ACROSS A BILAYER GRAPHENE REGION PHYSICAL REVIEW B 99, 205436 (2019)

D. Results for current at finite temperature
and device application

In this section, we study the viability of an integrated
nanotransistor based on the 1 → 1 or 1 → 2 geometries.

For this device, one aims to maximize the current ratio be-
tween the “on” and “off” currents, Ion and Ioff, passing through
the terminals, when changing between two values of the
applied gate voltage. Due to its low resistance and versatility,
graphene is a natural candidate for transistor implementations.
However, due to the nature of its band structure, achieving
a high on/off ratio is a technical challenge especially at
finite temperature. We exploit the nonlinear behavior of the
conductance obtained with the setup of Fig. 4(b) to optimize
the Ion/Ioff and study its behavior at finite temperature.

Figure 8 shows the logarithmic plot of the current for
the 1 → 1 [Fig. 8(a)] and the 1 → 2 [Fig. 8(b)] setups for
different temperatures as a function of gate voltage V1. The
chemical potentials on the left and right leads were fixed
at the experimentally reasonable values of μL = 0.1t and
μR = 0. In the gate voltage interval 0 < V1 < 0.2t this setup
can achieve 50 � Ion/Ioff � 200.

IV. CONCLUSION

In this work, we have studied the conductance across a
graphene bilayer region for two different positions of the
single-layer leads: the case when the leads connect to the same
layer, the 1 → 1 configuration; and the case when the leads
connect to different layers, 1 → 2 configuration. We have
worked in the limit of an infinitely wide scattering region,
to avoid edge effects, and developed a transfer-matrix, tight-
binding-based methodology which allows going away from
linear response. We have found that, when there is no gate
bias applied to the bilayer region, the two setups, 1 → 1 and
1 → 2, have a similar behavior, with a slightly higher conduc-
tance in the 1 → 1 configuration. The presence of a bias gate
voltage differentiates between the two configurations. Both of
them develop a conductance gap which mimics the spectral
gap of a biased bilayer, but only the 1 → 1 configuration
shows a pronounced conductance step at one of the gap edges,
extending the results obtained in the continuum limit [37] and
for ribbons of finite width [41]. This step is not present if
the gate polarity is reversed. Introducing a domain wall in
the gate bias applied to the bilayer region, the conductance
step disappears and the two configurations, 1 → 1 and 1 → 2,
behave again in a similar way.

We have also studied the effect of a gate bias with a multi-
ple domain wall microstructure applied to the bilayer region.
When the separation between domains is much larger than
the localization length of the states confined at the domain
walls, the multiple domain-wall states behave independently
and the result is similar to the case of a single domain
wall. On decreasing the separation between domain walls,
the localized states start to hybridize and a finite conductance
starts to appear inside the gap. At even smaller distances, the
gap is completely washed out, and only at higher energies a
conductance asymmetry characteristic of a gate biased bilayer
region is present. Finally, we have studied the viability of
an integrated nanotransistor based on the 1 → 1 or 1 → 2

geometries. For experimentally reasonable chemical poten-
tial difference (∼0.3 eV) and gate voltage interval (from 0
up to ∼0.6 eV) we have found that this setup can achieve
50 � Ion/Ioff � 200. Summing up all the finds, it is clear the
transmission through a bilayer region can be manipulated by
a gate bias in ways not previously anticipated.
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APPENDIX: THE TRANSMISSION THROUGH
A BILAYER REGION

Here we detail the transfer-matrix method used to obtain
the transmission coefficient. We apply Fourier transformation,

a†
j,m,k (b†

jm,k ) = 1√
Ny

∑
n

exp(ikn)a†
j,m,n(b†

j,m,n),

to the tight-binding Hamiltonian (1) and obtain

Hk = −
∑
j,m

a†
j,m,k[ηb j,m,k + ξb j,m+1,k]

+
BL∑
j,m

Vj[a
†
j,m,ka j,m,k + b†

j,m,kb j,m,k] + H.c.

− t⊥
BL∑
m

a†
1,m,kb2,m,k + H.c., (A1)

where η and ξ are defined in the main text.
By multiplying Hk|ψk〉 = εk|ψk〉 by 〈m, l, μ|, for a given

lattice point (m, l, μ), where m stands for position, l for layer,
and μ = A, B labels sublattices, one obtains, for the leads
where m < 0 or m > p + 1,

εψA1
m,k = −ηψB1

m,k − ξψB1
m+1,k,

εψB1
m,k = −η∗ψA1

m,k − ξ ∗ψA1
m−1,k,

with ψ
μl
m,k = 〈m, μ, l|ψk〉. We rewrite the latter equations in a

matrix equation form as[
ε ξ

η∗ 0

][
ψA1

m,k

ψB1
m+1,k

]
= −

[
0 η

ξ ∗ ε

][
ψA1

m−1,k

ψB1
m,k

]
, (A2)

which is equivalent to Eq. (5).
Similar steps can be taken to build the transfer matrix for

the bilayer region where 1 � m � p,

(εk − V1)ψA1
m,k = −ηψB1

m,k − ξψB1
m+1,k − t⊥ψB2

m,k,

(εk − V1)ψB1
m,k = −η∗ψA1

m,k − ξ ∗ψA1
m−1,k,

(εk − V2)ψA2
m,k = −ηψB2

m,k − ξψB2
m+1,k,

(εk − V2)ψB2
m,k = −η∗ψA2

m,k − ξ ∗ψA2
m−1,k − t⊥ψA1

m,k,

from which we obtain Eq. (7) in matrix form.
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By imposing the boundary conditions for setup 1 → 1, and
defining M = (TBL )p, we can rewrite Eq. (9) as[

ψA1
p,k

ψB1
p+1,k

]
= M1→1

[
ψA1

0,k

ψB1
1,k

]
, (A3)

or equivalently,

�1
k (p + 1) = M1→1�

1
k (1), (A4)

where

M1→1 = 1

M44

[
M11M44−M14M41 M12M44−M14M42

M21M44−M24M41 M22M44−M24M42

]
.

Using the boundary condition for the setup 1 → 2, we obtain,
after similar steps,

�2
k (p + 1) = M1→2�

1
k (1), (A5)

where

M1→2 = 1

M24

[
M24M31−M34M21 M24M32−M34M22

M24M41−M44M21 M24M42−M44M22

]
.

The last step is to represent wave amplitudes �
1(2)
k (m)

in the eigenbasis of the transfer matrix of the leads. The

characteristic equation for the eigenvalue problem TLζk = λζk

reads

(ξkη
∗
k )λ2 − (ε2 − |ξk|2 − |ηk|2)λ + ξ ∗

k ηk = 0, (A6)

yielding two eigenvalues,

λ± = 1

ξkη
∗
k

(ε2 − |ξk|2 − |ηk|2 ±
√

(ε2 − δ2+)(ε2 − δ2−)),

(A7)

where δ± = |ξk| ± |ηk|, corresponding to the normalized
eigenvectors

ζ±
k = 1√

2

(
1
−ε

ξ∗
k +η∗

k λ±

)
. (A8)

A mode with positive (negative) group velocity is con-
sidered to be the right-moving (+) [left-moving (−)] mode.
Recalling that in the leads |λ| = 1 and using the Bloch the-
orem for the pristine graphene λ = eiq(k,ε), where q(k, ε) is
the conjugate momentum in a1(propagating) direction, and
plugging the latter expression into Eq. (A6) we obtain the
mode group velocity in the propagating direction as

vg = dε

dq
= −1

ε
Im[ξkη

∗
kλ(k, ε)]. (A9)
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