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Valley isospin of interface states in a graphene pn junction in the quantum Hall regime
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In the presence of crossed electric and magnetic fields, a graphene ribbon has chiral states running along
sample edges and along boundaries between p-doped and n-doped regions. We here consider the scattering of
edge states into interface states, which takes place wherever the pn interface crosses the sample boundary, as
well as the reverse process. For a graphene ribbon with armchair boundaries, the evolution of edge states into
interface states and vice versa is governed by the conservation of valley isospin. Although valley isospin is not
conserved in simplified models of a ribbon with zigzag boundaries, we find that arguments based on isospin
conservation can be applied to a more realistic modeling of the graphene ribbon, which takes account of the
lifting of electron-hole degeneracy. The valley isospin of interface states is an important factor determining the
conductance of a graphene pn junction in a quantizing magnetic field.
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I. INTRODUCTION

In the absence of scattering processes that cause a large
momentum transfer, the low-energy electronic properties of
graphene are described in terms of massless Dirac electrons
near two inequivalent “valleys” at momenta K and K ′ [1–3].
Since the corresponding four-component Dirac Hamiltonian
is invariant with respect to “rotations” between the valleys,
electrons can be assigned a valley isospin, which is described
by a two-component spinor with quantization axis ν, such that
ν pointing in the positive (negative) z direction corresponds to
a fully valley-polarized state in the K (K ′) valley. In principle,
the valley degree of freedom can be used to encode and
process information, a concept that has given rise to the field
of “valleytronics” [4].

A measurement of the valley degree of freedom requires
lifting of the valley degeneracy. Most notably, this occurs at
the edges of a graphene sheet [5]—although other schemes,
e.g., involving the valley-dependent magnetic [6] and op-
toelectronic effects [7], can also be used. A robust valley
dependence exists for the chiral edge states propagating along
the boundaries of a graphene sheet in the lowest quantum Hall
plateau, which have a well-defined valley isospin ν if the lat-
tice termination at the edge is regular [8,9]. Consequentially,
devices based on quantized-Hall graphene edge states have
been proposed to detect and manipulate the valley degree of
freedom in graphene, see, e.g., Refs. [10,11] for two early
examples.

A system that has received considerable theoreti-
cal [12–23] and experimental attention is a graphene pn
junction in a quantizing magnetic field [24–36]. The chiral
edge states in such a pn junction move in opposite directions
in the p- and n-type regions. They feed into/flow out of two
co-propagating valley-degenerate interface states at the pn
interface, see Fig. 1. These interface states are also known
as “snake states” because classical electron trajectories are
curved such that they move alternatingly on the p and n

sides of the pn interface, a behavior reminiscent of the chiral
states that propagate along zero-field contours in quantum
Hall insulators in an inhomogeneous magnetic field [37–40].

For a nanoribbon with armchair edges intervalley scat-
tering is absent if the potential defining the pn junction is
smooth enough and the magnetic field is sufficiently weak
(cyclotron radius much larger than lattice spacing). In that
case the conductance of the pn junction can be obtained from
valley-isospin conservation arguments [13],

G = e2

h
(1 − νin · νout ), (1)

where νin = νp, in = −νn, in and νout = νp, out = −νn, out are
the valley isospin vectors for incoming and outgoing chiral
edges states in the p and n-type regions, respectively, see
Fig. 1(a). On the other hand, for a pn junction with zigzag
edges, the two chiral edge states feeding into/coming out of
the valley-degenerate interface state are reported to have the
same valley isospin [8,13,41], which rules out an isospin-
conserving transition from edge state to interface state, see
Fig. 1(b). This precludes the use of arguments invoking the
conservation of valley isospin to determine the conductance
of the pn junction [13]. Nevertheless, the zigzag pn junction
as a whole was found to have well-defined valley-dependent
transmission properties [13], and it, too, has been proposed as
a viable valleytronic device [22,35].

The absence of valley isospin conservation in these
graphene pn junctions is remarkable, because it exists no
matter how smooth the scalar and vector potentials are. A
possible origin of valley-isospin nonconserving scattering in
graphene pn junctions with zigzag edges was pointed out
by Akhmerov et al. [42], who analyzed a narrow zigzag pn
junction in zero magnetic field. Both without and with a
magnetic field, a zigzag junction admits states localized near
the sample edges [43,44]. As their momentum approaches
the zone boundary, the transverse localization length of these
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FIG. 1. Schematic picture of a graphene pn junction in the first
quantized Hall plateau. (a) For an armchair nanoribbon chiral states
coming in from the left and right (going out to the left and right) have
opposite valley isospin νin and −νin (νout and −νout), respectively.
For sufficiently smooth potentials the valley isospin ν is conserved
and the conductance is determined by the overlap of valley isospins
νin and νout of incoming and outgoing scattering states, see Eq. (1).
(b) For a lattice model of a zigzag nanoribbon with nearest-neighbor
hopping only, the incoming (outgoing) edge states on the left and
right have the same isospin νedge,in (ν′

edge,out). Valley isospin is not
conserved in the transition between edge states and interface states.
The conductance of the pn junction is determined by the overlap of
the isospins νin and νout of the interface states connected to incoming
and outgoing scattering states in the same (p) side of the junction.

states becomes of the order of the lattice constant. In the
model studied by Akhmerov et al.—a tight-binding model
with nearest-neighbor hopping only—the edge state momen-
tum hits the zone boundary precisely at the pn interface, i.e.,
precisely where the Dirac point crosses the Fermi energy. The
corresponding small spatial length scale can then supply the
large momentum transfer required for valley-mixing scatter-
ing at the pn interface [42].

An important point in this mechanism is that the position
at which edge states become maximally localized precisely
coincides with the pn interface. This indeed happens for the
simple tight-binding model investigated in Ref. [42] and else-
where [13,35], in which graphene is described as a hexagonal
lattice with nearest-neighbor hopping. Such models have a
sublattice antisymmetry, which pins the energy of the maxi-
mally localized edge state to the Dirac point. In more realistic
models, the sublattice antisymmetry is broken, e.g., by next-
nearest-neighbor hopping or by on-site potentials at the sam-
ple edges. In that case there can be a finite energy difference
δU between the energy of the zone-boundary-localized state
and the Dirac point [45]. As a result, the chiral edge states
of the lowest quantized Hall plateau are not localized on an
atomic length scale in the vicinity of the pn interface and
there is no short length scale that can facilitate intervalley
scattering. Instead, intervalley scattering (if any) takes place
well away from the pn interface and the two chiral edge states
incident on the pn interface have opposite valley isospin.

In this paper we consider the valley isospin of interface
states in a graphene pn junction in the first quantized Hall
plateau with zigzag edges, comparing models with and with-
out sublattice antisymmetry. For models with sublattice anti-
symmetry, using a combination of numerical and analytical ar-
guments we calculate the isospin νin = νp, in = −νn, in (νout =
νp, out = −νn, out) of the interface states, where the indices p
and n refer to interface states that evolve out of (into) the chiral
edge states at the p and n side of the junction, respectively,
see Fig. 1(b). Once the valley isospin of the interface states is
known, Eq. (1) is still applicable, provided the isospins νin

and νout are taken to be the isospins of the interface states

(as defined above), not of the chiral edge states. Comparing
our results for the conductance of a pn junction with zigzag
edges with those obtained at zero magnetic field [42,46], we
find no magnetic field dependence of the conductance, despite
the vastly different limits involved (metallic ribbon with a
finite-size gap vs quantized Hall insulator). Whereas we do
not have a formal calculation to prove this observation, we
attribute it to the understanding that in the presence of sub-
lattice antisymmetry the intervalley scattering is essentially a
short-distance effect taking place within a few lattice spacings
from where the pn interface meets the sample edge [42],
whereas the magnetic field affects electrons on a much longer
length scale.

For the (more realistic) models without sublattice anti-
symmetry, we observe that, in contrast to what was found
in the absence of sublattice antisymmetry, chiral edge states
impinging on the pn interface sublattice have opposite isospin
νin = νp, in = −νn, in even for a zigzag edge. The same applies
for outgoing states. For a sufficiently smooth pn junction
this means that Eq. (1) can still be used to describe the
conductance of a pn junction, without having to redefine
the meaning of νin and νout. For models without sublattice
antisymmetry the conductance is qualitatively different from
what is obtained based on the simple tight-binding model with
nearest-neighbor hopping only [13,35]. In particular, we find
that zigzag nanoribbons of even and odd width have the same
conductance G = 2e2/h, in contrast to Refs. [13,35], who find
that G = 2e2/h for ribbons with even width and G = 0 for
ribbons with odd width.

The importance of sublattice-symmetry-breaking terms
can be estimated by considering the role of a next-nearest-
neighbor hopping amplitude t ′. In the absence of potentials at
the sample edges, one has δU = t ′ [45]; localized potentials at
the sample edge can further change this shift. Experimentally
t ′ is estimated at t ′ ≈ 0.3 eV [47]. Therefore, a nonzero value
of δU is a relevant perturbation for pn junctions if the applied
potential remains smaller than δU in a region (much) larger
than the lattice constant a around the pn interface. This is the
case if the over-all potential drop across the pn junction is
well below δU (“small-amplitude junction”) or if the in-plane
electric field |E | � δU/e (distance being measured in units
of the lattice spacing). Both conditions should realistically be
met in most experiments.

For the model with sublattice symmetry, for which the
valley isospins νin and νout of the interface states do not follow
from isospin conservation arguments, we numerically obtain
νin and νout of the interface states by solving for scattering
states in a stub geometry, for which the pn junction and
the interface states extend into the lead. This allows our
calculation to go beyond numerical and analytical studies of
the conductance of zigzag pn junctions as a whole [35,42,46],
in which no information specific to interface states could be
obtained. It also allows us to apply our results to graphene pn
junctions with nonparallel edges.

Our results also explain the remarkably strong parameter
dependence of the conductance of a disordered pn junction
with zigzag edges that has been observed in previous numeri-
cal studies on models with nearest-neighbor hopping only. In
particular, Ref. [13] found that the conductance of a pn junc-
tion with zigzag edges depended very strongly on the value of
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the Fermi energy, whereas there was no such dependence in
the case of a pn junction with armchair edges. Reference [35]
found a strong dependence of the conductance of a disordered
zigzag pn junction on the precise position of the pn interface.
We can understand these results by noting that the isospins νin

and νout of the interface state depend sensitively on the precise
position of the pn interface: Already a shift of the intersection
of the pn interface and the sample edge by a distance of the
order of a lattice constant rotates νin or νout by a large angle. A
(smooth) disorder potential effectively causes a random shift
of the positions of the intersections of the pn interface and the
two sample edges, corresponding to random rotations of the
valley isospin νp, in and νp, out. A similar strong dependence on
the position of the pn interface was observed by Akhmerov
et al. for zigzag pn junctions in the absence of a magnetic
field [42].

The paper is organized as follows: In Sec. II we review
the concept of valley isospin and derive constraints for the
isospins νin and νout of the interface states for high-symmetry
positions of the pn interface and for a simplified tight-binding
model of graphene with nearest-neighbor hopping only. In
Sec. III we show numerical results for the isospin of interface
states. Section IV describes applications of our theory to the
conductance of pn junctions with various boundary termina-
tions and compares with the zero-energy theory of Ref. [42].
We conclude in Sec. V.

II. VALLEY ISOSPIN AND SYMMETRY ANALYSIS

A. Valley isospin

Graphene has a hexagonal arrangement of carbon atoms,
as shown in Fig. 2. It can be described as a triangular lattice
with a two-atom basis, labeled “A” and “B.” The low-energy
physics of conduction electrons in graphene takes place for
momenta near one of two inequivalent corners of the Brillouin
zone. The momenta of these corners or “valleys” are labeled
K and K ′. We choose the primitive lattice vectors a1 and a2

such that they obey [2]

eiK·a1 = e−iK·a2 = e−iK ′ ·a1 = eiK ′ ·a2 = e−2π i/3. (2)

We neglect spin-orbit coupling, which is very weak in
graphene, and do not consider the electron spin explicitly, ex-
cept for the overall factor two in Eq. (1). Electronic states are
represented by a two-component pseudospinor ψ(r), where

FIG. 2. Hexagonal lattice with its two-atom unit cell. The prim-
itive lattice vectors are denoted a1 and a2. The right panel shows a
choice of the unit cell that is rotated anticlockwise by an angle 2π/3.

the pseudospinor degree of freedom corresponds to the sub-
lattice structure and r is a lattice vector.

The pseudospinor of a low-energy state can be written as a
sum of contributions at the two valleys,

ψ(r) =
(

ψA(r)
ψB(r)

)

=
(

φA(r)
φB(r)

)
eiK·r +

(
φ′

A(r)
φ′

B(r)

)
eiK ′ ·r, (3)

where φA,B(r) and φ′
A,B(r) are slow functions of the lattice

vector r. A low-energy state ψ(r) has a valley isospin ν if the
corresponding four-component spinor �, defined by

�(r) =

⎛
⎜⎝

φA(r)
φB(r)

−φ′
B(r)

φ′
A(r)

⎞
⎟⎠, (4)

obeys the condition [9]

(ν · τ)�(r) = �(r) (5)

for all r, where the τ j , j = 1, 2, 3, are Pauli matrices acting
on the valley degree of freedom. The two-component pseu-
dospinor ψ(r) of such a state with well-defined valley isospin
ν has the form

ψ(r) =
(

ψA(r)
ψB(r)

)

= ν1

(
φA(r)
φB(r)

)
eiK·r + ν2

(
φB(r)

−φA(r)

)
eiK ′ ·r, (6)

where the two amplitudes ν1 and ν2 form the two-component
valley spinor corresponding to the isospin vector ν. (Note that
the two-component spinor (ν1, ν2) is defined up to a phase
factor only.)

It is important to point out that the valley isospin ν depends
on the choice of the origin and of the unit cell. A translation of
the origin from a lattice position O to another lattice position
Ō rotates the valley isospin by the angle θOŌ = K · rOŌ around
the z axis,

ν → ν̄ = Rz,θOŌ
ν, (7)

where rOŌ is the displacement vector pointing from O to Ō.
[The rotation angle can be calculated with the help of Eq. (6).]
Similarly, an anticlockwise rotation of the unit cell by an
angle 2π/3, see Fig. 2, rotates ν by an angle 2π/3 around
the z axis, with a simultaneous change (φA, φB) → (φ̄A, φ̄B) =
(φAe−2π i/3, φB) of the sublattice pseudospinor.

Within the Dirac equation description, valley isospin is a
constant of the motion, since the Dirac Hamiltonian com-
mutes with the valley isospin operator τ. Isospin rotation sym-
metry is broken at the sample edges. In general a boundary
without time-reversal symmetry-breaking perturbations has a
boundary condition of the form [11,48]

� = (νb · τ )(nb · σ)�, (8)

where the σ j , j = 1, 2, 3, are Pauli matrices acting on the
sublattice (pseudospin) degree of freedom and νb and nb are
two unit vectors characteristic of the boundary termination.
The vector nb must be perpendicular to the boundary normal;
no a priori constraints apply to the vector νb [48].
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FIG. 3. Choice of the origin O and orientation of the two-atom

unit cell corresponding to the boundary conditions (9) and (10) for
zigzag and armchair boundary conditions.

An explicit form for the boundary conditions can be ob-
tained in a tight-binding description with nearest-neighbor
hopping only. For such a model one finds that at a zigzag edge
one has the boundary condition [48]

� = ±τzσz�, (9)

if the two-atom unit cell is oriented perpendicular to the
boundary, see Fig. 3. The + (−) sign applies to a zigzag
boundary for which the outermost atoms are on the A (B) sub-
lattice. Equation (9) corresponds to the general case (8) with
νb = ±nb = ez. In the nearest-neighbor model the boundary
condition for an armchair termination reads

� = τyσy�, (10)

if the two-atom unit cell is oriented parallel to the boundary
and the origin O is chosen at the interior boundary of the
outermost hexagon, see Fig. 3.

B. pn junctions at the first quantized Hall plateau

A graphene pn junction at the first quantized Hall plateau
has nondegenerate chiral modes running along the sample
edges, as shown schematically in Fig. 1, as well as two
valley-degenerate co-propagating chiral interface modes. The
edge modes have a well-defined valley isospin ν [13]. The
boundary conditions (9) and (10) for the nearest-neighbor
hopping model fix the direction of the valley isospin ν to be
parallel to the z or y axis for zigzag or armchair termination
but do not specify the direction of ν. For the symmetry
arguments that follow below it is not necessary to know the
sign of ν. However, for definiteness we will make use of
the result of numerical calculations of a lattice model with
nearest-neighbor hopping, which will be discussed in more
detail in the next section. For such a model one finds that
ν = −ez (ez) for a chiral zigzag edge with outermost atoms
of A (B) type, where ez is the unit vector in the z direction.
For a junction with armchair termination one finds ν = −ey

(ey) for an edge state moving in the direction A → B (B → A)
with respect to a two-atom unit cell oriented parallel to the
edge. If sublattice antisymmetry is broken, the valley isospin
of a chiral mode at a zigzag edge changes sign in either the
p-type region or the n-type region, depending on the sign of
the sublattice-antisymmetry-breaking perturbation δU , see the
discussion in Sec. III.

FIG. 4. Zigzag pn junctions with two high-symmetry positions
of the pn interfaces (dashed) and with mirror axis parallel to edge
(dot-dashed). The unit cell labeled O is compatible with the boundary
condition (9) at both boundaries. The unit cells are positioned sym-
metrically with respect to mirror inversion in the pn interface. Valley
isospin directions of edge states and interface states are indicated for
a nearest-neighbor tight-binding model. The isospin directions of the
interface states are fixed by symmetry arguments, see main text, up
to an overall sign, which is determined by numerical simulations (see
Sec. III).

C. Symmetry analysis: General case

Whereas the valley isospin of the chiral edge states is
determined by the boundary conditions, the valley isospin of
the interface states has to follow from different considerations.
If the pn interface is placed symmetrically with respect to
the sample boundary, the possible values of the valley isospin
for the interface states can be constrained by symmetry argu-
ments.

1. Junction with mirror axis parallel to sample edge

A symmetry axis parallel to the sample edge allows one
to relate valley isospins for incoming and outgoing scatter-
ing states. This situation is shown schematically in Figs. 4
and 5 for pn junctions with zigzag and with armchair edges,
respectively. Although the magnetic field breaks the mirror

FIG. 5. Armchair pn junctions with high-symmetry positions of
the pn interfaces (dashed) and with mirror axis parallel to the edge
(dot-dashed). Valley isospin labels are for a nearest-neighbor tight-
binding model. They are given with respect to the origins O and
Ō for incoming and outgoing scattering states, respectively. (The
origins O and Ō are interchanged under mirror reflection in the mirror
axis parallel to the edge.) Isospin directions are fixed by symmetry
arguments, see main text, up to an overall sign, which is determined
by numerical simulations (see Sec. III).
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symmetry, the system remains invariant under the combined
operation MT of a mirror reflection and time reversal. This
symmetry operation corresponds to the valley isospin change

ν → ν̄ =
{
Mzν zigzag,

Myν armchair, (11)

where My and Mz denote mirror reflection in the y = 0 and
z = 0 planes in the Bloch sphere, respectively. The valley
isospin ν̄ is calculated with respect to the mirror image Ō
of the origin O, see Figs. 4 and 5. Note that the prescription
ν → Myν is consistent with the observation of the previous
subsection that the valley isospin of a chiral state at an arm-
chair edge state points along the y axis for the simple nearest-
neighbor model and changes sign upon changing the direction
of propagation. The prescription ν → Mzν is consistent with
the observation that the valley isospin of a chiral state at
a zigzag edge points along the z axis and changes sign if
the outermost atoms change from the A sublattice to the B
sublattice.

2. Conductance

The above symmetry argument is sufficient to determine
the conductance of a pn junction with armchair edges and
a mirror axis parallel to the edge [13]. One first considers
a “minimal” junction with a width alternating between one
and two hexagons—which we refer to as a width of four “half
hexagons”—for which a symmetric position of the origin O =
Ō compatible with the boundary condition (10) on both edges.
Since isospin is conserved at the pn interface for armchair
boundaries, the valley isospin of the interface state coming
from the p-type side of the junction has valley isospin −ey,
which is the same as the isospin of the interface state that
evolves into a chiral edge state moving out to the n-type side
of the junction. We conclude that this pn junction is perfectly
transmitting, G = 2e2/h. The conductance of armchair pn
junctions of arbitrary width can then be found using the fact
that valley isospin rotates by an angle θOŌ = K · rOŌ around
the z axis if the origin is translated from O to Ō. The rotation
corresponding to a width increase of half a hexagon is of
magnitude 2π/3, from which it follows that G = 2e2/h for
all armchair junctions that can be obtained from the minimal
junction by adding 3n rows of half hexagons with n integer,
and G = (e2/h)(1 − cos π/3) = e2/2h otherwise [13].

D. Symmetry analysis: Models with sublattice antisymmetry

The presence of other spatial symmetries, such as a mirror
axis perpendicular to the edge or an inversion center, does not
constrain the valley isospin of chiral edge or interface states,
because such symmetries are broken by the simultaneous
application of electric and magnetic fields at the pn junction.
These additional symmetries can be combined however, with
a sublattice antisymmetry C,

H = −σ3Hσ3, (12)

which is an exact antisymmetry for the simple nearest-
neighbor model of graphene, but not for more realistic models.
Here σ3 is a Pauli matrix acting on the sublattice (pseu-
dospinor) degree of freedom, i.e., it multiplies the wave
function by 1 on the A sublattice and by −1 on the B

sublattice. The combination of the sublattice antisymmetry
and a mirror symmetry with a mirror axis parallel to the pn
interface or with an inversion center leads to strong constraints
on the valley isospin of the interface states and on the overall
conductance of the pn junction at half filling (i.e., at zero
energy), as we now discuss.

1. Mirror axis perpendicular to sample edge

Again we refer to Figs. 4 and 5 for a schematic picture.
The presence of an electric field at a pn junction breaks both
the sublattice antisymmetry and the mirror symmetry, but the
product CMT of sublattice conjugation, mirror reflection,
and time reversal remains a good antisymmetry even in the
presence of a magnetic field. This combined symmetry oper-
ation exchanges scattering states incident from/going to the p
and n parts of the junction and changes the valley isospinor as

ν → ν̄ =
{
Mxν zigzag,

Iν armchair, (13)

where Mx and I are mirror reflection in the x = 0 plane and
inversion on the Bloch sphere, respectively, and where the
origin O is chosen symmetrically with respect to the mirror
axis. Note that these symmetry operations imply that edge
states coming in from/going out to the p and n parts of the
junction have the same valley isospin for a pn junction with
zigzag edges, since ν is along the z axis in that case, but op-
positely oriented valley isospins for a junction with armchair
edges. Since the valley isospins of the two interface states
must be oppositely oriented, CMT antisymmetry implies that
ν must be along the x axis for the interface state in a zigzag pn
junction.

2. Inversion center

For a junction with inversion symmetry I the presence
of an electric field at the pn interface and a magnetic field
preserves the antisymmetry under CI . The corresponding
valley isospin change is

ν → Ry,πν (14)

for both zigzag and armchair termination, where Ry,π is a π

rotation around the y axis in the Bloch sphere. As before, the
valley isospin after inversion is defined with respect to the
inversion image of the origin.

3. Conductance

The conductance of high-symmetry pn junctions with
zigzag edges can be determined from symmetry considera-
tions, provided the model has sublattice antisymmetry. These
symmetry arguments can be applied to a junction with two
mirror axes, as shown in Fig. 4, and for a junction with
an inversion center, if the pn interface is perpendicular to
the sample edges and meets the sample boundary at a high-
symmetry point, shown schematically in Fig. 6. For the case of
a junction with zigzag edges and two mirror axes, νin = νout,
so that the junction is fully reflecting, G = 0 [13]. For the case
of an inversion-symmetric junction (with the additional con-
ditions listed above), the symmetry considerations discussed
above fix the valley isospin of an interface state evolving from
the chiral edge state coming in from the p region to be ±ex.
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FIG. 6. Zigzag pn junctions with an inversion center. The integer
n counts the number of half hexagons between the intersection of
the pn interface (dashed) and the left and right sample boundaries.
Origins O and Ō compatible with the boundary conditions at the left
and right sample boundaries and symmetrically placed with respect
to the pn interface are shown for δx = 3/2 (left) and �x = 1 (right).

Inversion symmetry then determines that the interface state
evolving into the chiral edge state going into the n region
is ±ex. The conductance of the system then depends on the
translation vector rOŌ between origins at the two edges. Since
a translation by half a hexagon gives a rotation around the
z axis by an angle 2π/3, it follows that the conductance G
of an inversion-symmetric zigzag ribbon of a width of nhex

hexagons is

G = e2

h
×

{
[1 + cos(2π�x/3)], if nhex even,

[1 − cos(2π�x/3)], if nhex odd,
(15)

where �x is the distance between the intersection points of
the pn junction at the opposing zigzag edges, see Fig. 6. [Note
that Eq. (15) is derived for integer and half-integer �x only.]

The combined CMT antisymmetry for a pn junction (with
mirror line parallel to the pn interface) also implies a sym-
metry constraint for the scattering matrix S of the junction
as a whole. The constraints on S follow upon noting that
the combined CMT operation interchanges the incoming
scattering states but does not mix incoming and outgoing
scattering states. For a junction with zigzag edges one has
(CMT )2 = 1, which leads to the constraint

S =
(

0 1
1 0

)
S∗

(
0 1
1 0

)
. (16)

This is the same symmetry condition as the one found for
Andreev reflection from superconductors with broken spin
degeneracy (Altland-Zirnbauer symmetry class D [49]) [50].
The only 2 × 2 unitary matrices compatible with the condi-
tion (16) describe either a fully reflecting junction (G = 0)
or a fully transmitting junction (G = 2e2/h) [50]. Since a
junction cannot be simultaneously fully reflecting and fully
transmitting, it follows that Eq. (16) imposes a topological
constraint on the junction conductance G evaluated precisely
at half filling (energy ε = 0): G does not change upon con-
tinuously deforming the Hamiltonian, as long as the CMT
antisymmetry is preserved. In particular for a pn junction
with zigzag edges and CMT symmetry it follows that the

conductance at the first quantized Hall plateau is the same
as the conductance in the absence of a magnetic field. The
case without magnetic field was considered previously by
Akhmerov et al. [42], who found that G = 2e2/h if the width
of the graphene nanoribbon corresponds to an odd number
of hexagons and G = 0 if the width corresponds to an even
number of hexagons. The former observation is consistent
with the results obtained from the symmetry analysis, see the
preceding discussion. The latter observation gives information
that goes beyond what can be obtained from the symmetry
analysis alone: It means that the valley isospin of the inter-
face state evolving from a chiral edge state coming in from
the p region changes from ±ex to ∓ex upon shifting the
intersection of the pn interface and the zigzag edge between
high-symmetry points, as indicated schematically in Fig. 4. In
particular, it follows that a junction with mirror axis parallel
to the pn interface has conductance G = 2e2/h if the width of
the junction is an even number of hexagons [13].

III. NUMERICAL CALCULATION OF THE
VALLEY ISOSPIN

To numerically calculate the valley isospin of the interface
states we consider the “stub geometry” shown in Fig. 7. A
single ideal graphene lead with zigzag edge termination is
coupled to a scattering region, to which no other leads are
attached. A potential U (r) divides the lead and the scattering
region into a p-type and n-type region in such a way that the
pn interface runs approximately through the center of the lead

FIG. 7. Scattering geometry used to numerically calculate the
valley isospin ν of the interface states. The lead region is shown in
red. The gray background schematically indicates the height of the
potential U (r), which determines the position of the pn interface.
In the ideal lead, the pn interface is parallel to the lead’s zigzag
boundary; in the scattering region, the pn interface is slightly curved,
such that it intersects the zigzag boundary of the scattering region at
an angle α to the boundary normal.
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and the scattering region. In the ideal lead, the pn interface
is parallel to the lead boundaries. The orientation of the pn
interface is gradually changed in the scattering region, so that
it makes an angle α with the surface normal at the point where
it intersects the zigzag boundary of the scattering region, see
Fig. 7. A uniform magnetic field is applied, such that the
system is in the first quantized Hall plateau throughout.

The ideal lead hosts two “incoming” chiral modes propa-
gating along the left and right edge as well as an “outgoing”
valley-degenerate mode propagating along the pn interface.
The scattering matrix of the entire system is calculated using
the kwant software package [51]. The valley isospin ν = νin

of the interface state originating from the edge state coming
in on the p side of the pn interface can be immediately read
off from the scattering matrix, since the two valleys project
to different momenta for a lead with zigzag edges. The valley
isospin of the interface state originating from the edge state
coming in on the n side of the junction is −ν.

The advantage of this geometry over the previously consid-
ered slab geometry [13,35,42] is that we can directly access
the scattering matrix between the two (incoming) edge states
and the two (outgoing) interface states, as described above.
For comparison, in the slab geometry the scattering is deter-
mined by the combined effect of intervalley scattering at two
intersections of interface and sample boundary, which makes
it difficult to determine the scattering from a single such
intersection point. The orientation of the lead along zigzag
edge is chosen for technical convenience, as it allows for an
easy determination of the valley isospin of the two interface
states using the longitudinal momentum in the ideal lead.

The system is described by the tight-binding Hamiltonian

H =
∑

r, r′ n.n.

t |r〉〈r′| +
∑

r

U (r)|r〉〈r|, (17)

where the sums are over the sites r of the hexagonal lattice.
The potential U (r) defines the pn interface,

U (r) = U0

4
[ f (nα · r/lpn)(1 + f (y/ξ ))

+ f (nπ/6 · r/lpn)(1 − f (y/ξ ))], (18)

where f (x) is a function that smoothly interpolates between
−1 for x � −1 and 1 for x 
 1 and nα = (cos α,− sin α).
[In practice, one may take f (x) = tanh x.] We refer to Fig. 7
for the definition of the x and y directions. Throughout we take
the width of a hexagon as the unit of length. The potential (18)
interpolates smoothly between a pn interface parallel to the
lead’s zigzag edge and an interface intersecting the zigzag
edge of the scattering region at angle α with the boundary
normal. The lengths lpn and ξ determine the width of the pn
junction and the length scale over which the orientation of the
pn interfaces between the angles π/6 (in the lead) and α (at
the intersection with the sample boundary). Both lengths must
be much larger than the lattice spacing for the continuum de-
scription to hold. We further require that ξ � Ly, where Ly is
the depth of the scattering region, see Fig. 7. For convenience,
we have set lpn = ξ in our numerical simulations, but we made
sure that our results are independent of this choice as long
as the above conditions on lpn and ξ are met. The constant
magnetic field is included in the tight-binding description by

(a) (b) (c)

FIG. 8. Dispersion relation of the quantum Hall edge states (solid
curves) along a zigzag edge in the lowest quantized Hall plateau
for an edge without sublattice antisymmetry (a), for an edge with
sublattice antisymmetry-breaking perturbation 0 < δU < E1 (b), and
for an edge with δU > E1 (c), where E1 is the energy of the first
Landau level. The solid horizontal lines give the energies of the
Landau levels. The chiral edge states in p- and n-type regions have
equal valley isospin in case (a) but opposite isospin in cases (b)
and (c).

the Peierls substitution to the hopping amplitudes, such that
the magnetic flux through each hexagon is �. The value of
� is chosen such that the magnetic length l ∼ 1/

√
� 
 1

is much larger than the lattice spacing, whereas the magnetic
unit cell is much smaller than the lead width, Lx� 
 2π . In
practice the latter condition forces us to work with scattering
regions of rectangular shape, Lx 
 Ly. Finally, we include
breaking of sublattice antisymmetry by the inclusion of an
additional potential δU on the outermost boundary sites.

1. Zigzag edge: Isospin-conserving vs nonconserving regime

As anticipated in the introduction, the scattering from
chiral edge states into interface states depends on the presence
or absence of sublattice antisymmetry. In the presence of
sublattice antisymmetry, both incoming edge states have the
same valley isospin, see Eq. (9) and Fig. 8(a). Correspond-
ingly, valley isospin is not conserved when the chiral edge
states are converted into valley-degenerate interface states at
the intersection of the pn interface and the sample edge. The
nonconservation of the valley isospin at a smooth interface is
associated with the fact that at zero energy (i.e., precisely at
the pn interface) the edge state has longitudinal momentum
k = π and is localized on the outermost layer of lattice
sites only [42]. After introducing a perturbation that breaks
the sublattice antisymmetry, such as next-nearest-neighbor
hopping or a local onsite potential along the edge, the edge
state acquires a finite energy δU at k = π and the dispersion
relation of the edge states is changed. Typical dispersions
for the case of broken chiral antisymmetry are shown in
Figs. 8(b) and 8(c). Most importantly, for broken sublattice
antisymmetry the two incoming edge states at the same edge
have opposite valley polarization. For a smooth pn interface
valley isospin is conserved in the transition from chiral edge
states to interface states.

The transition between the two regimes is illustrated in
Fig. 9, which shows the z component of the valley isospin
of the interface state ν. In the presence of sublattice an-
tisymmetry one has νz = 0, consistent with the symmetry
arguments of the previous section; if sublattice antisymmetry
is broken, which requires that the sublattice antisymmetry-
breaking energy scale δU be sufficiently large in comparison
to the potential difference U0/lpn on neighboring lattice sites,
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FIG. 9. The z-component νz of the isospin of interface states
originating from the p-type region, as a function of lpnδU/U0. We
have chosen U0 = 0.2t and the values of lpn (measured in units of
the hexagon width) are given in the inset. The value of the magnetic
field is such that the first Landau level is at E1 = 0.2t and the size
of the scattering region Lx = 360 and Ly = 10lpn. The sublattice
antisymmetry is broken by onsite potential of magnitude δU that is
added locally on the outermost sites of the zigzag edge.

νz approaches the unit valley isospin of the incoming edge
state.

To estimate the energy scale δU for graphene we note that
δU = t ′ in a lattice model with next-nearest neighbor hopping
amplitude t ′. The experimental estimate t ′ ≈ 0.3 eV [47]. is
larger than the distance to the first Landau level E1 at exper-
imentally relevant magnetic field, E1 ∼ 0.1 eV for magnetic
fields ∼5 T. Since the total potential drop across the pn
junction U0 must be below E1 for a sample at the lowest
quantized Hall plateau, it follows that δU 
 U0, so that the
condition δU 
 U0/lpm is met even for a relatively sharp
pn interface. In practice, to reach the isospin nonconserving
regime would require the addition and fine tuning of an
additional edge potential, to offset the energy shift δU from
next-nearest-neighbor hopping. The isospin nonconserving
regime, despite the experimental difficulty it poses, contains
interesting physics. In particular it allows for a complete
control of the valley isospin of the interface states by purely
electrical means, as we now discuss.

2. Zigzag edge: Isospin nonconserving regime

We first focus on the case α = 0, the pn interface being
perpendicular to the zigzag edge of the scattering region. For
mirror-symmetric positions of the pn interface, we expect that
ν is in the xy plane, see the previous section. Our numerical
calculations confirm that this continues to be the case for arbi-
trary position of the pn interface (data not shown). Numerical
results for the azimuthal angle of ν in the xy plane are shown
in Fig. 10. Within numerical accuracy, these results can be
described by the simple equation

ν = ex cos(2xπ/3) − ey sin(2xπ/3), (19)

0.

-1.
1.50.

FIG. 10. Main panel: Valley isospin component νz of the inter-
face state originating from the p-type region as a function of the
angle α between the pn interface and the boundary normal. The
dashed line shows the linear approximation (20). Right inset: The
azimuthal angle ϕ of the valley isospin ν at α = 0, as a function
of the x coordinate of the intersection of the pn junction and the
zigzag sample boundary. The coordinate x is measured in units of
the hexagon width; the origin x = 0 and the reference unit cell are
chosen at one of the outermost lattice sites, as shown in the left inset.

where x is the position of the pn interface in the units of the
hexagon width, with x = 0 placed at one of the outermost sites
on the edge and the valley isospin is defined with respect to a
unit cell at x = 0 (see Fig. 10, inset). Note that Eq. (19) does
not have the periodicity of the hexagonal lattice, because the
isospin in Eq. (19) is defined with respect to a fixed choice of
the reference unit cell. To restore the periodicity of the lattice,
we must calculate the valley isospin with respect to a reference
unit cell that moves along with the pn interface. We recall
that increasing x by one corresponds to a rotation by 2π/3
around the z axis, see Eq. (7), so that the valley isospin is
indeed periodic when calculated with respect to a reference
unit cell that shifts simultaneously with the pn interface. We
also note that shifting the position reference unit cell by half
a hexagon corresponds to a rotation of the valley isospin by
−2π/3 around the z axis, see Eq. (7), so that the valley isospin
changes sign when calculated with respect to a simultaneously
shifted unit cell for a translation by half a hexagon, consistent
with the symmetry considerations of Sec. II.

Upon varying the angle α, the azimuthal angle remains a
fast function of the precise location of the intersection of the
pn interface and the sample edge. At the same time, ν acquires
a nonzero z component νz, see Fig. 10. For an interface slanted
towards the p region (positive α), νz is positive, which can be
understood from the observation that for sharp angles the edge
state and the interface state “gap out,” so that electrons coming
from the edge no longer reach the junction itself, which is
where isospin violation takes place, but deflect before that,
thus preserving part of their valley identity. For α � π/4, νz

in Fig. 10 is an approximately linear function of α,

νz ≈ cα, (20)

where c ≈ 0.96.
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FIG. 11. (a) Scattering region with two different zigzag termina-
tions at the upper edge. The valley polarization of the chiral edge
states is ez (K valley) for the “horizontal” edges and −ez (K ′ valley)
for the “tilted” edge, as indicated in the figure. (b) Valley isospin νz

of the interface state originating from the (left) p-type region. The
numbers “1,” “2,” “3,” and “4” indicate positions of the pn interface
shown in panel (a).

An interesting geometry in which the α dependence of νz

is illustrated is shown in Fig. 11(a). Here, the upper edge of
the scattering region alternates between a “horizontal” zigzag
edge with edge states in the K valley (ν = ez) a “tilted”
zigzag edge with chiral edge states in the K ′ valley (ν = −ez).
Figure 11(b) shows the result of a numerical calculation of
νz as a function of the position of the pn interface, where the
pn interface remains “vertical” throughout (as indicated by the
dashed lines in Fig. 11(a). When the interface is at the position
“1,” we find νz = 0, as discussed above. At position “2” the
two incoming edge states have opposite values of isospin,
thus it is possible to conserve the valley isospin, giving rise to
νz = 1, despite the nonsmoothness of the lattice boundary at
this point. At position “3” the angle with the surface normal
is α = −π/3, giving a negative value νz ≈ −0.90 (compare

interface

1 2 3

(a)

interface

1         3

(b)

2

FIG. 12. A nanoribbon with sections having zigzag/zigzag (1),
zigzag/armchair (2), and armchair/armchair termination (3). With
broken sublattice symmetry, the conductance G is different for the
three combinations of boundary termination but does not depend on
the precise location or orientation of the pn interface within these
three sections. In contrast, in the presence of sublattice symmetry, G
depends strongly on the precise orientation (in region 1) or position
(in region 2) of the pn interface. The left panel shows a lattice in
which the numbers nhex of hexagons in section 1 is even and the
number n′

hex of half hexagons in section 3 is a multiple of 3 plus
one. The right panel shows a lattice in nhex and n′

hex are odd and not a
multiple of 3 plus one, respectively.

with Fig. 10). Finally, when the interface reaches position “4,”
we again expect that the valley isospin is conserved, yielding
νz = −1 for an interface state originating from the p-type
region.

IV. CONDUCTANCE IN RIBBON WITH MIXED
ARMCHAIR AND ZIGZAG EDGES

In this section we apply the theory of the two previous
sections to the calculation of the conductance of a graphene
nanoribbon for three different combinations of edge termi-
nations, see Fig. 12. We compare the isospin-conserving
regime (broken sublattice antisymmetry) and the nonconserv-
ing regime (unbroken sublattice antisymmetry). The conduc-
tance is calculated using Eq. (1), where we use the results
of Secs. II and III for the valley isospin νin and νout of
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interface states originating from/evolving into chiral edge
states at the boundary of the p-type region. Although the
results of Sec. III were formulated for the isospin ν = νin

of an interface state with incoming boundary conditions
only, the isospin νout of an interface state with outgoing
boundary conditions can be obtained using the symmetry
relations (11).

In the physically relevant regime of broken sublattice anti-
symmetry, we find that the conductance for the position “1” of
the pn interface in Fig. 12 (two zigzag boundaries) is 2e2/h.
This follows from Eq. (1) upon noting that νin and νout point
along the z axis and that νout = Mzνin is the mirror image
of νin under reflection in the xy plane, so that νout = −νin.
This result holds independent of the width of the nanoribbon
or the orientation of location of the pn interface. Similarly,
for position “2” (mixed zigzag and armchair boundaries) the
conductance G = e2/h. This again follows from Eq. (1), using
that νin is in the xy plane (armchair edge), whereas νout points
along the z axis (zigzag edge), so that νin · νout = 0. Again,
this result is independent of the width of the nanoribbon or
the orientation of location of the pn interface. Finally, for
position “3” (armchair edges) the conductance depends on the
ribbon width n′

hex measured in half hexagons. One has G =
2e2/h if n′

hex is a multiple of three plus one and G = e2/2h
otherwise [13]. Summarizing, we find

G = e2

2h
×

⎧⎨
⎩

4 for two zigzag edges,
2 for one zigzag, one armchair edge,
4 or 1 for two armchair edges.

(21)

In the opposite regime in which sublattice antisymmetry is
present, the conductance results in positions “1” and “2” (two
zigzag edges and one zigzag, one armchair edge) are markedly
different from the regime of broken sublattice antisymme-
try discussed above; for position “3” (two armchair edges)
the presence or absence of sublattice antisymmetry plays
no role.

For position “1” one finds that G depends on the junc-
tion width nhex, measured in hexagons [13]: G = 2e2/h if
nhex is even, G = 0 if nhex is odd. Whereas this result is
independent of the position of the pn interface along the
ribbon, the conductance depends strongly on the orientation
of the pn interface. The reason is the strong dependence
of the azimuthal angle of the isospin νin and νout of the
interface states on the precise location of the intersection of
the pn interface and the sample boundary, see Eq. (19). For
a (longitudinal) distance �x between the points where the pn
interface intersects the “top” and “bottom” zigzag edges, one
finds for small intersection angles α that

G = e2

h
[1 + cos(2π�x/3 + πnhex)]. (22)

Equation (22) generalizes the result (15) previously derived
for junctions with combined inversion symmetry and sublat-
tice antisymmetry. Precisely the same result was found by
Akhmerov et al. for the conductance of a zigzag graphene
pn junction in zero magnetic field [42]. On a heuristic level,
we can understand this coincidence as resulting from the fact
that the origin of the valley-isospin-nonconserving processes

is the same in both cases: The chiral edge states are localized
on the atomic scale precisely at the pn interface if sublattice
antisymmetry is present. For values of �x that are compatible
with an inversion symmetric position of the pn interface, the
agreement between the two results follows from the sym-
metry considerations of Sec. II, see the discussion following
Eq. (16).

For a pn interface at position “2” (one zigzag edge,
one armchair edge), the conductance G depends strongly
on the position of the pn interface but only weakly
on its orientation. If the pn interface intersects the
zigzag edge perpendicularly (angle α = 0), one has νout =
ex cos(2πx/3) − ey sin(2πx/3), see Eq. (19), and νin =
R2π/3(−ey) = ex cos(π/6) + ey sin(π/6), where x is the po-
sition of the intersection of the pn interface and the zigzag
edge, measured with respect to the reference position x = 0,
oriented perpendicular to the zigzag edge, see Fig. 12. The
following equation sums up the above mentioned results for
the isospin nonconserving regime

G = e2

2h
×

⎧⎨
⎩

2 + 2 cos(2π�x/3 + πnhex),
2 + 2 cos(π/6 − 2πx/3),
4 or 1,

(23)

where the three cases correspond to the cases given in
Eq. (21). For one zigzag and one armchair edge, the fast
oscillations as a function of the position x of the pn interface
persist if the pn interface is not orthogonal to the zigzag
edge (angle α = 0), although the amplitude of the oscillations
decreases because the valley isospin of the interface state
associated with the zigzag edge acquires a finite z component,
see Fig. 10.

In Fig. 13 we compare these theoretical predictions with
the result of a numerical calculation of the conductance of
the nanoribbon using the kwant software package [51]. For
position “1” (two zigzag boundaries) the agreement between
numerical simulations and the theoretical predictions is ex-
cellent, both in the isospin-conserving and in the isospin-
nonconserving regime. For positions “2” and “3,” which
contain at least one armchair boundary, upon taking the
continuum limit (width lpn of the pn junction and magnetic
length l much larger than lattice constant a), we find that
the convergence to the theoretical result is much slower
than for a graphene nanoribbon with zigzag boundaries. The
agreement between simulation and theory could be improved
upon smoothly taking the magnetic field to zero at the sample
boundaries. This ensures that the isospin-conserving bound-
ary condition (10), which is derived in the absence of a
magnetic field, continues to be valid in the presence of a
magnetic field. Such a smoothly vanishing magnetic field
was used in the simulations shown in Fig. 13, for which the
disagreement between simulation and theory is in the range of
a few percent only. Without a smoothly vanishing magnetic
field at the armchair boundaries, no quantitative agreement
between the theoretical predictions (21) and (23) and the
numerical simulations could be obtained (data not shown).
We note that a significant difference between the theoretical
prediction and numerically observed conductance value was
previously seen in Ref. [13]. Remarkably, in Ref. [13] the
agreement between the theoretical prediction based on isospin
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FIG. 13. Conductance G if a nanoribbon with mixed boundary
conditions, as shown schematically in the left panel (solid) and right
panel (dashed) of Fig. 12. The top and bottom panels are for broken
and unbroken sublattice antisymmetry, respectively. The labels “1,”
“2,” and “3” refer to the three regions shown in Fig. 12: A ribbon
with two zigzag edges, a ribbon with one zigzag and one armchair
edge, and a ribbon with two armchair edges, respectively. The inset
shows how G depends on the orientation of the pn interface for a
ribbon with two zigzag edges (region “1” in Fig. 12) in the case of
unbroken sublattice antisymmetry.

conservation and the numerical simulations improve upon
going towards an abrupt pn interface, which is outside the
parameter regime in which one would expect isospin conser-
vation to hold.

V. CONCLUSION

Understanding the valley isospin of chiral interface at a
graphene pn junction in a quantizing magnetic field is a
key element of a theory of the transport properties of such
a junction [13] and, in a grander scheme, a necessary step
towards establishing such junctions as a “valleytronic” de-
vice [22,35]. We have shown that, for a pn interface in a
graphene sheet with one or more zigzag edges, the presence
or absence of a sublattice antisymmetry strongly affects the
valley isospin of interface states. Most theoretical studies in
the literature consider simplified lattice models with nearest-
neighbor hopping only, which possess a sublattice antisym-
metry. The sublattice antisymmetry is not present in realistic
models of graphene, however, and experiments show that the
energy scale associated with sublattice-antisymmetry break-
ing is large in comparison to the Landau level spacing or

the potential step in a pn junction [47]. We therefore expect
that—as far as real devices with zigzag edges are concerned—
the case of (strongly) broken sublattice antisymmetry is
relevant for the description of experiments on graphene
pn junctions at the first quantized Hall plateau [24–36],
not theories involving lattice models with nearest-neighbor
hopping only [13,35].

Nevertheless, from a theoretical point of view, the case
of unbroken sublattice antisymmetry is the more interesting
one, as it features a strong dependence of the valley isospin
of the interface states on the precise position or orientation
of the pn interface. On one hand, such a dependence on the
position of the pn interface offers the possibility to manipulate
the valley isospin using purely electrostatic means. On the
other hand, it also signals an extreme sensitivity of the valley
isospin and the conductance of a nanoribbon to microscopic
details: The valley isospin ν of the interface states rotates by
a large angle ∼π if the position of the pn interface shifts
by only one lattice spacing. The sensitivity to the precise
position of the pn interface limits the possibility to a priori
predict the valley isospin ν, although it still leaves room for
an a posteriori fine tuning of ν. The strong dependence of ν

on the position of the pn interface also explains the extreme
disorder sensitivity seen in previous numerical simulations of
the nearest-neighbor model [13,35].

As argued above, the case of broken sublattice antisymme-
try is the physically relevant one. In this regime, the expres-
sion (21) for the conductance of a graphene pn junction in the
first quantized Hall plateau is markedly different from the re-
sults in the presence of sublattice symmetry, see Refs. [13,35].
Moreover, unlike in the case of unbroken sublattice antisym-
metry, these results for the conductance are robust to small
changes in the position or orientation of the pn interface so
that they should continue to hold in the presence of smooth
disorder. The presence of short-range scatterers, which cause
intervalley scattering, gives rise to additional isospin rotations
of the interface states, see Ref. [21].

A number of conductance experiments on graphene pn
junctions in the first quantized Hall plateau have measured the
value G = e2/h, without mesoscopic fluctuations. Although
this value of G is consistent with the ensemble average
conductance in a strongly disordered junction [12,21], the
absence of mesoscopic fluctuations in the experiment is not.
We note that the experimental observation of a nonfluctuating
conductance G = e2/h is consistent with our prediction for
a ribbon with one zigzag edge and one armchair edge, see
Eq. (21), but also caution that such an explanation is not
consistent with shot noise measurements, which find a Fano
factor that is significantly below the theoretical expectation
for that case [33,34].
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