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Acoustic analogs of electronic or photonic topological insulators provide unique approaches to manipulate
sound wave propagation. Inspired by twist-induced topological photonic insulators, here we propose a type
of two-dimensional acoustic topological insulator (TI) via projecting a section of a three-dimensional twisting
structure to a plane, assembling the projected meta-atoms into metamolecules, and arranging the metamolecules
into unit cells to form a honeycomb lattice. It follows that in this acoustic TI, topological phases mimic
pseudospin-up and pseudospin-down states, and the pseudospin-orbital couplings are tuned via changing the
rotation angles of the meta-atoms, which eventually leads to band inversion. By calculating acoustic band
structures, pressure field distributions, and spin Chern numbers of bands, we verify that the topological phase
transition occurs around the double Dirac cone and present the topological phase diagram as a function of the
rotation angle of the meta-atoms. Once the coupling between adjacent metamolecules is sufficiently strong, mode
inversion of topological states emerges. Furthermore, we numerically demonstrate the existence of topologically
protected edge states. It is shown that robust pseudospin-dependent one-way transmission is immune to
defects at the edge of topological distinct regions, which can be applied to acoustic wave transmissions and
communications. Our approach in acoustic systems provides a strategy to explore abundant topological states in
two-dimensional systems.
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I. INTRODUCTION

Topology in mathematics describes the property of space
preserved in continuous deformation, which plays an impor-
tant role in a number of phenomena in condensed-matter
physics, such as the quantum Hall effect (QHE) [1,2], quan-
tum spin Hall effect (QSHE) [3,4], topological insulators (TIs)
[5–7], etc. In the past decades, topological states have been ex-
tensively investigated in photonics [8–17], phononics [18–31],
and mechanics [32–34] and have led to some unique wave
transport effects. In acoustics, however, conventional media
(such as air, water, etc.) support only longitudinal vibration of
sound polarization, which cannot generate a spinlike degree of
freedom for the acoustic QHE. So far several efforts have been
devoted to mimicking the QHE by introducing circulating
flow fields [25,26] or employing angular-momentum bias
[27]. Similarly, an analog of the Floquet topological insulator
has been proposed in the coupled ring resonator waveguide
[28–30]. However, it remains challenging for applications
due to inevitable noises, dynamic instabilities, complicated
fabrication processes, etc. Very recently, artificial phononic
“graphene” was introduced to achieve “acoustic topological
insulators” [20–22], where “pseudospin” and “pseudospin-
orbital interaction” were realized without applying external
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fields. And the acoustic topological phase transition was
observed when band inversion occurs [18–22]. These sig-
nificant developments imply possible acoustic analogs of
electronic/photonic topological insulators, which can be ap-
plied in guiding acoustic waves.

On the other hand, twist is a mathematical concept repre-
senting the torsion of a curve in space. In fact, twisting can be
considered an operation leading to structural change of mate-
rials in three dimensions and has been applied to design three-
dimensional (3D) elastic chiral metamaterials [35] as well as
helical waveguides for light [36,37] and sound [38]. Usually,
in 3D photonic or phononic topological crystals [39–44], a
twist is introduced to break the inversion symmetry in order to
achieve Weyl points. For example, in Ref. [39], a twist induces
chiral interlayer coupling, thus creating an effective acoustic
gauge flux closely related to Weyl points in the 3D band
structure. In this way, a synthetic gauge potential is induced,
and a geometric phase arises, which lead to helical transport
of waves associated with topological properties. In addition,
a photonic Floquet topological insulator can also be realized
by twisted helical waveguides arranged in a graphenelike
honeycomb lattice [45].

In this work, we propose a unique type of two-dimensional
(2D) acoustic TIs by projecting a 3D twisted structure to a
plane. More specifically, when a section of a 3D helical wire
bundle is projected onto a plane, the projected meta-atoms
are assembled into a metamolecule, and the metamolecule is
used as a unit cell to form a honeycomb lattice. In such a
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2D structure, we find the meta-atoms have different rotation
angles in the metamolecules. By calculating the acoustic band
structure, pressure field distributions, and spin Chern numbers
of bands, we verify the topological phase transition around
the double Dirac cone in the metastructures. It is shown
that the topological phases mimic both pseudospin-up and
pseudospin-down states, and the pseudospin-orbital coupling
can be tuned with different rotation angles of meta-atoms
in the metamolecules. Once the coupling between adjacent
metamolecules becomes strong enough, mode inversion takes
place, resulting in the topological phase transition, which is
affirmed by the change in the spin Chern numbers of the
bands. Furthermore, we numerically demonstrate the exis-
tence of topologically protected edge states. We suggest that
our approach provides a unique way to explore abundant
topological states in 2D systems.

This paper is organized as follows. After the introduction,
in Sec. II we describe the method to construct a 2D acoustic
TI by projecting a 3D twisted structure. In Sec. III, based on
the wave equation of sound, the acoustic band structures of
the TIs are calculated by using the finite-element method, fol-
lowed by an analysis of the pseudospin states. We also show
that the pseudospin-orbital couplings are tuned by different
rotation angles of meta-atoms. Mode inversion of topological
states is also demonstrated. In addition, the topological phase
transition is confirmed by the change in the spin Chern num-
bers of the bands. In Sec. IV, we present a topological phase
diagram as a function of the rotation angle of the meta-atom,
which is simplified to an ellipse, and illustrate the influence of
the ellipticity of the meta-atom on the band gap. In Sec. V, we
provide several examples to show the topological edge states
and the robust pseudospin-dependent one-way transmission.
Finally, we summarize our results in Sec. VI.

II. TWO-DIMENSIONAL ACOUSTIC TOPOLOGICAL
INSULATORS FROM THE PROJECTION OF

3D TWISTED STRUCTURES

Let us start from a 3D twisted structure, consisting of
a bundle of six helical wires in one pitch [as shown in
Fig. 1(a)]. Each helical wire can be described by a group
of Cartesian coordinates [(x(t ), y(t ), z(t ))], which follows
parametric equations as

x(t ) = R0 cos(θ0) + r0 cos(�t + θ0),

y(t ) = R0 sin(θ0) + r0 sin(�t + θ0),

z(t ) = t,

(1)

where t stands for the position of the helical wire along the
z axis, r0 is the helical radius, and R0 is the distance between
the center of the bundle and the center of the helical wire.
Ω = 2π/z0 is the frequency of rotation (z0 is the periodicity),
θ0 = π/3 × i (i = 0, 1, 2, . . . , 5) represents the initial phase
of the helical wire, and the difference between the adjacent
ones is π/3 in succession in order to keep the C6 symmetry of
the wire bundle.

Now we try to reduce this 3D twisted structure to a 2D
plane as follows. First, by projecting the helical wire bundle
with a finite height to the xy plane, we obtain six meta-
atoms possessing C6 symmetry [Fig. 1(a)]. This assembly of

FIG. 1. (a) Schematic of the twisted wire bundle and its projec-
tions to xy plane. By projecting a bundle of six helical wires with
a finite height to the xy plane, we obtain six meta-atoms with C6

symmetry, which are assembled into a metamolecule. Obviously, the
rotation angle θ of meta-atoms changes in the metamolecule if the
center of the projected wire section moves on the z axis, as marked
in the plot. For example, the rotation angles of meta-atoms become
distinct in two different regions. (b) Schematic of the metamolecules
assembled into a honeycomb lattice. The meta-atoms shown in (a) are
simplified to the elliptical shapes, and the metamolecule with six
meta-atoms is used as a unit cell in a 2D honeycomb lattice. The
lattice constant is a with unit vectors �a1 and �a2. The separation
between centers of neighboring meta-atoms in the two adjacent
metamolecules is d = a/3, and the nearest separation between these
two meta-atoms along the x axis is l . The inset shows an enlarged
view of the metamolecule and the meta-atom, where θ is the rotation
angle of the meta-atoms in the metamolecule. The semimajor axis
and the semiminor axis are b1 and b2.

six meta-atoms is regarded as a metamolecule. In order to
describe the metamolecules projected from different heights,
we consider a helical wire with θ0 = 0◦ (i.e., the center of the
helical wire locates on the x axis) and define the rotation angle
θ of the meta-atom as the intersection angle between the x
axis and its own principal axis, which satisfies tan θ = dy/dx
at the central point of the corresponding finite-height helical
wire projected onto the plane; thus, the rotation angle of
the meta-atom can be written as θ = �t + π/2. Clearly, the
rotation angle of meta-atoms changes continuously as it goes
along the z axis. As shown in Fig. 1(a), we mark two different
regions where the rotation angles of meta-atoms are clearly
distinct.

The projected meta-atom does not exhibit a regular shape,
which makes later analysis difficult. Second, we simplified
each meta-atom to an ellipse with the ellipticity defined as
γ = b1/b2, where b1 is the semimajor axis and b2 is the
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FIG. 2. The calculated acoustic band structure of the 2D metasystems with different rotation angles θ of meta-atoms. (a) The band structure
of the metastructure type A (θ = 90◦), where a trivial band gap occurs at the Γ point. (b) The band structure of the metastructure type C
(θ = 44.3◦), where a double Dirac cone emerges at the Γ point. (c) The band structure of the metastructure type B (θ = 0◦), where an inverted
nontrivial band gap appears at the Γ point. The inset shows the corresponding unit cell and the state occupation below and above the gap
at the Γ point. In all three metastructures, the air meta-atoms embed in a water background, and the geometrical parameters are taken to be
a = 3 cm, b1 = 0.35 cm, b2 = 0.23 cm.

semiminor axis. Such simplification does not change the C6

symmetry, so the essential physics is preserved. Third, the
metamolecule with six meta-atoms is assembled as a unit
cell in a 2D honeycomb lattice [Fig. 1(b)], where the lattice
constant is a. It will be verified in Sec. III that we eventually
construct a twist-projected 2D acoustic TI. The separation
between the centers of the neighboring meta-atoms in the
adjacent metamolecules is d = a/3, and the nearest separa-
tion of these two meta-atoms along the x axis is l = d −
2
√

b2
1 cos2 θ + b2

2 sin2 θ . Then, we define a separation ratio
η = l/d to describe the nearest interaction of the neighboring
metamolecules. By decreasing the separation ratio η, the
coupling between adjacent metamolecules becomes stronger
and eventually leads to the topological phase transition from
the topological trivial state to the nontrivial state.

III. THE ACOUSTIC BAND STRUCTURES, THE
PSEUDOSPIN STATES AND THEIR SPIN CHERN

NUMBERS, AND THE BAND INVERSION

The intrinsic difference between a phonon and an electron
is that the phonon does not have a spinlike degree of freedom,
whereas spin is essential for the QSHE. Following the scheme
in Sec. II, we can construct an acoustic Kramers doublet to
mimic electrons. Our scheme requires the resonators possess
a higher refractive index than the ambient medium, such as
perforated air holes in polished stainless-steel plates [20],
aerogel as a soft acoustic metamaterial in air [46], and air in
water [21]. Without loss of generality, we choose the air-in-
water system, where the air is capsulated by water. Such a
system can be achieved by several experimental approaches
[47–49]. For example, one may use ultrasound contrast agent
microbubble suspension [47] or bubble rafts in water [48].
The propagation of sound in this system satisfies the wave

equation [50]:

∇ ·
(

1

ρ(�r)
∇P(�r)

)
= − ω2

v(�r)2

P(�r)

ρ(�r)
, (2)

where P is the sound pressure and ω is the angular frequency
of its oscillation. Here, ρ and v are the mass density and longi-
tudinal sound speed, respectively. Based on Eq. (2), we carry
out numerical calculations of the acoustic band structures of
several different metastructures with a commercial software
package (COMSOL MULTIPHYSICS). In the calculations, the
continuity condition of both sound pressure and the normal
velocity of water/air are applied at the boundary between
water and air. Periodic boundary conditions are applied in
the system to calculate the band structure, but to simulate
the edge states in a finite system, the plane wave radiation
condition is applied at the edge of system. The mass density
and longitudinal sound speed used in the calculations are
ρ0 = 1000 kg/m3 and v0 = 1490 m/s for water and ρ1 =
1.25 kg/m3 and v1 = 343 m/s for air.

We consider three types of unit cells with different rotation
angles θ , which are denoted as type A, with θ = 90◦; type C,
with θ = 44.3◦; and type B, with θ = 0◦. The corresponding
acoustic band structures are illustrated in Figs. 2(a)–2(c),
where type C possesses a double Dirac cone. In fact types
A and B represent two distinct scenarios with maximum and
minimum values of the separation ratio η, respectively, both of
which maintain C6 symmetry. The C6 symmetry group has two
irreducible representations, i.e., E1 and E2, whose base func-
tions are x(y) and xy(x2 − y2), corresponding to odd and even
parities, respectively [51]. The irreducible representations of
the rotation operators are given by

DE m(C6) =
(

cos ϕ − sin ϕ

sin ϕ cos ϕ

)
, (3)
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where m = 1, 2, with ϕ = π/3 × m for DE m(C6) on the bases
(x, y)T and (xy, x2 − y2)T .

Similar to the topological photonic crystal proposed in
Ref. [9], we define the pseudo-time-reversal (TR) operator in
the present acoustic metastructure, which has the same mathe-
matical form as that in the photonic system (see Ref. [9]), i.e.,

T = U (DE m)K = −iσyK, (4)

with a unitary operator

U(DE m) = [
DE m(C6) − (−1)mDE m

(
C2

6

)]
/
√

3

=
(

0 −1
1 0

)
= −iσy.

Here, σy is the Pauli matrix, and K is the complex con-
jugate operator. It can be verified that T 2 = −1; thus,
the present metastructure possesses the pseudo-TR symme-
try in acoustics, where Kramers doubling is guaranteed in
the same way as the TR symmetry in the electronic sys-
tems and also the pseudo-TR symmetry in the photonic
systems [9].

As shown in Figs. 2–4, the Kramers doublets in the band
dispersions appear at the Γ point in the form of two doubly
degenerate states (pseudospin up and pseudospin down) due
to the C6 crystalline symmetry. These acoustic metamolecules
carry the px(py) and dxy(dx2−y2 ) orbitals, which possess the
same symmetry as electronic orbitals of conventional atoms
in solids and also the characteristic of pseudospin similar to
that of a topological photonic crystal. The two pseudospin
states are given by p± = (px ± ipy)/

√
2 and d± = (dx2−y2 ±

idxy)/
√

2, which are related to the above-mentioned base
functions x(y) and xy(x2 − y2) for these two irreducible rep-
resentations, i.e., E1 and E2, respectively. This means that the
pseudospin-up and pseudospin-down states correspond to the
positive and negative angular momenta of the pressure fields,
respectively. For the scenario of type A (θ = 90◦), as shown
in Fig. 2(a), the band below (above) the gap is occupied by
p± (d±), and the separation ratio η reaches its maximum. As
the rotation angle θ of the meta-atoms gradually decreases,
the band gap narrows accordingly. When the rotation angle
reaches θ = 44.3◦ [type C, as shown in Fig. 2(b)], the p± and
d± states degenerate at the Γ point, the gap disappears, and an
accidental double Dirac cone is generated. By continuously
decreasing the rotation angle θ of the meta-atoms, the band
gap reopens. For the scenario of type B (θ = 0◦), as shown in
Fig. 2(c), the state occupation at the lower (higher) frequency
of the gap exhibits d± (p±) characters at the Γ point, and the
separation ratio η reaches its minimum, opposite the scenario
of type A. Namely, band inversion takes place upon rotating
the metamolecule in the system.

More specifically, we illustrate the pressure field distribu-
tions at the Γ point in several metastructures, as shown in
Figs. 3(a)–3(d). For the scenario of type A, the two doubly
degenerate acoustic states, which are denoted by dxy(dx2−y2 )
and px(py) orbitals, appear at higher [Fig. 3(a)] and lower
[Fig. 3(c)] frequencies of the band gap in Fig. 2(a), respec-
tively. For the scenario of type B, two inverted doubly degen-
erate acoustic states appear at higher [Fig. 3(b)] and lower
[Fig. 3(d)] frequencies of the band gap in Fig. 2(c), which

FIG. 3. The pressure field distributions at the Γ point are shown
for scenarios of type A and type B in Figs. 2(a) and 2(c). In all cases,
the pressure field possesses px (py ) and dxy(dx2−y2 ) orbitals, which
are separated by a bulk band gap. For the scenario of type A (left,
with θ = 90◦), the two doubly degenerate acoustic states denoted by
dxy(dx2−y2 ) and px (py ) orbitals appear at (a) the higher frequency and
(c) the lower frequency, respectively; for the scenario of type B (right,
with θ = 0◦), two inverted doubly degenerate acoustic states appear
at (b) higher frequency and (d) lower frequency, corresponding to
px (py ) and dxy(dx2−y2 ) orbitals, respectively. This feature demon-
strates clearly the mode inversion in the system.

correspond to px(py) and dxy(dx2−y2 ) orbitals, respec-
tively. Clearly, we demonstrate the mode inversion in the
metastructures.

To further verify the pseudospin states, we also calculate
the real-space distributions of the time-averaged acoustic
energy flow �I = 1

T

∫ T
0 Re(p)Re(�v)dt at T = 2π/ω in the

metamolecule, as illustrated in Figs. 4(a)–4(d) for both types
A and B. The energy flow circulates around the center of
metamolecule, and different chiralities of the energy flow
represent different pseudospin states. For the scenario of type
A, the pseudospin states denoted by the pressure field with
positive and negative angular momenta d± = (dx2−y2 ± idxy)
and p± = (px ± ipy) appear at higher [Fig. 4(a)] and lower
[Fig. 4(c)] frequencies, respectively. The energy flows around
the individual molecules at the lower frequency [Fig. 4(c)].
For the scenario of type B, the p± and d± states occupy
higher [Fig. 4(b)] and lower [Fig. 4(d)] frequencies, respec-
tively, implying the band inversion. In addition, by comparing
Fig. 4(d) with Fig. 4(c), we can find that the energy flow in
type B is enhanced in the interstitial regimes.

The pseudospin channels can be characterized by the
spin Chern numbers [9,18]. Zero-spin Chern numbers in-
dicate topological trivial phases, while nonzero-spin Chern
numbers infer topological nontrivial phases. Following the
method given in Ref. [52], we have numerically calculated
Berry curvatures and the spin Chern numbers of the pseu-
dospin states p± and d±. Starting from the simulated pressure
field distributions as a function of wave vector �k in the
metastructures, we have calculated the Berry connection B(�k)
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FIG. 4. The acoustic energy flow at the Γ point for type A and type B in Figs. 2(a) and 2(c). For the scenario of type A (left, with
θ = 90◦), the pseudospin states denoted by the pressure field distributions with positive and negative angular momenta d± = (dx2−y2 ± idxy )
and p± = (px ± ipy ) appear at (a) the higher frequency and (c) the lower frequency, respectively. For the scenario of type B (right, with
θ = 0◦), the pseudospin states denoted by the pressure field distributions with p± = (px ± ipy ) and d± = (dx2−y2 ± idxy ) appear at (b) the
higher frequency and (d) the lower frequency, respectively.

and the Berry curvature �(�k) = ∇ × B(�k). Figures 5(a) and
5(b) illustrate the calculated Berry curvature �(�k) of the p±
and d± states around the Γ point in the metastructure for types
A and B, respectively. By integrating the Berry curvature
over the first Brillouin zone, the spin Chern numbers Cs =

1
2π

∫
FBZ Ω (�k)d2�k for these states are achieved. From Fig. 5,

it is found that Cs = 0 for these p± and d± states in type A,
which indicates topological trivial phases; however, in type
B, Cs = +1 for the pseudospin-up states p+ and d+, but
Cs = −1 for the pseudospin-down states p− and d−, which
indicates the topological nontrivial phases. These numerically
calculated spin Chern numbers are the same as the analytical
results from k · P theory [9,18], which starts from the effective
Hamiltonian.

By revisiting Figs. 2–4, we can find that for the scenario of
type A (θ = 90◦), the topological trivial states p± (d±) occupy
the band below (above) the gap, making it a conventional
insulator. This is verified by the zero-spin Chern number.
By decreasing the rotation angle θ of the meta-atoms, the
band gap becomes narrower. Once the rotation angle reaches
θ = 44.3◦ (type C), states p± and d± degenerate at the
Γ point, the gap disappears, and an accidental double Dirac
cone appears, signifying the occurrence of the topological
phase transition. By further decreasing θ , the band gap re-
opens. For the scenario of type B (θ = 0◦), the topological
nontrivial states p± (d±) occupy the band above (below) the

gap, which is opposite the scenario of type A and suggests
the existence of an unconventional insulating state. This is
verified by the nonzero-spin Chern number. Therefore, band
inversion does occur together with the topological phase
transition, which is affirmed by the change in the spin Chern
numbers of the bands.

IV. TOPOLOGICAL PHASE DIAGRAM

For a better understanding of the topological evolution in
our system, we calculate the acoustic band structures of the
metastructures as a function of rotation angle θ of meta-atoms.
Here we focus on the band gap around the double Dirac cone.
As shown in Fig. 6(a), the red and blue curves represent the
modes corresponding to the p± and d± states, respectively.
The separation between these two modes corresponds to the
band gap. It is obvious that the band gap is symmetric with
respect to θ = 0◦ due to the mirror symmetry of the unit cell,
and the local maxima of the band gaps appear at θ = 90◦
(type A) and θ = 0◦ (type B). The p± and d± states at the
Γ point reverse around the scenario of type C, leading to band
inversion in the acoustic band structure of this TI.

We then investigate the influence of the ellipticity γ

of the elliptic meta-atom on the acoustic band gaps while
keeping the filling factor constant. When the double Dirac
cone emerges, the rotation angle θ of meta-atoms in the
metamolecule changes almost linearly with the ellipticity γ
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FIG. 5. The calculated Berry curvatures of the pseudospin states
p± and d± around the Γ point for (a) type A, and (b) type B. By
integrating Berry curvature around the Γ point in the first Brillouin
zone, we obtain the spin Chern numbers Cs for the p± and d± states. It
is shown that Cs = 0 for those p± and d± states in type A, indicating
the topological trivial phase, while Cs = +1 for both p+ and d+ states
and Cs = −1 for both p− and d− states in type B, indicating the
topological nontrivial phase.

FIG. 6. (a) The topological phase diagram of the metastructures
as a function of the rotation angle θ of the meta-atoms, where the
blue (red) curve represents the frequency of the d± (p±) states at the
Γ point. The trivial and nontrivial regions are marked with different
colors. (b) The rotation angle θ of the meta-atoms corresponding to
the double Dirac cone as a function of ellipticity γ of the elliptic
meta-atom. (c) The frequencies corresponding to the p± or d± states
at the Γ point as a function of the ellipticity γ of the meta-atom for
the scenarios of type A (θ = 90◦, blue curves) and type B (θ = 0◦,
red curves).

of the elliptic meta-atom [as shown in Fig. 6(b)]. Figure 6(c)
presents how the ellipticity γ of the meta-atom affects the
frequencies corresponding to the p± and d± states at the
Γ point for both types A and B, respectively. Obviously
for γ = 1, there always exists a double Dirac cone due to
symmetry C6v . As the ellipticity γ of the meta-atom increases,
the band gaps between the p± and d± states at the Γ point
significantly grows for both types A and B, corresponding to
the larger maximum and the smaller minimum values of the
separation ratio η, respectively.

V. THE EDGE STATES AND THE ROBUST
PSEUDOSPIN-DEPENDENT ONE-WAY TRANSMISSION

The most intriguing properties of the acoustic topological
insulator are the edge states localized at the interface between
the topological trivial and nontrivial regions. We design a
ribbon-shaped supercell made of a topological nontrivial re-
gion (type B) clad by two topological trivial regions (type
A), as illustrated in Fig. 7(a), which prevents possible edge
states from leaking into free space. The band gaps of these two
different structures have an overlapping frequency regime.
The acoustic band structure of the metastructure with the
supercells is numerically calculated with periodic boundary
conditions in all directions. As shown in Fig. 7(b), a bulk
band gap can be found in the range from 900 to 945 Hz. The
topological edge modes appear within the bulk band gap, as
indicated by the doubly degenerate curves corresponding to
two sets of edge states of the ribbon-shaped supercell with
opposite group velocities. In fact, there is a tiny gap at the
Γ point due to the reduction of C6 symmetry at the ribbon
edge. We further plot the real-space distributions of the pres-
sure field in Fig. 7(c) at typical momenta around the Γ point,
labeled A and B in Fig. 7(b), with k‖ = ±0.04 × 2π/a. Two
pairs of in-gap edge states are confined at the left and right
edges and decay exponentially into the bulk. The energy flow
exhibits a nonzero counterclockwise (clockwise) style for the
pseudospin-up (pseudospin-down) state at the edge. Thus,
in this metastructure, we obtain four pseudospin-dependent
transmission channels spatially separated without any external
fields. This indicates that counterpropagations of acoustic
energy do occur at the same interface associated with two
pseudospin states, which is actually the hallmark of a QSHE
state.

Based on pseudospin-dependent propagation of edge states
in the metastructure, we can design pseudospin-dependent
acoustic devices. For example, an acoustic splitter of pseu-
dospins is schematically illustrated in Fig. 8(a). This acoustic
splitter contains four sections with the nontrivial purple region
(type B) locating in the top left and bottom right sections and
the trivial gray region (type A) locating in the top right and
bottom left sections. Thus, four edges exist in this splitter,
which are marked L (left) and R (right) along the horizontal
direction and D (down) and U (up) along the longitudinal one.
In order to excite the topological mode, two dipole sources
(with phase difference π/2) are placed at the center of the
splitter. More specifically, the pseudospin sources are denoted
[18] S± = P0eiωt (x̂ ∓ iŷ) in the calculations, where P0 is a
constant sound pressure, + (−) stands for pseudospin-up
(pseudospin-down) source, and x̂ and ŷ are unit vectors along
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FIG. 7. (a) The schematic of a ribbon-shaped supercell, which is composed of 12 metamolecules for the topological trivial regions
(type A) on the left and the right and 15 metamolecules for the topological nontrivial region (type B) in the middle. (b) The acoustic band
structure of the metastructure with the ribbon-shaped supercells. The gray regions represent the bulk modes, whereas the doubly degenerate
topological edge modes appear in the bulk band gap, as marked by the blue and red curves, respectively. The right panel shows an enlarged
view of the acoustic band structure around the bulk band gap. (c) The real-space distributions of the pressure field and the energy flow in the
metastructure with the supercells at typical momenta of points A and B in (b), respectively. The rainbow colors represent the amplitude of the
pressure field, and the arrows show the direction and amplitude of the energy flow. The upper graph shows the typical momentum of point A in
(b); the left (right) edge supports an upward edge mode with pseudospin down (pseudospin up). The lower graph shows the typical momentum
of point B in (b); the left (right) edge supports a downward edge mode with pseudospin up (pseudospin down). The middle graph schematically
shows four sound transmission channels at the left and right edges, where blue (red) arrows represent the pseudospin up (pseudospin down)
and the transport direction of the corresponding pseudospin.

the x and y directions, respectively. In reality, one may com-
bine multiple excitation sources or design specific antennas to
mimic such sources. In the following simulation of the edge
states, the plane wave radiation condition is applied at the
edge of the system. As shown in Fig. 8, when a pseudospin-up
source (denoted by the green star) of 920 Hz is used, acoustic
wave propagates along the up and down edges [Fig. 8(b)];
the energy flow of this edge state shows a counterclockwise
style, which corresponds to the pseudospin up. But when
a pseudospin-down source (denoted by the orange star) of
920 Hz is used, the acoustic wave propagates along the left
and right edges [Fig. 8(c)]; the energy flow of this edge state
shows a clockwise style, which corresponds to the pseudospin
down. Thus, with this splitter, the transmission channels along
the up and down edges open only for pseudospin up, while the
transmission channels along the left and right edges open only
for pseudospin down.

Furthermore, we show one-way transmission for pseu-
dospins at the edge of the metastructure. For simplicity, we
study the propagation of pseudospin down in a metastructure,
where the 15a × 24a nontrivial region (type B) sits beside
the 15a × 24a trivial gray region [type A; see the left side of
Fig. 8(d)]. If the pseudospin-down source of 920 Hz (denoted
by the orange star) is placed on the bottom of the edge

without any defect, the pressure intensity distribution shows
clearly that the sound can propagate along the edge without
obvious backscattering [see the right side of Fig. 8(d)]. The
sound waves are localized in the vicinity of the edge and are
excluded from the bulk, indicating that the bulk region is in-
sulating. In contrast to the prohibited transport of pseudospin
down along the down edge in Fig. 8(c), the sound propagation
shown in Fig. 8(d) indicates the one-way transmission for the
pseudospin-down modes.

To demonstrate the robustness of the topological edge
states, we further introduce three edges with different types
of defects, including meta-atomic disorder, local cavity,
and bending [as shown in Figs. 8(e)–8(g)]. We excite the
pseudospin-down mode (denoted by the orange star) on the
bottom of the edge. The pressure intensity distributions [il-
lustrated in Figs. 8(e)–8(g)] demonstrate unambiguous ro-
bust sound transport, which is immune to the backscattering
caused by local defects, and the sound waves circumambulate
around them. In order to evaluate the robustness, we have
further calculated the transmission efficiency of the sound
waves propagating along the edge. Figure 9 illustrates the
simulated transmission spectra of the sound waves along
different edges: (i) without any defects and (ii) with differ-
ent types of defects, including meta-atomic disorder, local
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FIG. 8. (a) The schematic of a pseudospin splitter for an acoustic wave. Black dashed lines denote the cross edges in between the
topological trivial regions (type A, in gray, 15a × 15a for each region) and the topological nontrivial regions (type B, in purple, 15a × 15a
for each region). There are four edges in total, i.e., the left, right, up, and down edges, which are marked L, R, U, and D, respectively.
(b) The calculated pressure intensity distribution when the pseudospin-up source of 920 Hz is placed at the splitter center. It is shown that
the pseudospin-up propagates only along the up and down edges. (c) The calculated pressure intensity distribution when the pseudospin-down
source of 920 Hz is placed at the splitter center. It is shown that the pseudospin-down propagates only along the left and right edges. (d)–(g)
The acoustic one-way transmission of pseudospin down and the robustness against defects in the metastructures, with a 15a × 24a topological
trivial region (type A, gray) beside a 15a × 24a topological nontrivial region (type B, purple). The left panels show only the region near the
edge between these two regions; the right panels show the calculated pressure intensity distribution when the pseudospin-down source is placed
at the bottom of the edge. The metastructure is shown (d) without any defects, (e) with meta-atomic disorder, (f) with local cavity, and (g) with
bending. The pressure intensity distributions in (e)–(g) show unambiguous robust sound transport against meta-atomic disorder, local cavity,
and bending, respectively. The green (orange) star represents the pseudospin-up (pseudospin-down) source.

FIG. 9. The simulated transmission spectra of the sound waves along different edges in the metastructures shown in Figs. 8(e)–8(g). The
black curves correspond to the scenario without any defects, while (a) the red, (b) blue, and (c) green curves indicate the scenario with local
cavity, meta-atomic disorder, and bends, respectively. The shaded regions represent the bulk bands, and the white regions represent the bulk
band gaps. It is obvious that the transmissions through the edges are relatively high within the bulk band gap, and they are nearly unaffected
by the defects, especially around the center of the band gap.
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cavity, and bending. The shaded regions correspond to the
bulk bands, and the white regions correspond to the bulk
band gaps. It is obvious that the transmissions through all
these edges are relatively high within the bulk band gap, and
transmission efficiency through the edges is nearly unaffected
by the defects (as shown in Fig. 9). These effects show that
pseudospin-dependent topological edge states have intrinsic
robust characteristics despite the existence of different types
of defects, which is completely different from the scenario of
conventional waveguides. In the present 2D system with TIs,
the pseudospin-dependent one-way transmission is insensitive
to arbitrary-shaped defects. From this point of view, such
features cause the present acoustic TIs to possess unique
advantages in guiding sound propagation in practical acoustic
environment.

VI. CONCLUSIONS

In this paper, we have theoretically demonstrated an ap-
proach to construct a type of 2D acoustic TI by projecting a
section of a 3D twisting structure. This 2D acoustic TI model
can be achieved by creating resonators with a higher refractive
index than the ambient medium, such as perforated air holes in

polished stainless-steel plates, aerogel as a soft acoustic meta-
material in air, and air in water. By calculating the acoustic
band structures, pressure field distributions, and spin Chern
numbers of bands, we have shown that the topological phases
can mimic pseudospin-up and pseudospin-down states, and
the pseudospin-orbital couplings can be tuned by changing the
rotation angles of the meta-atoms, which eventually induce
band inversion. In addition, we have illustrated that robust
pseudospin-dependent one-way transmission is immune to the
scattering of various types of defects at the edge between topo-
logically distinct regions, which has potential applications in
manipulating sound waves.
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