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Numerical evidence of conformal phase transition in graphene with long-range interactions
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Using state of the art Hybrid Monte Carlo (HMC) simulations we carry out an unbiased study of the
competition between spin-density wave (SDW) and charge-density wave (CDW) order in suspended graphene.
We determine that the realistic interelectron potential of graphene must be scaled up by a factor of roughly 1.6
to induce a semimetal-SDW phase transition and find no evidence for CDW order. A study of critical properties
suggests that the universality class of the three-dimensional chiral Heisenberg Gross-Neveu model with two
fermion flavors, predicted by renormalization group studies and strong-coupling expansion, is unlikely to apply
to this transition. We propose that our results instead favor an interpretation in terms of a conformal phase
transition. In addition, we describe a variant of the HMC algorithm which uses exact fermionic forces during
molecular dynamics trajectories and avoids the use of pseudofermions. Compared to standard HMC, this allows
for a substantial increase of the integrator step size while achieving comparable Metropolis acceptance rates and
leads to a sizable performance improvement.
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I. INTRODUCTION

Graphene, with its orders of magnitude higher charge
carrier mobility, is considered silicon’s ideal replacement
for semiconductor-based devices. However, clean suspended
graphene, which features the maximal carrier mobility at the
same time lacks an energy gap in its band structure, the
existence of which is the prerequisite for building graphene-
based transistors.

Hypothetically such a gap could exist, since the small
Fermi velocity of vF ≈ c/300 (where c is the speed of
light) leads to strong interactions between electronic quasi-
particles with an effective fine-structure constant of αeff =
e2/(h̄vF ) ≈ 2.2. Thus one expects, based on the analogy to
chiral symmetry breaking in quantum field theories, numer-
ous theoretical arguments [1–5], and numerical simulations
[6–10] that for αeff larger than some critical value αc ≈ 1,
interactions destabilize the system towards spontaneous for-
mation of gapped ordered phases. Besides the well-known
antiferromagnetic spin-density wave (SDW) order favored by
sufficiently strong on-site repulsion [11–14], various combi-
nations of nearest neighbor and other short-range couplings
might also induce such phases as a charge-density wave
(CDW) [11,15–18], topological insulators [19], spontaneous
Kekulé distortions [20,21] as well as coupled spin-charge-
density-wave phases [22], and spin spirals [23]. Also the
existence of triple or multicritical points at which semimetal,
CDW and SDW phases meet has been discussed [11,24,25].

Experimentally on the other hand, it has been firmly estab-
lished that suspended graphene is a semimetal [26,27]. This
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implies that electronic two-body interactions are still too weak
to induce a semimetal-insulator quantum phase transition.
The absence of an energy gap has been reproduced in first-
principles numerical simulations [28–30] which properly take
into account the screening of the bare Coulomb potential by
electrons in lower σ -orbitals [31]. This screening increases
the critical coupling for a semimetal-insulator transition up
to roughly αc ≈ 3.1, which is noticeably higher than the
effective coupling strength αeff ≈ 2.2 in suspended graphene.
Similarly, numerical calculations of the conductivity yielded
a finite result almost equal to that of noninteracting graphene,
implying the absence of a band gap [30].

Despite being in the weak-coupling gapless regime, sus-
pended graphene may still be quite close to a semimetal-
insulator transition. The knowledge of how close real
graphene is to a phase transition might still help to describe
the strong-coupling aspects of the many-body physics of this
material. An obvious example of the relevance of the position
and order of the closest phase transition in the weak-coupling
regime are the convergence radius and rate of the perturbative
expansion. On the experimental side, applying mechanical
strain can move suspended graphene closer to the phase
transition [32,33].

Guided by the results obtained within renormalization
group techniques [11–13] and strong-coupling expansion
[14], most numerical studies [28,29,32] have focused on
detecting the onset of spin-density wave (SDW) order, which
is expected to be a second-order phase transition in the
universality class of the Nf = 2 chiral Heisenberg Gross-
Neveu model in three space-time dimensions.1 Within the

1The chiral Gross-Neveu universality class has been verified for the
hexagonal Hubbard model with purely on-site interactions through
numerous numerical studies. See, e.g., Refs. [34–37].
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perturbative renormalization-group analysis the robustness of
this scenario is supported by the observation that the long-
range Coulomb potential is a marginally irrelevant interaction
[11–13], and thus the semimetal-insulator phase transition
should be driven by on-site interactions.

Since the screening of the bare Coulomb potential by
electrons in σ orbitals mostly suppresses short-distance in-
teractions and the long-range potential is only weakly af-
fected [31,32], the long-range Coulomb interaction might still
dominate the near-critical behavior [1,13]. This might favor
ordered phases other than the antiferromagnetic SDW phase,
with the charge-density wave being the most likely candidate
[11,15–18]. An unbiased study from first principles of the
competition between different ordered phases in the vicinity
of suspended graphene, considered as a point in the space of
all possible interelectron interactions, is thus desirable.

By extension, the universality class (and even the order)
of the possible semimetal-insulator transition also remains
unclear. At present, the only first-principles calculations of
critical exponents were carried out in the Dirac cone approx-
imation [6–9] and have not unambiguously settled the issue.
The prediction of Gross-Neveu scaling relies upon an identifi-
cation with the Hubbard model with on-site interactions only,
which is a rather drastic modification.

A transition to a phase other than SDW could certainly
imply different critical properties: It has been argued, for
instance, that a semimetal-CDW transition should fall into
the chiral Ising universality class [38]. Another interesting
possibility is that the scale-invariant ∼1/r Coulomb interac-
tion induces the so-called conformal phase transition (CPT) of
infinite order [39], at which physical observables exhibit expo-
nential (“Miransky”) rather than powerlaw scaling [40]. CPT
generalizes the concept of the Berezinskii-Kosterlitz-Thouless
transition [41,42] to higher than two dimensions where long-
range order is possible. It is a continuous transition char-
acterized by an exponentially increasing correlation length
and occurs when changes of some control parameter cause
the merging of infrared and ultraviolet renormalization group
fixed points which marks the transition from a conformal to
a nonconformal phase [39]. For graphene modelled as 2 + 1-
dimensional Dirac fermions with bare Coulomb interaction, a
CPT is predicted by the analysis based on Schwinger-Dyson
equations [2,43].

In this work, we use our state of the art Hybrid Monte
Carlo simulation code with numerous improvements dis-
cussed recently in Ref. [44] to check how close suspended
graphene might be to a semimetal-insulator transition, and
to address the properties of this transition. We use a realistic
partially screened Coulomb potential [29] which accounts for
screening by electrons in lower σ orbitals [31] and drive
the system towards the transition by uniformly rescaling this
potential, as in Ref. [28]. We thus improve and re-check
the results of previous studies [28,29,32] which might have
significant systematic errors due to small lattice sizes, large
discretization artifacts, and artificial mass terms. The most
important improvements include the following.

(1) Unlike in Refs. [28,29] we study the competition
of SDW and CDW phases in a completely unbiased way,
without symmetry-breaking mass terms that favor a spe-
cific phase. To this end, we use quadratic observables as

order parameters, such as the squared spin or charge per
sublattice [44], which unlike the corresponding condensates
are nonzero in finite volume even without external sources
and allow for an unambiguous determination of the ground
state.

(2) To avoid the loss of ergodicity of HMC simula-
tions caused by zero modes of the tight-binding Hamilto-
nian without mass terms, we represent interelectron interac-
tions in terms of complex-valued Hubbard-Stratonovich fields
[44–46].

(3) An improved fermionic lattice action with exact sublat-
tice (chiral) symmetry and strongly suppressed discretization
errors [44,47].

(4) An efficient noniterative Schur complement solver
which significantly speeds up the simulations [48].

(5) Molecular dynamics trajectories which use exact
fermionic forces and avoid the use of pseudofermions, which
leads to another sizable performance improvement. This is
a very recent development and is described in detail in
Sec. II B.

(6) Several improvements of the simulation parameters
such as lower electronic temperatures (T = 0.125 eV instead
of 0.5 eV), larger spatial lattice sizes (up to L = 24 instead
of 18) and finer discretization of the Euclidean time axis
(δτ = 0.0625 eV−1 instead of 0.1 eV−1).

Using infinite-volume extrapolations of order parameters,
we are able to determine that SDW order spontaneously
forms, without being favored by a source term, at a critical
coupling of αc ≈ 3.5. This is larger than the previous estimate
αc ≈ 3.1 and implies that the scenario of suspended graphene
being in the semimetal phase remains stable under our im-
provements of the HMC method. With high confidence we
also rule out the presence of CDW order for couplings of
αeff � 5.

Furthermore, we address the question of the universal prop-
erties of the phase transition induced by rescaling the screened
interelectron interaction potential in suspended graphene [31].
Quite intriguingly, we find indications that the ratio between
on-site and nonlocal interactions in the screened potential
might favour the infinite-order phase transition scenario pre-
dicted in Refs. [2,43].

By studying the finite-size scaling of the squared spin per
sublattice, we find that the ratio of critical exponents β/ν is
close to exactly one in good approximation for the semimetal-
SDW transition. Furthermore, the collapse of data points from
different lattice sizes onto a universal scaling function is rather
insensitive toward the choice of correlation length exponent ν,
with the optimal choice drifting slightly towards larger values
when smaller lattices are excluded from the analysis. We
obtain evidence that a collapse may occur naturally in infinite
volume, without the need for a rescaling factor L1/ν , which
formally corresponds to the limit ν → ∞. We argue that
such behavior is consistent with a phase transition governed
by Miransky scaling, with finite-volume corrections which
mimic a second-order phase transition on small systems. We
also compare our data with reference data obtained for the
Hubbard model with purely on-site interactions, and conclude
that the interpretation of the numerical results in terms of
Gross-Neveu scaling is much less convincing for our nonlocal
interaction potential than for purely on-site interactions.
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II. SIMULATION SETUP

A. The path-integral formulation of the partition function

The basic idea of first-principles Monte Carlo simulations
is to carry out a stochastic integration of the functional inte-
gral representation of the grand-canonical partition function
Z = Tr e−βĤ, in which operators are replaced by fields, by
using a Markov process which evolves the fields in computer
time such that their time histories are consistent with the
equilibrium distribution. Thermodynamic expectation values
of observables 〈Ô〉 = 1

Z Tr (Ôe−βĤ) are then obtained from
measurements on a representative set of field configurations.

Our starting point is the interacting tight-binding Hamilto-
nian on the hexagonal lattice, in second quantized form:

Ĥ = −κ
∑

〈x,y〉,σ
(ĉ†

x,σ ĉy,σ + H.c.) + λ

2

∑
x,y

ρ̂xVxyρ̂y. (1)

Here, κ is the hopping parameter, 〈x, y〉 denotes nearest-
neighbor sites, σ =↑,↓ labels spin components and ρ̂x =
ĉ†

x,↑ĉx,↑ + ĉ†
x,↓ĉx,↓ − 1 is the electric charge operator. The

creation- and annihilation operators satisfy the anticommu-
tation relations {ĉx,σ , ĉ†

y,σ ′ } = δx,yδσ,σ ′ . Vxy is the partially
screened Coulomb potential used in Refs. [29,49]. To drive
the system towards the semimetal-insulator phase transition,
we rescale this potential by a factor λ > 1, so that suspended
graphene corresponds to λ = 1. As the cRPA data of [32]
suggest, for not very large distances of order of few lattice
spacings, the effect of strain can be roughly described in terms
of such a rescaling.

The potential Vxy contains the exact values obtained from
calculations within a constrained random-phase approxima-
tion (cRPA) by Wehling et al. in Ref. [31] for the on-site
U00, nearest-neighbor U01, next-nearest-neighbor U02, and
third-nearest-neighbor U03 interaction parameters.2 At longer
distances a momentum dependent phenomenological dielec-
tric screening formula, derived also in Ref. [31] based on
a thin-film model, is used for a smooth interpolation to an
unscreened Coulomb tail. Both results are combined via a
parametrization based on a distance dependent Debye mass
mD. The matrix elements Vxy are then filled using

V (r) =
{

U00,U01,U02,U03 , r � 2a

e2
(
c exp(−mDr)

a(r/a)γ + m0
)

, r > 2a
, (2)

where a is the nearest-neighbor distance and mD, m0, c and
γ are piecewise constant chosen such that mD, m0 → 0 and
c, γ → 1 for r � a. Tables with precise values of these
parameters can be found in Ref. [29]. Figure 1 shows this in-
teraction potential in comparison to the unscreened Coulomb
potential.

To avoid a fermion sign problem (where the measure of
the functional integral becomes complex or of indefinite sign,
which prevents importance sampling), we apply the following

2There is still some minor disagreement over the exact values of
these parameters in graphene [32]. The uncertainties are most likely
too small to have any significant effect on the results of this work
however.

FIG. 1. Partially screened interelectron interaction potential
given by (2) (green and blue) compared with the bare Coulomb
potential (red). Green and blue points correspond to the cRPA values
(green) and to the thin-film model potential (blue), respectively, all
taken from [31].

canonical transformation to the Hamiltonian (1): Hole cre-
ation and annihilation operators b̂†

x, b̂x are introduced for the
spin-down electrons and the sign of these is then flipped on
one of the triagonal sublattices of the hexagonal lattice. The
transformation law can be summarized as

ĉx,↑, ĉ†
x,↑ → âx, â†

x,

ĉx,↓, ĉ†
x,↓ → ±b̂†

x,±b̂x, (3)

where the signs in the second line alternate between the two
sublattices. This leads to ρ̂x = â†

x âx − b̂†
xb̂x. We also apply the

following Fierz transformation to the on-site interaction term:

Vxx

2
ρ̂2

x = η
Vxx

2
ρ̂2

x − (1 − η)
Vxx

2
(ρ̂ ′

x )2

+Vxx(1 − η) ρ̂ ′
x, (4)

Here, ρ̂ ′
x = â†

x âx + b̂†
xb̂x is the spin-density operator and the

constant η can be chosen in the range (0,1). The purpose of
this transformation is to extend the Hubbard fields (introduced
below) to complex numbers. This is necessary when the
Hamiltonian (1) contains no mass terms, as the configuration
spaces of both purely real and purely imaginary auxiliary
fields then form disconnected regions, separated by infinitely
high potential barriers (extended manifolds where the fermion
determinant vanishes). The additional degrees of freedom of
complex fields allow our Monte Carlo algorithm to circum-
vent the barriers and ensure ergodicity [44–46]. The constant
η interpolates between real and imaginary fields.

To derive the functional integral, we start with a symmetric
Suzuki-Trotter decomposition which yields

Z ≈ Tr

(
Nτ∏
i=1

e−δτ (Ĥ0+Hint )

)

= Tr (e−δτ Ĥ0 e−δτ Ĥint e−δτ Ĥ0 . . . ) + O
(
δ2
τ

)
, (5)

where the exponential is factorized into Nτ terms and the
kinetic Ĥ0 and interaction Ĥint contributions are separated.
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This introduces a finite step size δτ = β/Nτ in Euclidean time
and a discretization error O(δ2

τ ). The four-fermion terms ap-
pearing in Ĥint are now converted into bilinears by Hubbard-
Stratonovich (HS) transformation. We use two distinct vari-
ants: The first term ∼ηρ̂2

x appearing on the right hand side of
Eq. (4) is reabsored into the interaction matrix Vxy appearing
in (1) and the combined expression is then transformed using

e
− δτ

2

∑
x,y

Vxyρ̂x ρ̂y ∼=
∫

Dφ e
− 1

2δτ

∑
x,y

φxV −1
xy φy

e
i
∑
x

φx ρ̂x
. (6)

The ∼(1 − η)(ρ̂ ′
x )2 term in Eq. (4) is transformed by its own,

using

e
δτ
2 (1−η)

∑
x

Vxx (ρ̂ ′
x )2 ∼=

∫
Dχ e

− 1
2δτ

∑
x

χ2
x

(1−η)Vxx e
∑
x

χx ρ̂
′
x
. (7)

In effect, we have introduced a complex bosonic auxiliary
field � (“Hubbard field”) with real part χ and imaginary
part iφ. Note that the transformations are applied once to
each timeslice, leading to φ ≡ φx,t and χ ≡ χx,t . The third
term in Eq. (4) is already a bilinear and doesn’t need to
be transformed. Due to the translational invariance of the
integration measure in Eq. (7) it can be absorbed into the real
part of the Hubbard field through the transformation

χ → χ − δτVxx(1 − η). (8)

To compute the trace in the fermionic Fock space (with
antiperiodic boundary conditions) appearing in Eq. (5), we use

Tr (e−Â1 e−Â2 . . . e−Ân )

= det

⎛⎜⎜⎜⎝
1 −e−A1 0 . . .

0 1 −e−A2 . . .
...

. . .
e−An 0 . . . 1

⎞⎟⎟⎟⎠, (9)

where Âk = (Ak )i j ĉ
†
i ĉ j are the fermionic bilinear opera-

tors and Ak (without hat) contain matrix elements in the
single-particle Hilbert space. This identity is derived in
Refs. [50–52]. Applying (9) to Eq. (5), we obtain

Z =
∫

D� | det M(�)|2e−Sη (�), (10)

with

Sη(�) = 1

2δτ

∑
x,y,t

φx,tṼ
−1

xy φy,t

+
∑
x,t

(χx,t − (1 − η)δτVxx )2

2(1 − η)δτVxx
. (11)

Here, Ṽ denotes a modified interaction matrix wherein the
diagonal elements have been rescaled by a factor of η by the
Fierz transformation (4). The constant shift of χ in the second

sum results from Eq. (8). The fermion matrix is given by

M(�) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 −e−δτ h 0 0 0 . . .

0 1 −ei�1 0 0 . . .

0 0 1 −e−δτ h 0 . . .

0 0 0 1 −ei�2 . . .
...

. . .
ei�Nτ 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(12)

where we use the short-hand notation ei�t ≡ diag(eχx,t +iφx,t )
and h denotes the single-particle tight-binding hopping ma-
trix. | det M(φ)|2 appears in (10) since the fermionic matrices
for spin-up and spin-down electrons are M and M†, respec-
tively.

Equation (10) is exactly of the form required for Monte
Carlo simulations: Z is expressed as a functional integral
over classical field variables with a positive-definite measure.
We point our here that the appearence of matrix exponen-
tials e−δτ h in the fermion matrix M(�) leads to a nonlocal
fermion action. This action has an exact sublattice-particle-
hole symmetry, even at finite δτ and in the presence of the
fluctuating Hubbard fields [44,47]. In contrast, the linearized
action used in the previous studies [28,29,49] corresponds
to expanding the blocks e−δτ h in M(�) to linear order in
δτ . The main disadvantage of this linearized formulation is
that the leading discretization errors generate a strong explicit
breaking of the spin rotational symmetry in this case, which is
only suppressed at very large Nτ [44,47]. M(�) is a dense
matrix here, which makes iterative inversion methods such
as the standard conjugate-gradient solver rather inefficient.
M(�) can be efficiently inverted however, using a recently
developed solver based on Schur decomposition [48].

B. Hybrid Monte Carlo with exact fermionic forces

This work employs the Hybrid Monte Carlo (HMC) al-
gorithm based on the formalism originally developed in
Refs. [53,54] to study the graphene tight-binding model with
interactions. HMC has its origins in lattice QCD simulations
[52,55,56] but is increasingly being applied also in condensed
matter physics [6–9,28–30,45,54,57–68] alongside determi-
nantal quantum Monte Carlo simulations following Blanken-
becler, Scalapino, and Sugar (BSS-QMC) [51,69]. As we have
described the individual steps of HMC in detail in several
publications [29,44,49], we will focus entirely on a recent
development here, whereby the algorithm is implemented
with exact fermionic forces rather than using pseudofermions.

The HMC algorithm includes molecular dynamics (MD)
trajectories, during which the Hubbard field is evolved in
computer time by an artificial Hamiltonian process. During
these trajectories the effective action

Seff(�) = Sη(�) − ln(det M(�) det M(�)†) (13)

plays the role of potential energy for the Hubbard field
�. Obviously, one needs to compute the derivative of the
effective action with respect to Hubbard field in order to
solve Hamilton’s equations. The standard approach is to use a
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stochastic representation of the determinants in Eq. (13):

| det M(�)|2 =
∫

D��†e−�†(MM† )−1�, (14)

which introduces an additional pseudofermionic field �. Cal-
culations of derivatives of Seff(�) with respect to � then
require just one solution of the linear equation MM†� = X ,
where X is a Gaussian distributed field. This solution can be
obtained using an iterative solver or a noniterative solver [48].
The latter strategy was used in Ref. [44].

However, one can go even further and avoid
pseudofermions entirely, by computing the derivatives
of Seff(�) directly, starting from Eq. (13). Calculations
of derivatives of Sη(�) are trivial, while derivatives of
ln(det M(�) det M(�)†) can be computed using:

∂ ln det M

∂φx,t
= Tr

(
M−1 ∂M

∂φx,t

)
. (15)

It turns out that this requires the knowledge of only a few
elements of the fermion propagator M−1. Due to the special
band structure of the matrix M given by Eq. (12), we need only
elements of M−1 which are located in blocks immediately off
the main diagonal.

To proceed, let us write the fermionic operator (12) in the
general form:

M(�) =

⎛⎜⎜⎜⎜⎜⎜⎝

1 D1 0 0 0 . . .

0 1 D2 0 0 . . .

0 0 1 D3 0 . . .

0 0 0 1 D4 . . .
...

. . .
D2Nτ

0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎠, (16)

where even blocks D2k with k = 1, . . . , Nτ correspond to
diagonal matrices containing the exponentials ±eiφx,t +χx,t , and
odd blocks are equal to exponentials of the tight-binding
Hamiltonian −e−δτ h. The inverse fermionic matrix can also
be written in terms of spatial blocks:

M−1(�) =

⎛⎜⎜⎜⎜⎜⎜⎝

g1 . . . . . . . . . . . . ḡ2Nτ

ḡ1 g2 . . . . . . . . . . . .

. . . ḡ2 g3 . . . . . . . . .

. . . . . . ḡ3 g4 . . . . . .
...

. . .
. . . . . . . . . . . . g2Nτ

⎞⎟⎟⎟⎟⎟⎟⎠. (17)

The matrix M−1 is dense, but here we explicitly show only
those blocks which are needed for our calculations. In fact,
in the trace in Eq. (15) only the even blocks ḡ2k for all
k = 1, . . . , Nτ will contribute to the exact derivatives for
computing the fermionic force.

We can now use part of the BSS-QMC algorithm [69]
to compute the desired blocks of the propagator. Due to the
structure of M, the diagonal blocks of M−1 can be formally
written as

gi = (I + DiDi+1, . . . , D2Nτ
D1, . . . , Di−1)−1, (18)

and the following iteration formula can be proven:

gi+1 = D−1
i giDi. (19)

Analogously, off-diagonal blocks of M−1 can be written as

ḡi = Di+1, . . . , D2Nτ
gi, (20)

which leads to the relation:

ḡi+1 = D−1
i+1ḡiDi. (21)

We can now either directly use Eq. (21) to obtain the ḡi or first
obtain the gi and use the relation

ḡi = D−1
i (I − gi ), (22)

between diagonal and off-diagonal blocks. By iterating either
(21) or (19), we can easily find all elements of M−1 needed for
the computation of the derivative, starting from just one block,
which is computed from scratch using the Schur complement
solver [48]. This is done by applying the solver to point
sources in the corresponding time slice.

An important point here is that the whole procedure scales
as NS

3Nτ , where NS is the number of sites in one Euclidean
time slice of the lattice, so the scaling is not worse than that
of the Schur complement solver itself. In practice however,
the iterations (21) and (19) suffer from the accumulation of
round-off errors, which limits the number of times they can be
applied (this number depends mostly on the condition number
of e−δτ h). Afterwards, the block of M−1 in the subsequent
time slice must be computed from scratch. This is the so-
called stabilization which is routinely used in BSS-QMC
[70].

Finally, an additional simplification comes from the fact
that we do not even need the full Schur complement solver for
the computation of the blocks gi or ḡi. In order to demonstrate
this, we sketch the essential parts of the solver. A more
detailed description can be found in Ref. [48].

Essentially, the solver consists of tree stages. In the first
stage, we decrease the size of the linear system in an iterative
procedure. At each step, the system has the form

M̄ (l )X (l ) = Y (l ), (23)

where l denotes the step number. We start from the initial
system with the matrix M (0) = M, the unknown vector X (0)

containing elements of the fermionic propagator, and a point
source vector Y (0). In the simplest case, when Nτ is some
power of 2, the size of the system decreases as N̄ (l )

τ =
Nτ /2l−1. The general case is only slightly more complicated
and described in Ref. [48].

The matrix M (l ) always has the same form, with unit ma-
trices in the diagonal blocks and with off-diagonal blocks D(l )

k
for k = 1, . . . , N̄ (l )

τ . Iterations are described by the relations

D(l+1)
k = −D(l )

2k D(l )
2k+1, k = 1, . . . , N̄ (l )

τ − 1,

D(l+1)
k = −D(l )

2k D(l )
1 , k = N̄ (l )

τ , (24)

for matrices and

Y (l+1)
k = Y (l )

2k − D(l )
2k Y (l )

2k+1, k = 1, . . . , N̄ (l )
τ − 1,

Y (l+1)
k = Y (l )

2k − D(l )
2k Y (l )

1 , k = N̄ (l )
τ . (25)

for vectors. Y (l )
k denotes the kth time slice of the vector Y (l ).

The second stage is LU decomposition and solution of the
compactified system at l = lmax. Thus we know the vector
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FIG. 2. Fermionic forces acting on Hubbard field φx,t dur-
ing a MD trajectory. Example calculation is made for a 6 × 6
hexagonal lattice with electron-electron interaction corresponding
to suspended graphene. Nτ = 128 and temperature is equal to
0.125 eV. ∂ ln det M/∂φx,t is shown for exact fermionic forces and
∂�†(MM†)−1�/∂φx,t is shown for the stochastic representation of
the determinant with pseudofermions. Exact forces are rescaled for
visibility.

X (lmax ). Finally, the third stage is the reversed iterative process
of reconstruction of the initial solution starting from X (lmax ),
using matrix blocks D(l )

k and vectors Y (l )
k computed during the

first stage:

X (l )
2k = Y (l )

2k−1 − D(l )
2k−1X (l+1)

k , k = 1, . . . , N̄ (l+1)
τ ,

X (l )
2k = X (l+1)

k , k = 1, . . . , N̄ (l+1)
τ . (26)

In the end, we arrive at the initial vector X (0) which gives us
the matrix elements of the fermionic propagator.

One should note that the initial vector Y (0) contains
nonzero elements only in one time slice. Due to the structure
of the iterations (25), this feature is preserved at each step,
thus we actually do not need to make the full loop over k in
(25). The same is true for backward iterations (26), for a dif-
ferent reason: we need only one time slice in the final solution
X (0), since we are interested either only in diagonal blocks gk

or only in off-diagonal blocks ḡk . Due to this simplification,
we need only one matrix-vector operation for each of the few
time slices in which we actually recompute the elements of
fermionic propagator from scratch. Thus the numerical cost of
the method is dominated by matrix-matrix operations (24) and
(21). This means that the number of floating-point operations
scales as NS

3Nτ with possible logarithmic corrections ∼ ln Nτ

from the sparse LU decomposition. Such a mild scaling with
Nτ allows us to enlarge the Euclidean time extent of the lattice
and work in the regime where systematic errors produced by
the Trotter decomposition are negligible. In terms of scaling
with Nτ at fixed NS , the Schur complement solver definitely
outperforms the conjugate gradient solver, see, e.g., Fig. 2 in
Ref. [48].

Generally, as it was shown in Ref. [48], the Schur comple-
ment solver is faster than preconditioned conjugate gradient
for moderate lattice sizes up to NS = 103, . . . , 104, depending
on the model. This is one source of speedup. But an even more

important source of speedup is that we can typically increase
the integrator step size in MD trajectories by at least a factor
of 50 without losing the acceptance rate, if exact fermionic
forces are used. The reason is a much smoother profile of
fermionic forces in this case. A comparison of algorithm
with pseudofermions (14) and exact (15) force calculations is
shown in Fig. 2. For these tests, it was possible to achieve an
acceptance rate of ∼0.7 with exact fermionic forces with an
integrator step size of 0.2. Conventional HMC using stochas-
tic representation of determinant (14) could achieve the same
acceptance rate only with the step size 0.0032. In this case,
we could decrease the number of steps in MD trajectories by
a factor of 60.

The actual speedup in terms of computer time is approx-
imately half as much, since the iterative computation of the
fermionic propagators (21) makes each integrator step twice
as expensive.

C. Observables

SDW and CDW phases are characterized respectively by
the separation of spin and charge between the two triangular
sublattices. To study the competition between them in an
unbiased way, we introduce order parameters which develop
a nonzero expectation value in a finite volume even without
any external sources. We use the square of charge and square
of spin per sublattice, which are given by

〈q2〉 =
〈

1

L4

(∑
x∈A

ρ̂x

)2〉
+

〈
1

L4

(∑
x∈B

ρ̂x

)2〉
(27)

and

〈S2〉 =
〈

1

3L4

∑
i

(∑
x∈A

Ŝx,i

)2〉

+
〈

1

3L4

∑
i

(∑
x∈B

Ŝx,i

)2〉
, (28)

where L is the linear lattice size and

Ŝx,i = 1

2
(ĉ†

x,↑, ĉ†
x,↓)σi

(
ĉx,↑
ĉx,↓

)
. (29)

As the sublattices A and B are equivalent, contributions from
both are added to improve the signal-to-noise ratio.

A nonzero value of 〈S2〉 in infinite volume does not unam-
biguously signal SDW order, as the same observable becomes
finite in a ferromagnetic phase. To rule out ferromagnetic
order, we also compute the mean squared magnetization

〈m2〉 =
〈

1

3L4

∑
i

(∑
x

Ŝx,i

)2〉
. (30)

See Appendix B of Ref. [44] for expressions for 〈S2〉, 〈q2〉,
and 〈m2〉 in terms of fermionic Green functions.

D. Simulation parameters and data analysis

Using HMC, we simulate graphene sheets with an equal
number L of unit cells along each of the crystallographic axes.
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FIG. 3. Linear L → ∞ extrapolations of
√

〈S2〉 (left) and
√〈q2〉 (right). Fits of the form f (1/L) = a + b (1/L) to lattice sizes L =

12, 18, and 24 are shown.

We simulate lattices with L = 6, 12, 18, 24. We impose pe-
riodic boundary conditions across the borders of rectangular
sectors. This choice of geometry corresponds to that used in
Ref. [29] but differs from the Born-von Kármán boundary
conditions used in Ref. [49]. All results were obtained at
temperatures T = 0.125 eV = 0.046κ with Nτ = 128, which
leads to a time discretization δτ = 0.168κ−1. This choice is
justified by the study of discretization effects in the exponen-
tial fermion matrix (12) made in Ref. [47], where it was shown
that the value of squared spin per sublattice (28) already
stabilizes at this δτ . Thus we can skip a rather expensive
study of the δτ → 0 limit. We stress here that a similar
conclusion does not necessarily follow for other observables,
so a convergence with respect to δτ should carefully be
checked in all future work. We choose η = 0.9 as the mixing
factor between real and imaginary parts of the Hubbard field
introduced in Eq. (4), which is sufficient to ensure ergodic
trajectories [44,46]. For each produced lattice configuration
we compute the full fermionic equal-time Green function
g(x, y) = 〈âxâ†

y〉 = M−1
x,t,y,t , which is then used to compute all

observables. To account for possible autocorrelation effects
in our data, we use binning to calculate statistical errors.
Typical sample sizes are on the order of several hundreds of
independent measurements for a fixed set of parameters.

III. RESULTS

We begin with an unbiased study of the competition be-
tween CDW and SDW order along the lines of what was re-
cently done for the extended Hubbard model with on-site and
nearest-neighbor interactions [44]. We compute

√
〈S2〉 and√

〈q2〉 for values of λ in the range [1.45, . . . , 1.8]. We use the
square roots of (27) and (28) here, as they are characterized by
an approach to the infinite volume limit which is linear in 1/L
to good approximation, which is convenient for extrapolations
to the thermodynamic limit. We use linear fits of the form
f (1/L) = a + b (1/L) to lattice sizes L = 12, 18, 24 to carry
out an L → ∞ extrapolation. The approach to infinite volume
is demonstrated in Fig. 3, while the final results is shown in
Fig. 4.

From these results, we can immediately conclude that
SDW order is favored over CDW order: while the extrapo-
lation of

√
〈q2〉 is consistent with zero for any of the coupling

strengths considered,
√

〈S2〉 develops a nonzero expectation
value around λc ≈ 1.65. A more precise estimate of λc will be
given below. To rule out a ferromagnetic phase, we also mea-
sure

√
〈m2〉. We find that it is smaller than

√
〈S2〉 by an order

of magnitude for each parameter set and extrapolates to zero
within errors for all cases as well. See Fig. 5 for an illustration.

To investigate the universal properties of the semimetal-
SDW transition, we study the critical scaling of 〈S2〉, which
under the assumption of a second-order phase transition
should respect

〈S2〉 = L−2β/ν f (x) , (31)

where f (x) is a universal finite-size scaling function and x =
L1/ν (λ − λc)/λc is the finite-size scaling parameter. Assuming
naively that the transition is indeed of second order, we will
use Eq. (31) to estimate values for λc, the ratio β/ν, as well as
for the correlation length exponent ν itself.

FIG. 4. L → ∞ limit of
√

〈S2〉 (red) and
√〈q2〉 (blue). For spin

a fit of the Miransky scaling function (33) to the data at λ > 1.61 is
shown.
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FIG. 5. Linear L → ∞ extrapolations of
√

〈m2〉. Fits of the form
f (1/L) = a + b (1/L) to lattice sizes L = 12, 18, 24 are shown. For
each L and λ, the signal is weaker by an order of magnitude than both√

〈S2〉 and
√〈q2〉.

A priori the most obvious candidate for the universality
class is the D = 3, Nf = 2 chiral Heisenberg Gross-Neveu
model, based on the hypothesis that the main driving force
of the phase transition are on-site interactions (as suggested
by RG studies [11–14]). While critical exponents for this
class have been obtained in various ways (see, e.g., Table I
in Ref. [44] for a summary), it is useful to also examine the
Hubbard model (with on-site potential U only) directly here,
and obtain a data set which can be used as a point of reference
in a one-to-one comparison. This will be the first step of
our analysis. In principle, the required simulations could be
carried out using our HMC code, but for practical reasons3 we
choose to produce this data using a GPU implementation of
BSS determinantal quantum Monte Carlo [51] instead, which
we will not describe here as the method is widely known
(interested readers are referred, e.g., to Refs. [70,71]).

Using BSS to simulate the Hubbard model, we obtain data
for 〈S2〉 for several values U around the phase transition,
which has been estimated to occur at Uc/κ ≈ 3.8 [34], with
all other external parameters matching those of our graphene
simulations. To extract both Uc and β/ν from the data, we
determine a choice of β/ν for which the U -dependent curves
of 〈S2〉L2β/ν for different L intersect in one point. This is
done by fitting the data from L = 6, 12, 18, 24 with linear
functions close to the presumed transition point and adjusting
β/ν in steps of 0.001 until the enclosed triangles of all subsets
of three lattices are minimized. Note that this requires choos-
ing smaller fit windows on larger lattices, as the curvature
of the order parameter grows with system size. Through this
method, we find β/ν ≈ 0.8 and Uc/κ ≈ 3.9 consistent with

3For the pure Hubbard model, BSS is still faster by an order
of magnitude than HMC, and remains the method of choice for
simulations of contact interactions. HMC is advantageous for long-
range interactions, as the number of auxiliary fields is independent
of the choice of potential, whereas each interaction term requires an
additional field in BSS-QMC. For a publicly available BSS-QMC
code, see https://git.physik.uni-wuerzburg.de/ALF.

the previous measurements. After fixing the value of β/ν we
then obtain ν by optimizing the collapse of 〈S2〉L2β/ν onto
a universal scaling function, by fitting all data points from
L = 6, 12, 18, 24 with a single polynomial function of x =
L1/ν (U − Uc)/Uc (we find that we must use a polynomial of
third order) and adjusting ν, also in steps of 0.001, until the χ2

per degree of freedom becomes minimal. With β/ν = 0.812
and Uc/κ = 3.942 this yields ν = 0.928.4 As a cross-check Uc

is also allowed to shift, yielding an optimal value of Uc/κ =
3.944 for the data collapse. Figure 6 summarizes these results.

A few comments are in order here. In principle our pre-
dictions for Uc and β/ν should be affected by a systematic
uncertainty due to a sensitivity to the windows in which
linear fits are applied. We find however that these values
are remarkably stable under variations of the fit windows
and, quite conservatively, estimate these errors to be ∼1%
for Uc and ∼2% for β/ν, which is also most likely larger
than our statistical errors. Our results are quite close to the
values β/ν ≈ 0.9 and Uc/κ ≈ 3.8 quoted in Ref. [34], with
the difference likely being due to finite size and temperature
effects, which we suspect are the leading source of errors in
our case. Likewise, finite size is likely the leading source of
uncertainty for ν. If we exclude the L = 6 lattice and both the
L = 6 and 12 lattices from the optimized collapse we obtain
ν = 1.037 and ν = 1.024, respectively, suggesting a com-
bined finite-size and statistical error of at least ∼6% (note that
ν is slightly larger when only L = 6 is excluded, suggesting
that the we are already close to the thermodynamic limit). We
point out here that our values are very much in line with those
typically seen in in Monte Carlo simulations of Hubbard-type
models believed to fall into the Gross-Neveu universality
class [34–37]. Renormalization group studies tend to observe
slightly larger values, whereby results as large as β/ν ≈ 1.0
and ν ≈ 1.2 have been predicted [18,72,73].

We now turn to the data generated with the realistic po-
tential of graphene. The next logical step is to determine
whether we can characterize the critical properties using the
same exponents as for the Hubbard model. Thus we fix
β/ν = 0.812 and ν = 0.928 and test both the intersection
of 〈S2〉L2β/ν for different L and the collapse of data onto a
universal function f (x). We find that we can clearly rule out
this possibility: Not only do 〈S2〉L2β/ν intersect nowhere in
the region λ � 2.0, contradicting the results shown in Fig. 4,
the quality of collapse is also very poor and leads to an
unreasonably large estimate of λc. The best possible collapse
is shown in Fig. 7 while we refrain from even showing any
figures for the intersection.

In order to obtain first-principles estimates of λc, β/ν and
ν for graphene, we now repeat the same steps as for the
Hubbard model: to extract λc and β/ν from the data we
determine a choice of β/ν for which linear fits to 〈S2〉L2β/ν

for different L intersect in one point. Using the resulting β/ν,
we then determine ν by optimizing the collapse. In doing so
we observe a somewhat odd behavior: it appears that the data,
while exhibiting just as small statistical errors for each data
point, don’t constrain β/ν and λc nearly as strongly as for the

4Note that the three digits quoted for all results here reflect the
resolution used in our optimization procedure and by no means imply
a corresponding accuracy.
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FIG. 6. (Left) 〈S2〉L2β/ν for the Hubbard model with on-site potential (U ) only, obtained from BSS-QMC calculations on L = 6, 12, 18, 24.
Solid lines mark boundaries of linear fits to L = 6 and 12 data, whereas two dashed lines mark lower bounds of fits to L = 18 and 24,
respectively (upper bounds marked by solid line). Optimized β/ν and Uc are obtained by minimizing enclosed area of all subsets of three lines.
(Right) Optimized collapse of 〈S2〉L2β/ν of the same data onto a universal finite-size scaling function f (x), where x = L1/ν (U − Uc )/Uc. β/ν

is fixed to the value obtained in the left panel (both ν and Uc are optimized as a consistency check).

Hubbard model. By choosing different fit windows we can
obtain values of β/ν in the range [0.95,1.0] (with the different
lines crossing in one point in each case), while λc shifts in the
range [1.62,1.7]. The left panel of Fig. 8 represents our best
possible choice of fit windows (with smallest χ2 for the fits)
and leads to λc ≈ 1.70 and β/ν = 0.967. Compared to Fig. 4
this estimate for λc seems slightly too large.

When determining ν a similarly peculiar observation is
made: While an optimized collapse of the L = 6, 12, 18, 24
data onto a universal function f (x), x = L1/ν (λ − λc)/λc

yields ν = 1.473 (right panel of Fig. 8), we find that the
optimal value of ν increases slightly when the L = 6 lattice
is excluded from the fit, resulting in the optimal choice of ν =
1.635 for fits to L = 12, 18, 24 and ν = 1.602 for L = 18, 24
(see Fig. 9). While the spread of these numbers suggests that

FIG. 7. Attempted collapse of 〈S2〉L2β/ν from graphene simula-
tions onto a universal finite-size scaling function f (x), where x =
L1/ν (λ − λc )/λc. We fix β/ν = 0.812 and ν = 0.928, corresponding
to the optimal values for the pure Hubbard model, and determine λc

by χ 2 optimization. Clearly these choices of critical exponents fail
for the realistic potential of graphene.

the combined statistical and finite-size error can be as large as
∼10%, the observation that the optimal value moves further
away from that of the Hubbard model on larger lattices is
unexpected. We point out here that it was sufficient to model
the universal scaling function with a quadratic polynomial for
the case of graphene.

One could still be inclined to interpret these results in terms
of Gross-Neveu scaling: as our value of β/ν for graphene
is closer to the RG result (β/ν ≈ 1.0) than for the Hubbard
model, one might speculate that nonuniversal corrections to
scaling are more severe in the case of a pure on-site potential
for some reason, that RG exponents are closer to the true
values than MC predictions, and that our results with the
long-range potential reflect the true universal behavior more
closely. Without commenting on the plausiblity of this sce-
nario we note that our smallest prediction for ν is still ∼20%
larger than the RG result (ν ≈ 1.2), however.

To get a sense of how significant this deviation is (in
principle a visually only slightly less convincing collapse can
be obtained with ν = 1.2, see Fig. 10), we do the following:
After fixing β/ν = 0.967 and λc = 1.7 we shift ν in the range
[0.5,5.0] and obtain the χ2 per degree of freedom resulting
from fits of quadratic polynomials to 〈S2〉L2β/ν as a function
of x = L1/ν (λ − λc)/λ for each choice of ν. We do this for
the full set of lattice sizes L = 6, 12, 18, 24 and for the cases
where L = 6 and L = 6, 12 are ignored. A similar proce-
dure is repeated for the Hubbard model (with β/ν = 0.812,
Uc = 3.944 and third-order polynomials) for comparison. The
results are shown in Fig. 11.

The first thing we can say is that, on a quantitative level,
ν = 1.2 is clearly disfavored for graphene. While for the L =
6, 12, 18, 24 lattices the χ2/d.o.f is about 1.7 times larger at
ν = 1.2 compared the optimum, the ratio grows even larger
as small lattices are excluded, up to about 2.0 on lattice sizes
L = 18, 24.

An interesting observation is that the χ2 curves for both
the Hubbard model and graphene become flatter at large ν
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FIG. 8. (Left) 〈S2〉L2β/ν for graphene with realistic potential as a function of coupling strength λ for L = 6, 12, 18, 24. Linear fits were
applied in region bounded by vertical lines (dashed lines mark lower bounds of fits to L = 18 and 24, respectively). Optimized β/ν and
λc were obtained by minimizing the enclosed area of all subsets of three lines. (Right) Optimized collapse of 〈S2〉L2β/ν onto a universal
finite-size scaling function f (x), where x = L1/ν (λ − λc )/λc. β/ν was fixed to the value obtained in the left panel. ν and λc were optimized by
minimizing the residual χ 2 per degree of freedom of fits of all data points to polynomial functions f (x). An independent consistency check for
λc is obtained.

as small lattice sizes are excluded. To some degree this is
not surprising, as a smaller number of data points places
weaker constraints on the parameters of the polynomials used
to model the universal scaling function. What is striking
however is the substantial difference between graphene and
the Hubbard model. For the Hubbard model, the scale of the
y axis is larger by an order of magnitude, despite the fact that
higher-order polynomials were used, reflecting the fact that
critical exponents are constrained much stronger by the data.
For graphene on the other hand, it appears as if the curves very
quickly converge to a completely flat curve with χ2∼1 for
ν � 2.0 on larger volumes, suggesting that for large systems
any sufficiently large choice of ν will work equally well. This
is not at all what one expects for a regular second-order phase
transition.

To conclude our analysis, we conservatively state that
the numerical data for the long-range interaction potential

is quite different from the data obtained for purely on-site
interaction, and is hardly consistent with the Gross-Neveu
universality class. We conjecture that instead our results could
be interpreted as signatures of Miransky scaling.

A CPT is known to occur in quantum electrodynamics
(QED) with massless fermions, both in 3 + 1 and 2 + 1
dimensions, with the number of fermion flavors being the
control parameter in the later case [74–77].5 The proper
low-energy effective theory of graphene (“reduced QED4”),

5QED2+1 has been considered as a model for a similar transition
believed to occur in SU(N ) gauge theories (see, e.g., Refs. [78–82]
and references therein). In QED2+1, one speaks of a “pseudocon-
formal” transition as conformal symmetry is explicitly broken by a
dimensionful coupling constant but the theory nevertheless exhibits
an effective low-energy scale invariance.

FIG. 9. Optimized collapse of 〈S2〉L2β/ν for graphene with realistic potential onto a universal finite-size scaling function f (x), x =
L1/ν (λ − λc )/λc with fixed β/ν, when either the L = 6 data (left) or both the L = 6, 12 data (right are excluded from the optimization
procedure. Compared to Fig. 8, the optimal value of ν slightly increases as the smaller lattices are discarded, while λc remains stable.
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FIG. 10. Collapse of 〈S2〉L2β/ν onto a universal finite-size scaling
function with fixed β/ν = 1.0 and ν = 1.2 (∼RG prediction for D =
3, Nf = 2 chiral Heisenberg Gross-Neveu class [18,72,73]). Only λc

is optimized. Quality of fit is significantly lower than with variable
exponents (see Fig. 11).

combines features of both, as electron motion is restricted to
a plane but photons can propagate in the three dimensional
bulk (one also takes the smallness of the Fermi velocity into
account, which leads to effectively instantaneous Coulomb in-
teractions with an exact conformal symmetry). In this theory, a
chiral phase transition exhibiting Miransky scaling6 has been
demonstrated by solving Dyson-Schwinger equations [2,43].
In Ref. [1] it was argued that this CPT formally corresponds
to the limit β, ν → ∞, δ = 1 of a second-order transition and
that the usual hyperscaling relations may apply. In our case,
d = 2 (where d is the number of spatial dimensions) and with

6A sufficiently strong four-fermion coupling (corresponding
roughly to on-site interactions in the microscopic theory) can change
the transition to one of second order [1].

δ = 1 the relation
β

ν
= d

δ + 1
(32)

would thus lead to β/ν = 1, which agrees with our estimate
for the optimal value at a level of about 3% and is thus well
within the present errors.

For QED2+1[83,84] and reduced QED4 [85] it is well
known that that the CPT exhibits a strong sensitivity to an
infrared cutoff. For many-flavor QCD, it was shown that Mi-
ransky scaling receives powerlaw corrections from an infrared
RG fixed point of the gauge coupling [86]. It is thus reasonable
to assume that finite-size effects mimic a second-order phase
transition, and that β, ν → ∞ as the thermodynamic limit is
approached, with their ratio being fixed by the hyperscaling
relation. The slight drift of the exponent ν towards larger
values observed above could be interpreted in these terms
as can be the relative insensitivity of the quality of collapse
towards further increases of ν on large lattices.

As a final test we therefore study the finite-size scaling
properties of 〈S2〉 for graphene with fixed β/ν = 1.0. We
find that linear fits to 〈S2〉L2β/ν with L = 6, 12, 18, 24 cross
in one point to good precision if we choose the fit windows
as λ = [1.525; 1.725] (see left panel of Fig. 12) and thereby
estimate λc ≈ 1.62, which is substantially lower than the
result λc ≈ 1.70 obtained with β/ν = 0.967 but falls much
closer to the location one would expect, judging by the L →
∞ extrapolated results for

√
〈S2〉 shown in Fig. 4: by fitting

the Miransky scaling function

σ (λ) = a exp

( −b√
λ − λc

)
, (33)

as appropriate for reduced QED4 (see, e.g., Ref. [1]) to√
〈S2〉|L=∞ (which works extremely well), we can indepen-

dently estimate λc = 1.61 ± 0.02 which agrees with our pre-
diction from finite-size scaling to very good precision. This
agreement can be seen as evidence in favor of the CPT
scenario.

Perhaps more importantly, however, we note that the slopes
in the intersection plot in the left panel of Fig. 12 do not

FIG. 11. χ 2 per degree of freedom for collapse of 〈S2〉L2β/ν onto a universal finite-size scaling function for graphene (left) and Hubbard
model (right) with different choices of ν for different sets of lattice sizes. β/ν and critical coupling strength are fixed to their optimal values.
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FIG. 12. (Left) Finite size scaling of 〈S2〉 for graphene with fixed β/ν = 1.0. Linear fits are applied in the window marked by vertical lines.
(Right) Extrapolation of the inverse slope of the fits to the thermodynamic limit using models g(1/L) = m (1/L) + b and f (1/L) = a (1/L)1/ν ,
respectively (where ν is treated as a free parameter). The linear model g(·) (with smaller χ2) predicts that the slope remains finite for L → ∞,
suggesting that the data may collapse onto a universal function without rescaling the coupling constant. Data points for the Hubbard model
together with a power-law model curve are shown for comparison.

appear to increase towards infinity with increasing volumes
as they should for a second-order phase transition. In fact,
the solid black line in this plot represents our infinite-volume
extrapolation which is clearly not vertical. If true, there would
certainly be no way that this could ever happen in a second-
order phase transition for any finite value of ν, i.e., without
rescaling the reduced control parameter by L1/ν along the
abscissa.

To investigate this somewhat more carefully, we plot the
inverse slopes of our linear fits to 〈S2〉L2β/ν from the intersec-
tion plots over 1/L in the right panel of Fig. 12.

While the Hubbard model data once again shows the
expected behavior, the inverse slopes for graphene obtained
from the left panel in this figure (with β/ν = 1.0) are well
described by a linear model fit to

g(1/L) = m (1/L) + b with b = 0.47 ± 0.02 .

This nonzero intercept b then provides our best numerical
evidence of a finite slope in the infinite-volume limit and
hence of β, ν → ∞ as CPT characteristics.

As mentioned, this also implies that on sufficiently large
lattices a collapse onto a universal finite-size scaling function
occurs for x = (λ − λc)/λc alone, i.e., without rescaling the
reduced coupling by the factor L1/ν , which one expects if
ν → ∞, but which also explains the difficulty in determining
a stable value for β/ν from intersection points on larger
lattices where the curves do not intersect anymore when
the data collapses all by itself in an ever growing region
around λc.

For completeness we close this section with adding that
a behavior as expected for a second-order phase transition,
modeling the inverse slopes with f (1/L) = a (1/L)1/ν with-
out intercept, can also be used to fit the graphene data,
resulting in ν = 1.6 ± 0.1, but yielding a χ2/d.o.f. which is
larger by about a factor of six as compared to the linear fit

described above.7 That such second-order fits work as well,
on sufficiently small lattices, might rather be a manifestation
of the difficulty in distinguishing CPT behavior from second-
order scaling in finite volumes.

The direct comparison between Hubbard model and
graphene data, however, provides quite compelling evidence
that the second-order scaling, which works very well for the
former, gets increasingly difficult to maintain with increasing
volumes in the case of graphene with long-range interactions
where the CPT scenario appears to provide the much more
natural explanation.

IV. CONCLUSION AND OUTLOOK

In this work, we carried out a detailed unbiased study
of the competition of SDW and CDW orders in graphene,
with a realistic two-body potential that includes an unscreened
long-range Coulomb tail. Using state of the art hybrid Monte
Carlo simulations, we were able to determine that the potential
must be uniformly rescaled by roughly a factor of ∼1.6
to induce a semimetal-SDW phase transition, corresponding
to a critical value of effective fine-structure constant αc ≈
3.5. This is substantially larger than the value αc ≈ 3.1 pre-
dicted by previous studies [28,29,32], which were much more
strongly affected by discretization artifacts, finite-size effects
and larger temperatures. We find no evidence for CDW order,
confirming that SDW is the preferred phase as predicted by
renormalization group analysis [11–13] and strong-coupling
expansion [14].

7Note that χ 2 values are <1 for both models here, which reflects
the fact that the slopes and their error bars are themselves the results
of linear fits.
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A careful study of the critical properties suggested that
the expected D = 3, Nf = 2 chiral Heisenberg Gross-Neveu
universality class, as expected for the corresponding Hubbard
model, is unlikely to apply to the semimetal-insulator transi-
tion in graphene with long-range Coulomb interactions. Our
lower-bound estimates for the correlation-length exponent ν

are significantly larger than the largest values predicted by
RG studies for this class. A direct comparison with a data
set produced for the Hubbard model with on-site interactions
only also ruled out with high confidence that both systems
can be described by a common set of critical exponents,
demonstrating clearly that the long-range part of the inter-
electron potential plays an important role in nonperturbative
many-body physics of graphene.

In studying the finite-size scaling of the squared spin per
sublattice, an unexpected property of ν was observed: the
optimal choice, which produces the best possible collapse of
data from different lattice sizes onto a universal finite-size
scaling function, seems to drift slightly towards larger values
as smaller lattices are disregarded during the analysis, instead
of converging towards the RG predictions as one would expect
if the difference was due to corrections to scaling. Further
investigations revealed that constraints on ν become weaker
on large lattices, such that ν can be increased without affecting
the quality of collapse substantially. This stands in stark con-
trast to the Hubbard model, where critical exponents are con-
strained much tighter by the data. Furthermore, we obtained
evidence that a collapse may occur naturally in infinite vol-
ume, without the need for rescaling the reduced coupling by a
factor L1/ν , which formally corresponds to the limit ν → ∞.

We have proposed that the observed behavior can be ex-
plained in terms of a conformal phase transition, exhibiting
exponential “Miransky” scaling, which is predicted for 2 + 1-
dimensional Dirac fermions with bare Coulomb interactions
by Dyson-Schwinger studies [2,43], and power-law correc-
tions that mimic a second-order phase transition caused by
finite size effects [83–86]. A formal hyperscaling relation
between the exponents β and ν seems to be fulfilled in good
approximation.

Let us note that the phase transitions to CDW and SDW
ordered states and an infinite-order conformal phase transition

are basically the only theoretical predictions for graphene
with long-range interactions of which we are aware, and our
numerical analysis is intended to find the most likely scenario
out of these three. This turns out to be the conformal phase
transition scenario. It can be that our data are also consistent
with some other exotic scenario which has not been studied
so far.

On the technical side, we have described a variant of HMC
which achieves a substantial performance improvement by
using exact fermionic forces and avoiding the use of pseud-
ofermions.

An obvious direction for future studies is to push the sim-
ulations towards even larger system sizes. The L = 24 lattices
studied in this work represent the largest systems which are
feasible with our current computational resources. Repeating
the finite-size scaling analysis with L = 24, 30, 36, to test
whether the trend of growing correlation length exponent ν

continues, would be extremely beneficial and should become
feasible in the near future. The infinite volume extrapolations
shown in Figs. 3–5 as of now use only three points and would
also be greatly improved by including additional lattice sizes.
Another possibility is to study in detail how the order of the
phase transition depends on the balance of short- and long-
range parts of the potential. This could guide experimental
efforts to induce a conformal phase transition in real graphene
samples through techniques such as mechanical strain [32,33].
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