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We study Ruderman–Kittel–Kasuya–Yosida (RKKY) interactions for magnetic impurities on graphene in
situations where the electronic spectrum is in the form of Landau levels. Two such situations are considered:
nonuniformly strained graphene, and graphene in a real magnetic field. RKKY interactions are enhanced by
the lowest Landau level, which is shown to form electron states binding with the spin impurities and add a
strong nonperturbative contribution to pairwise impurity spin interactions when their separation R is no more
than the magnetic length. Beyond this, interactions are found to fall off as 1/R3 due to perturbative effects of the
negative-energy Landau levels. Based on these results, we develop simple mean-field theories for both systems,
taking into account the fact that typically the density of states in the lowest Landau level is much smaller than
the density of spin impurities. For the strain field case, we find that the system is formally ferrimagnetic, but
with very small net moment due to the relatively low density of impurities binding electrons. The transition
temperature is nevertheless enhanced by them. For real fields, the system forms a canted antiferromagnet if the
field is not so strong as to pin the impurity spins along the field. The possibility that the system in this latter case
supports a Kosterlitz–Thouless transition is discussed.
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I. INTRODUCTION

Graphene is one of the most interesting platforms for the
two-dimensional electron gas (2DEG) to have become avail-
able in the laboratory in recent years, both for its fundamental
physics and for the potential applications it offers [1–3].
Among its many unique characteristics, the possibility that it
can sustain magnetic order has been an ongoing subject of
investigation. There seems to be little experimental evidence
that pristine graphene has such order [4], but theoretical
studies strongly suggest that antiferromagnetic order can be
sustained at ribbon edges [5] or among moments forming
on vacancy defects in the structure [1,6]. To date there is
no convincing observation of such order, and whether it is
realized in the real material is unclear. One strategy that has
been pursued to enhance magnetism in graphene is to combine
it with magnetic impurities [7–18]. In these systems, impurity
magnetic moments locally couple to the electron-spin density
of the 2DEG, effectively coupling the impurity moments mag-
netically via Ruderman–Kittel–Kasuya–Yosida (RKKY) in-
teractions [19–21]. When the graphene is doped, this leads to
Heisenberg coupling Jμ,ν

RKKY
�Si · �S j between impurity spins i, j,

with the effective exchange constant behaving as Jμ,ν
RKKY ∼

sin(kF Ri j )/R2
i j , where μ, ν are the sublattice upon which the

impurities at i, j reside, Ri j is the impurity separation, and
kF is the Fermi wave vector. In behavior analogous to that of
vacancies [6], the sign of the coupling changes depending on
relative sublattice, such that JA,A

RKKY = JB,B
RKKY = −JA,B

RKKY [8].
The spatial oscillatory behavior reflects the presence of a

Fermi surface and allows impurities on the same (opposite)
sublattice to couple (anti-)ferromagnetically up to a separation
of order Ri j ∼ π/kF . By contrast, for undoped graphene, the
point-like form of the Fermi surface [1] leads to a nonoscil-
latory form [8], JRKKY ∼ 1/R3

i j , which is still opposite for

opposite sublattices. The slow falloff of this interaction has
interesting consequences for spin stiffness in the system, for
example introducing nonanalyticity into the effective energy
functional for spin gradients [22]. In principle this behavior
can be modified by shifting the chemical potential of the sys-
tem via an electric gate [22,23]. The possibility of controlling
the magnetic properties in a single graphene system is one of
the reasons it is of such intrinsic interest.

In this paper, we consider alternative strategies to modi-
fying and controlling magnetism in graphene: application of
nonuniform strain [24–26], or a magnetic field applied perpen-
dicular to the system. These seemingly different modifications
of the graphene system have in common the restructuring of
the electronic spectrum into Landau levels. While uniform
strain has quantitative but not qualitative effects [16] on
RKKY interactions in graphene, nonuniform strain if applied
appropriately can introduce an effective “pseudo”-magnetic
field into the low-energy Hamiltonian [27,28], with the ef-
fective field directed oppositely for the two valleys of the
graphene band structure. Such fields have indeed been created
in graphene bubbles [29,30], and are possible in artificially
structured graphene analogs [31,32]. By its nature, a strain-
induced pseudofield couples to the electronic orbital degrees
of freedom, but to neither the spin of the electrons nor of the
impurities. A real field, by contrast, couples to spin as well
orbital degrees of freedom, but for low fields this does not
fully polarize the impurity spin density, so that nontrivial order
can set in, as we explain below.

The RKKY analysis for these systems differs in important
ways from that of graphene in the absence of a field [8].
The key reason for this is the existence of a zero-energy
Landau level [33,34] in which the Fermi level resides if the
system is not strongly doped. The standard RKKY analysis,
which depends on second-order perturbation theory [19–21],
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becomes invalid because of the large degeneracy associated
with the Landau level. We demonstrate, however, that the
analytic properties of a Landau level allow one to compute the
re-organization of the energy states in the lowest Landau level
due to the presence of two spin impurities essentially exactly,
introducing four bound states that separate off from the de-
generate Landau level, two of which are filled at the electron
densities we consider. The bound states introduce a spin
coupling between the two impurities which scales linearly
with the sd coupling constant J between an impurity spin
and the 2DEG, and so is formally considerably stronger than
standard RKKY interactions, which scale as J2. However, the
range of this coupling is limited, falling off as a Gaussian
with length scale � = √

h̄c/eB, with B the effective field.
Importantly, the remaining Landau levels in the spectrum may
be taken into account perturbatively, yielding an interaction of
the same Heisenberg form �Si · �S j as in zero field, which is of
magnitude J2, but falls off much more slowly, as 1/R3.

An interesting difference between the Landau levels in
the strain case and those of the applied-field case is that, in
the former, the nonanalytic contribution only applies to the
spins on the same sublattice, so that the RKKY couplings
on one sublattice are stronger than on the other. This raises
the possibility that the system could sustain a net magnetic
moment, so that the order (at least at the mean-field level) is
ferrimagnetic. In principle this net magnetic moment would
make detection of magnetism via magnetization measure-
ments in these graphene systems considerably easier than the
antiferromagnetism expected of a perfect graphene lattice [8].

To investigate this last effect, we perform a mean-field
analysis for strained graphene that supports Landau levels. For
reasonably size fields, we find that the density of impurities is
actually quite large compared with the density of states in the
lowest Landau levels, so that a model with effective pairwise
interactions between individual impurities becomes inappro-
priate. To deal with this situation, our mean-field theory is
developed in terms of two sets of spin impurities, ones that
bind electrons in the lowest Landau level, and ones that do
not. Within this model we compute the net magnetization as
a function of temperature on each of the sublattices and find
that, for reasonable impurity densities and couplings to the
electron system, their difference is quite small, so that direct
detection of magnetic order remains a challenge for these
systems.

We also analyze the mean-field phases for the real
magnetic-field case. The presence of Zeeman coupling in both
the impurity and electron spins always induces a magneti-
zation component along the direction of the field. However,
because of the antiferromagnetic coupling between impurities
on opposite sublattices, at weak applied field the mean-field
state is a canted antiferromagnet, with broken U(1) symmetry,
due to spontaneous ordering of the magnetization component
of impurity spins transverse to the applied field. Formally
such long-range order is unstable to thermal fluctuations at
any finite temperature [35], but the system can nevertheless
support a true thermodynamic phase transition due to vortex
excitations of the U(1) degree of freedom, which support a
Kosterlitz–Thouless transition [36]. This is a distinguishing
feature of the graphene—impurity spin system when it is
embedded in a real magnetic field, and we present estimates

for the Kosterlitz–Thouless transition temperature below for
reasonable impurity densities and couplings.

This article is organized as follows: In Sec. II we introduce
the basic model used for our analysis of RKKY couplings.
Section III is focused on an analysis of the coupling strength
for a single pair of spin impurities coupled to graphene
electrons with a Landau-level spectrum. In Sec. IV we present
our mean-field theory for the impurity magnetization for the
Landau levels produced by strain, and in Sec. V we present
the corresponding analysis for Landau levels produced by
a real field. Finally, in Sec. VI we present a summary and
a discussion of implications of and speculations about our
results. An Appendix contains some details of the calculations
involved in computing the lowest Landau-level contribution to
the RKKY interaction.

II. CONTINUUM HAMILTONIAN

We begin with a description of the models we adopt to
analyze RKKY interactions of spin impurities coupled to
graphene Landau levels. We start with a continuum model for
the Hamiltonian in the vicinity of a Dirac point at the center
of a valley,

H τ
0 = vF (τqxσx + qyσy), (1)

where �q is the momentum relative to the K (τ = 1) or K ′
(τ = −1) points, vF is the speed of the electrons in their
vicinity, and σx,y are Pauli matrices acting on spinors whose
entries encode the wave function amplitude on the A and
B sublattices. In these equations and what follows, we have
set h̄ = 1. Magnetic fields, be they effective fields due to
strain or a real magnetic field, are introduced into the orbital
Hamiltonian by the Peierl’s substitution, �q → �q ± e�A, where
�A is the vector potential, which for our purposes corresponds
to one associated with a uniform magnetic field. Because �A is
position dependent, the momentum must now be regarded as
an operator, �q → −i�∇. In the case of a real field, �q → �q + e�A,
and choosing �A = −Byx̂, eigenstates of H τ

0 have the form [34]

ψ
(τ=+1)
n,k = 1√

2
e+i �K ·�r

(
φn−1,k

sgn(n)φn,k

)
, (2)

for n �= 0, and

ψ
(τ=+1)
n=0,k = e+i �K ·�r

(
0

φn=0,k

)
(3)

for n = 0, in the K valley. For the K ′ valley, the corresponding
expressions are

ψ
(τ=−1)
n,k = 1√

2
e−i �K ·�r

(−sgn(n)φn,k

φn−1,k

)
, (4)

for n �= 0, and

ψ
(τ=−1)
n=0,k = e−i �K ·�r

(
φn=0,k

0

)
(5)

for n = 0. In these expressions, the wave vector �K ≡ 4π

3
√

3a
x̂

denotes the position of the K point relative to the 	 point in
the Brillouin zone, with a = 0.142 nm the nearest-neighbor
carbon bond length, while the K ′ point is located at −�K . The
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functions φn,k are Landau-level states localized near a guiding
center coordinate y0 = k�2,

φn,k = 1√
Lx

eikxe− (y−y0 )2

2�2 N|n|H|n|

(
y − y0

�

)
,

with Lx being the system size in the x̂ direction, and N|n| ≡
(1/π1/2�2n|n|!)1/2 being a normalization constant. H|n| are
Hermite polynomials. The eigenvalues of H τ

0 associated with
these wave functions are E τ

n,k ≡ E (0)
n = sgn(n)vF

√
2h̄eBsn.

For the case of strain-induced magnetic fields, we follow
the approach developed in Ref. [27]. Briefly, this involves en-
coding lattice distortions that vary very slowly on the scale of
the graphene lattice constant in a vector potential determined
by a strain tensor ui j via

e�A(�x) = β

a

(
uxx − uyy

−2uxy

)
, (6)

where β = − ∂ ln t
∂ ln a ≈ 2 specifies the change in the nearest-

neighbor tunneling parameter t when the lattice constant a
changes. The effective gauge field couples with opposite signs
for the two valleys: �q → �q + e�A for the K valley (τ = 1),
while �q → �q − e�A for the K ′ valley (τ = −1). A uniform
pseudomagnetic field is achieved when the displacement field
is given by [27]

ur = cr2 sin 3θ, uθ = cr2 cos 3θ. (7)

The constant c determines the strength of the pseudofield. The
eigenstates of H τ

0 in this case are

ψ
(τ=±1)
n,k = 1√

2

(
φn−1,±k

±sgn(n)φn,±k

)
, (8)

for n �= 0, while for n = 0,

ψ
(τ=±1)
n=0,k =

(
0

φn=0,±k

)
. (9)

Note the important distinction from the real magnetic-field
case: the support for the two valleys is essentially the same
for each sublattice, whereas in the real-field case the roles of
the sublattices are switched. The difference reflects the fact
that the strain breaks the inversion symmetry of the graphene
lattice, so that the two sublattices come in asymmetrically in
the Hamiltonian. This ultimately opens the possibility that the
magnetization can have different magnitudes on each of the
sublattices, with a net magnetization resulting.

To analyze RKKY coupling between impurities carrying
spin by the electrons, we consider Hamiltonians with two
impurities at locations �R1 and �R2 on specified sublattices. For
μ1,2 = A or B, the coupling takes the form

V (μ1,μ2 ) ≡ V (μ1 ) + V (μ2 )

= J
[�S1 · �s δ(�r − �R1)Pμ1 + �S2 · �s δ(�r − �R2)Pμ2

]
.

(10)

In this expression, J is an assumed sd coupling constant
between the impurity spins and the electron gas, �S1 and �S2

are the impurity spins (assumed classical, as is standard in
RKKY analyses [19–21]), �s is the electron-gas spin operator,
and Pμ is a projection operator onto the μ sublattice. Note that
the exchange constant J can vary widely depending on the

type of impurity adsorbed on the surface. For the quantitative
estimates given below we will adopt a value appropriate
for Co when bound to individual carbon atoms (and so to
a particular sublattice), J/aC ≈ 1 eV, where aC is the area
per carbon atom in the graphene lattice, with effective spin
S = 3/2 [37].

For strained graphene, the terms above are sufficient,
and the effective Hamiltonian for a two-impurity system is
Hstrain =∑τ H τ

0 + V (μ1,μ2 ), with the vector potential properly
substituted into H τ

0 . In a real magnetic field, one must also
account for the Zeeman coupling between the field and the
electrons, as well as the impurities. This introduces terms of
the form

HZ = H (e)
Z + H (imp)

Z = g0μBBsz + g(0)
impμB

∑
i

ẑ · �Si. (11)

Note that g0 ≈ 2 for electrons in graphene, and g(0)
imp ≈ 2 for

Co adatoms [37]. For the system in a real magnetic field, the
Hamiltonian for a pair of impurities adsorbed on graphene
becomes Hfield =∑τ H τ

0 + V (μ1,μ2 ) + HZ .
We now turn to the computation of the effective RKKY

coupling between two impurity spin degrees of freedom ad-
sorbed on graphene in these situations.

III. RUDERMAN-KITTEL-KASUYA-YOSIDA
INTERACTION

As described in the introduction, the computation of
RKKY interactions in this problem necessarily involves a
nonperturbative contribution due to the high degeneracy of
a Landau level. In particular, if we assume the system to
be only moderately doped, so that the Fermi energy lies in
the n = 0 Landau-level states—which we will from hereon
refer to as the lowest Landau level (LLL)—then one must
understand how these levels become energetically organized
in the presence of the impurities. We begin by showing how
this can be done.

A. Lowest Landau-level energies: Exact solution

We begin with the case of a vector potential induced by
strain. From the form of Eq. (9), it is apparent that these states
can only couple impurities together when they are both on
the B sublattice, for the specific form of strain we consider,
and we focus for the moment on this case. With a change to
circular gauge, states in the LLL can be written in the form
[38] (0, φ∗

n=0,m(z))†, where z = (x − iy)/�, and

φn=0,m(z) ∝ zme− |z|2
4 , (12)

where m is an angular-momentum index. These states have
the interesting property that they are peaked at a distance
rm = √

2m�, and have a width of �. A generic state in the LLL

takes the form (0, f ∗(z)e− |z|2
4 )†, with f an analytic function

in z. For a finite system, a natural requirement is that a
power-law expansion of f contains terms of order smaller than
some (large) integer M. The dimension of the LLL with this
condition is M.
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Now suppose we place the two impurities at positions
�R1,2 = ±η��ex. Then states of the form

φ̃m(z) ∝ (z2 − η2)zme− |z|2
4 , m = 0, 1, . . . , M − 3 (13)

are completely decoupled from the impurities and will have
the same energy as in their absence. It is easy to see
that the dimension of this subspace is M − 2; this means
that the set of states affected by the impurities within the
LLL can be reduced to a single pair, which must be or-
thogonal to the states in Eq. (13). Remarkably, in the limit
M → ∞ these states may be written explicitly, and take the
form

ξ1(z) = 1√
2π sinh

(
η2

2

)e− |z|2
4 sinh

(ηz

2

)
,

ξ2(z) = 1√
2π cosh

(
η2

2

)e− |z|2
4 cosh

(ηz

2

)
. (14)

Note the states above are orthonormal (see the Appendix for
details).

These states as written do not include spin. When taken
into account, we have reduced the problem of finding the
energy spectrum for electrons in the presence of the two
impurities, when projected into the LLL, into a 4 × 4 matrix
diagonalization problem. The energies of these four states
within the LLL will be sensitive to the relative orientation
of the two spins, and this determines the LLL contribution
to the RKKY interaction between the spins. Since the LLL
states have zero energy in the absence of the impurities,
the Hamiltonian for this case can be taken to simply be
V (B,B) [see Eq. (10)]. Writing the single-particle states in the
order (|ξ1,↑〉, |ξ1,↓〉, |ξ2,↑〉, |ξ2,↓〉), the projected Hamil-
tonian has four energy eigenvalues, which we denote by
E1, E2, E3, E4. Precise forms for these are provided in the
Appendix. These energies are are sensitive to the relative
orientation of the two spins and thus contribute to the RKKY
interaction between them. In contrast to RKKY interactions
in other contexts, their values are linearly proportional to
J and S; usually RKKY interactions are quadratic in these
quantities.

Figure 1 illustrates the resulting LLL energy structure
resulting from this analysis. Most states remain at zero energy
in spite of the two impurities, but two break away to negative
energy, and two to positive energy. If the Fermi energy EF

is in the main band of zero-energy states, then the two
states at E1 and E2 lower the total electronic energy of the
system.

Figure 2 illustrates the behavior of the four energy levels as
a function of separation η and relative orientation angle θ . No-
tice that the total lowering of the energy is always maximized
when the two spins are aligned, so that this contribution to the
spin-spin coupling is ferromagnetic. This is the same sign of
coupling for spins on the same sublattice in the absence of a
magnetic field [8].

FIG. 1. Energy levels from the LLL in the presence of two spin
impurities. Filled (unfilled) states are represented in yellow (light
blue). Note the presence of both colors at E = 0, indicating the Fermi
energy EF = 0.

The situation for electrons in a real magnetic field is
similar, but one must include the Zeeman term H (e)

Z [Eq. (11)]
in the Hamiltonian. In this case the induced interaction by the
LLL is the same for two impurities on the same sublattice,
with one of the two valleys inducing the interaction in each
case [see Eqs. (3) and (5)]. (Spin interactions from the LLL
on opposite sublattices are absent because the wave functions
have nonzero support on different sublattices.) The resulting
energies for the two filled negative-energy states may be
written down exactly, and we provide precise forms in the
Appendix. The rather complicated expressions presented there
can be considerably simplified for most physically relevant
situations, for which the ratio J/π�2g0μBB is small; for
example, for our Co estimate we obtain ∼0.1 for this ratio
(note that this ratio is independent of the field strength B). In
this case an expansion in this ratio yields for the energy of the

FIG. 2. Energies of bound states as a function of separation η and
relative orientation angle θ .
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two filled states, to second order,

E1 + E2 ≈ J2S2
{
2(h2 − 1)2n(1)

z n(2)
z + (h2 + 1)2

(
n(1)

z

)2 + (h2 + 1)2
(
n(2)

z

)2 − 2[(h2 − 1)2X + (h2 + 1)2]
}

4π2�4(h2 + 1)2g0μBB

− JS
(
n(1)

z + n(2)
z

)
2π�2

− g0μBB. (15)

In this expression X ≡ cos θ and h = [tanh( η2

2�2 )]1/2. For large
separations (η → ∞), the two spins decouple, but the energy
remains dependent on the individual spin orientations:

(E1 + E2)|η→∞ = J2S2
[(

n(1)
z

)2 + (n(2)
z

)2 − 2
]

4π2�4g0μBB

− JS
(
n(1)

z + n(2)
z

)
2π�2

− g0μBB. (16)

Neglecting the constant term, we see that the O(J ) term effec-
tively renormalizes the impurity gyromagnetic ratio, g(0)

imp →
gimp = g(0)

imp + g1, with g1 = −J/π�2g0μBB. The O(J2) term
creates a spin anisotropy favoring an in-plane spin orientation.
The form for the interaction when the asymptotic energy
(η → ∞) is removed is particularly simple:

(E1 + E2) − (E1 + E2)|η→∞

= − J2S2

2π2�4g0μBB
e−2η2(

n(1)
x n(2)

x + n(1)
y n(2)

y

)
. (17)

Our results for the LLL contribution to the RKKY inter-
action are summarized in Fig. 3. For effective magnetic fields
generated by strain, a ferromagnetic interaction between spins
on one of the two sublattices is generated. This interaction
scales linearly in J and so is relatively strong for small J
at length scales below �, but falls off rapidly above this
length scale. At such larger distances, the RKKY interaction
becomes dominated by the contributions from other Landau
levels, as we will discuss in the next section. In the case
of a real magnetic field, the effect of the electron Zeeman
coupling simplifies the behavior from the LLL, introducing
an effective renormalization of impurity spin g factor at linear
order in J , and inducing anisotropy in the spin-spin interaction

FIG. 3. Total LLL energy for electrons in the LLL in a strain-
induced magnetic field, as a function of relative impurity spin orien-
tation θ and unitless separation η. Blue plane at the top represents the
zero of energy.

at quadratic order. Again, this contribution falls off rapidly for
impurity separations large than �.

In both cases, for large impurity separations the RKKY
interaction is dominated by contributions from n �= 0 Landau
levels. These can be handled in perturbation theory, as we
discuss in the next subsection.

B. n �= 0 levels: Perturbation theory

The underlying physics of RKKY interactions between
impurity spins is that the energies of electrons in the system
are modified in a way that depends upon their relative spin ori-
entation. In many systems this can be handled at second order
in perturbation theory [19–21]. Because of the degeneracy of
the partially filled n = 0 Landau level, these states had to be
handled carefully, as discussed above. The remaining levels
can be handled in the more standard fashion. For n < 0, it
is possible to show that contributions to the energy at linear
order in J from V (μ1,μ2 ) [Eq. (10)] vanish from these levels
since they are completely filled and are thus singlets in the
electron spin. The first nonvanishing contributions come at
second order, with the total change in energy of these filled
levels given by

�E (2) =
∑

n < 0,

n′ �= n

∑
k,k′

∑
s,s′

∑
τ,τ ′

|Vn′k′s′τ ′,nksτ |2
E (0)

n − E (0)
n′

, (18)

with Vn′k′s′τ ′,nksτ = 〈n′k′s′τ ′|V (μ1,μ2 )|nksτ 〉 the matrix element
of the perturbation to the electron gas of the two impurity
spins, and n, k, s, and τ are respectively the Landau level,
wave vector (proportional to guiding center coordinate y0),
spin, and valley indices of a state. The energies E (0)

n are as
given in Sec. II. Note that we do not include the electron
Zeeman contribution in the energy denominator, because this
is in practice quite small in comparison with |E (0)

n − E (0)
n′ |, and

so may also be handled perturbatively for the situation of a
real magnetic field. We begin first with the case of Landau
levels produced by nonuniform strain.

1. Strain-induced Landau levels

We begin with the case where the impurities are both on
the B sublattice. To compute �E (2) for this case, which we
will call E (2)

BB , we need to compute sums over k, which in
the thermodynamic limit (Lx → ∞) become integrals. The
relevant integral has the form

In1,n2 (�R1, �R2) = Lx

2π

∫ +∞

−∞
dkφn1,k (�R1)φ∗

n2,k (�R2), (19)
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and can be evaluated to yield, for n1 � n2,

In1,n2 (�R1, �R2) = 1

2π�2

1√
2n1−n2 (n2!)/(n1!)

e−η2+iym�x/�2
(−1)n1−n2

(
�y + i�x

2�

)n2−n1

Ln2−n1
n1

(2η2). (20)

In this expression, ym = (�R1 + �R2) · ŷ, �x = (�R1 − �R2) · x̂, �y = (�R1 − �R2) · ŷ, and Lm
n is an associated Laguerre polynomial.

For n2 < n1, the result is the same, with n1 ↔ n2, and y1 ↔ y2. In the case n1 = n2, In1,n2 (�R1, �R2) depends only on | �R1 −
�R2| = 2η, and to simplify the notation we write In,n(�R1, �R2) = In(η). Summing over Landau-level index, spin, and valley, after
considerable algebra we arrive at the expression

E (2)
BB = − J2 �S1 · �S2

4
√

2π2�3vF h̄

⎛⎜⎜⎜⎝ ∑
n > 0,

n′ > 0

+2
∑

n > 0,

n′ = 0

⎞⎟⎟⎟⎠ In(η)In′ (η) + In(η)In′ (η) cos[2 �K · (�R1 − �R2)]√
n + √

n′ .

In light of Eq. (20), this can be cast in the form

E (2)
BB = − J2 �S1 · �S2

8
√

2π2�3vF h̄
{1 + cos[2 �K · (�R1 − �R2)]}(2e−2η2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

n > 0,

n′ > 0

Ln(2η2)Ln′ (2η2)√
n + √

n′ + 2
∑
n>0

Ln(2η2)√
n

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (21)

where Ln(2η2) ≡ L0
n (2η2) is a Laguerre polynomial. The Landau index sums appearing in Eq. (21) can be computed numerically

and must be cut off at a maximum value that is determined by the density of electrons in pz orbitals in graphene, which in turn
is the density of carbon atoms. A similar calculation for impurities both on A sites yields

E (2)
AA = − J2 �S1 · �S2

8
√

2π2�3vF h̄
{1 + cos[2 �K · (�R1 − �R2)]}(2e−2η2) ∑

n > 0,

n′ > 0

Ln−1(2η2)Ln′−1(2η2)√
n + √

n′ , (22)

while for one impurity on an A site and the other on a B site
we obtain

E (2)
AB = J2 �S1 · �S2

8
√

2π2�3vF h̄
{1 − cos[2 �K · (�R1 − �R2)]} (23)

× (4η2e−2η2) ∑
n > 0,

n′ > 0

L1
n−1(2η2)L1

n′−1(2η2)

(
√

n + √
n′)

√
nn′ . (24)

Writing E (2)
μν ≡ Jμν

RKKY
�S1 · �S2, we show representative re-

sults for JRKKY in Fig. 4 as a function of η = |�R1 − �R2|/2�.
Several points are worth noting. As in the case of zero mag-
netic field, the coupling between spins on the same sublattice
is ferromagnetic, while on opposite ones they are antiferro-
magnetically coupled. The presence of rapid oscillations can
be traced back to the need for a cutoff in the sum over Landau
levels, with the largest (negative) Landau index retained deter-
mined to give the correct overall electron density. For the most
part the oscillations do not change the sign of the coupling; in
the few cases where it does this leads neither to a change in the
average sign of the coupling or the sign at very large distances.
Finally, the overall scale of the interaction falls off as 1/η3, as
illustrated in Fig. 5.

2. Magnetic-field-induced Landau levels

The case of Landau-level states from a real magnetic field
differs from the strain-induced ones in that there is inversion
symmetry so that the wave functions are symmetric under

an interchange of K and K ′ and the A and B sublattices.
Moreover, the energies of the electron states in this case are
spin dependent due to the Zeeman coupling. While the latter
effect can in principle be accounted for in E (2) without further
approximations beyond the perturbation theory we are using

FIG. 4. Effective RKKY couplings for impurities on specified
sublattices, as a function of separation parameter η, for an effective
magnetic field of 10 T. Continuous lines show results from Eqs. (21)–
(23) for continuous η. Dots on these lines indicate positions on the
honeycomb lattice, as depicted in the insets.
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FIG. 5. Effective RKKY couplings for impurities on A and B
sublattices, as a function of separation parameter η, for an effective
magnetic field of 10 T, illustrating the 1/η3 falloff of the interaction
at large separation.

in V (μ1,μ2 ), in practice the Zeeman splitting is very small
compared with the Landau-level energy differences without
it at any achievable laboratory magnetic field. Thus it is
sufficient and simplifying to treat the electron Zeeman energy
perturbatively as well.

Our perturbation now takes the form

V ′ ≡ V (μ1,μ2 ) + g0μBBsz ≡ V (μ1,μ2 ) + V (z),

and, working to linear order in the Zeeman coupling, we use

|Vn′k′s′τ ′,nksτ |2 ≈ |〈n′k′s′τ ′|V (μ1,μ2 )|nksτ 〉|2

+ 〈n′k′s′τ ′|V (μ1,μ2 )|nksτ 〉〈nksτ |V (z)|n′k′s′τ ′〉
+ 〈n′k′s′τ ′|V (z)|nksτ 〉〈nksτ |V (μ1,μ2 )|n′k′s′τ ′〉

(25)

in the numerator of Eq. (18). (Note that retaining the second-
order term in V (z) adds a contribution to the energy that is
independent of the relative orientations of �S1 and �S2, and so
is irrelevant for our current purpose.) The computation for the
first term of Eq. (25) runs very similarly to that of the last
section, and yields the results

E (2)
AA = E (2)

BB = − J2 �S1 · �S2

8
√

2π2�3vF h̄
e−2η2

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

n > 0,

n′ > 0

Ln(2η2)Ln′ (2η2) + Ln−1(2η2)Ln′−1(2η2) + 2Ln−1(2η2)Ln′ (2η2) cos[2 �K · (�r1 −�r2)]√
n + √

n′

+ 2
∑
n>0

Ln(2η2) + Ln−1(2η2) cos[2 �K · (�R1 − �R2)]√
n

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (26)

and

E (2)
AB = J2 �S1 · �S2

8
√

2π2�3vF h̄
{1 − cos[2 �K · (�R1 − �R2) − 2�θ ]}(4η2e−2η2) ∑

n > 0,

n′ > 0

L(1)
n−1(2η2)L(1)

n′−1(2η2)

(
√

n + √
n′)

√
nn′ , (27)

where �θ is the angle between the relative position vector
�R1 − �R2 and the x̂ direction. Again writing E (2)

μν ≡ Jμν
RKKY

�S1 ·
�S2, Fig. 6 illustrates representative results.

Finally, the electron Zeeman terms yields a contribution to
the energy of the form

�E (2)
z ≡

∑
n > 0,

n′ � 0

∑
k,k′

∑
s,s′

∑
τ,τ ′

1

−ε0(
√

n + √
n′)

× (V μ1,μ2
n′k′s′τ ′;nksτV (z)∗

n′k′s′τ ′;nksτ + c.c.
)
,

with ε0 ≡ √
2eh̄BvF . Summing through the discrete indices

produces a result that is independent of which sublattice the

impurity spin resides upon, and has the simple form

�E (2)
z = −Jg0μB �B · ( �S1 + �S2)

2π�2ε0

∑
n>0

1√
n
, (28)

which is effectively a further renormalization of the impurity
g factor. Note the sum has an upper cutoff determined by the
electron density.

IV. MAGNETIC ORDER FOR STRAIN-INDUCED LANDAU
LEVELS: MEAN-FIELD THEORY

To assess the effect of the electronic Landau-level structure
on magnetic order in the impurity spins, we consider simple
mean-field theories of the magnetization. We begin in this
section with the case of Landau levels induced by strain.
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FIG. 6. Effective RKKY couplings for impurities on specified
sublattices, as a function of separation parameter η, for a real
magnetic field of 10 T. Continuous lines show results from Eqs. (26)
and (27) for continuous η. Dots on these lines indicate positions on
the honeycomb lattice, as depicted in the insets.

The simplest approach to this would be to treat the system
as a system of classical spins, using the RKKY interactions
computed in the previous section as a model for pairwise
spin interactions. However, in doing this one assumes that the
number of states in the LLL is sufficiently large to provide one
bound electron state for every spin impurity on one of the two
sublattices, which we take to be the B sublattice. In practical
situations this turns out not to be the case. Equating the density
of spin impurities on one sublattice, nimp, to the degeneracy of
a Landau level per unit area (including spin), 1/π�2, produces
a minimum magnetic field scale (in tesla) Bc ≈ 7.9 × 104ñimp

(T), where ñimp is the ratio of impurity atom density on one
of the sublattices to graphene carbon atom density. With ñimp

typically being of order a few percent, we see that the effective
field would need to exceed ∼1000 T to reach this limit. To
date, strain-induced fields [24] are at most of order several
hundred tesla, so that we need to consider situations with
fewer LLL states than impurities—typically, much fewer.

To handle this, we consider a mean-field theory in which
only a fraction of impurities, fb = 1/π�2nimp, residing on
the B sublattice actually form bound states from the lowest
Landau level, while all the spin impurities on both sublattices
interact with one another through the perturbative contribu-
tions of the n �= 0 Landau levels. Denoting the impurity spin
degree of freedom at such a bound site on the B sublattice as
�Sb and a spin degree of freedom on one of the remaining B
sites as �Sg, the total average spin direction for moments on the
B sites becomes

�MB = fb〈Ŝb〉 + (1 − fb)〈Ŝg〉 ≡ fb �Mb + (1 − fb) �Mg, (29)

where 〈· · ·〉 here denotes an average over sites and thermal
fluctuations. The corresponding average magnetization (nor-
malized to unity) for spins on the A sublattice is denoted
by �MA. Referring to Eqs. (22) and (23), we see the pair-
wise interactions of a spin on an A site at position �Ri and
either an A or B site at position �Rj may be written in the

TABLE I. Numerical values of spatially averaged RKKY cou-
pling strength for a strain magnetic field of strength B = 10 T,
assuming parameters for Co as discussed in the Introduction. Top line
denotes different impurity concentrations, and AA, AB, BB represent
sublattice site locations of the impurities.

J̄μν

RKKY in eV (×10−5) 1% 2% 3% 4% 5%

AA −0.8545 −2.2997 −4.0877 −6.1355 −8.3965
AB 1.5404 4.0948 7.2181 10.7650 14.6553
BB −0.8273 −2.2618 −4.0441 −6.0888 −8.3484

forms E (2)
AA = JAA

RKKY(| �Ri − �Rj |)�Si · �S j and E (2)
AB = JAB

RKKY(| �Ri −
�Rj |)�Si · �S j , respectively. To form a single spin average, we
adopt a simple model pair distribution function

Pimp(R) ∝ tanh

(
R

a

√
ñimp

)
of finding an impurity on one of the sublattices at a displace-
ment �R within an area d2R, given that there is an impurity at
the origin. Assuming that the impurity at the origin is on the
A sublattice, we can then write an average energy functional
for its spin of the form

EA = ŜA · [ �MBJ̄AB
RKKY(nimp) + �MAJ̄AA

RKKY(nimp)
]
, (30)

where ŜA denotes the orientation of the spin at the origin, and

J̄μν
RKKY(nimp) ≡ S2

∫
d2RiPimp(Ri )J

μν
RKKY(Ri ). (31)

Similarly, for a B site lacking bound electrons, the effective
energy functional is

Eg = Ŝg · [ �MBJ̄BB
RKKY(nimp) + �MAJ̄AB

RKKY(nimp)
]
. (32)

The J̄μν
RKKY coefficients can be computed numerically by using

our results from the previous section and our model Pimp.
Results of these calculations are presented in Table I.

To write an effective energy functional for a spin at a site
binding an electron, we need to revisit the quantum problem
yielding the bound-state energy. Recalling in deriving the
RKKY interaction for a single pair of spin impurities, we com-
puted the bound-state energies for two electrons interacting
(through the sd Hamiltonian) with classical spins localized
at two sites. For our mean-field estimate, we consider the
microscopic potential due to a single spin in this collection,
taken to be at the origin, and the average potential from all
other sites on the B sublattice, which carries average magnetic
moment per unit area nimpS �MB. The potential due to the
impurity at the origin has the form

V0 ≡ JSŜb · �̂σδ(�r ),

which, when projected into the LLL, couples only to the m =
0 angular-momentum state [see Eq. (12)]. Projecting into this
one spatial state, the mean-field Hamiltonian for the electron
spin becomes

He = JS

2π�2
(Ŝb · �̂σ + �m · �σ ), (33)

where we have defined the quantity

�m = 2π�2nimp �MB. (34)
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FIG. 7. Comparison of MA, MB, and Mb as a function of temper-
ature for an effective magnetic-field strength of 10 T, for parameters
relevant to Co as described in text.

Eigenstates of He are easily seen to have energy

ε± = ± JS

2π l2
B

√
1 + m2 + 2�m · Ŝb. (35)

With a bound electron occupying the lower energy state,
and adding in the perturbative contribution to the RKKY
interaction, we arrive at a mean-field energy functional for
impurity spins on the B sublattice with bound electrons of the
form

Eb = −gv

JS

2π�2

√
1 + m2 + 2�m · Ŝb

+ Ŝb · [ �MBJ̄BB
RKKY(nimp) + �MAJ̄AB

RKKY(nimp)
]
, (36)

where gv = 2 is the number of valleys.
Our (classical) mean-field theory now proceeds by comput-

ing the average normalized magnetization, which without loss
of generality we can assume to lie in the ẑ direction, MA = 〈ẑ ·
ŜA〉, Mg = 〈ẑ · Ŝg〉, and Mb = 〈ẑ · Ŝb〉, using Boltzmann prob-
ability distributions at temperature T proportional to e−EA/kBT ,
e−Eg/kBT , and e−Eb/kBT , respectively, with MB related to Mb and
Mg by Eq. (29). This set of equations can be straightforwardly
solved numerically.

Figures 7 and 8 illustrate typical results for effective fields
of 10 and 2.5 T, respectively. Two features of the curves are
of particular note. First, MA and MB nearly cancel, so that
the correlations between sublattices are largely antiferromag-
netic, as is the case for unstrained graphene [8]. However,
Mb, the normalized magnetization on the bound electron
sites, remains nonzero to larger temperatures than would be
the case without the LLL contribution. The effect survives
to increasingly high temperature as the field increases, and
significantly increases the mean-field transition temperature.
Unfortunately, because the number of bound electron sites is
small, direct observation of this effect is challenging. While
for any T > 0, MA − MB �= 0, indicating the system is for-
mally a ferrimagnet, the difference is very small, yielding
only a small net magnetic moment, as illustrated in Fig. 9.
This occurs because B is rather small compared with Bc, so
that there is a relatively small number of electrons available
in the LLL to bind to the impurity spins. An interesting

FIG. 8. Comparison of MA, MB, and Mb as a function of temper-
ature for an effective magnetic field strength of 2.5 T, for parameters
relevant to Co as described in text.

possibility to circumvent this might be to consider nonuniform
strain with small local regions of very high effective field,
where locally an appreciable net magnetization could set in.
Nevertheless, it is interesting that, even in the small (relative
to Bc) uniform fields we consider, the enhancement of Tc is
considerable. This may indicate that the effect of Mb could be
seen in thermodynamic measurements which are sensitive to
spin fluctuations.

V. MAGNETIC ORDER FOR FIELD-INDUCED LANDAU
LEVELS: MEAN-FIELD THEORY

We next turn to the formulation of mean-field theory for
the case of a real magnetic field. As discussed in Sec. III,
the main complication in this situation is the introduction of
Zeeman coupling to the spins, both that of the electrons and
those of the impurity spins. Moreover, in this more symmetric
situation, bound electrons may appear on either sublattice.
The modifications for the basic energy functionals from the

FIG. 9. Mean-field net average magnetic moment for strain-
induced magnetic field as a function of temperature, for different
coverages ñimp (shown as percent in key). Note that this quantity
always remains small relative to its largest allowed value (1).
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last section are nevertheless straightforward. For A and B sites
without bound electrons we have

EA,g = ŜA,g·
[ �MBJ̄AB

RKKY(nimp)+ �MAJ̄AA
RKKY(nimp)−SgimpμB �B]

(37)
and

EB,g = ŜB,g·
[ �MBJ̄BB

RKKY(nimp)+ �MAJ̄AB
RKKY(nimp)−SgimpμB �B],

(38)

respectively. For an electrons bound to an impurity on sublat-
tice μ the Hamiltonian [cf. Eq. (33)] is modified to

Hμ,e = JS

2π�2
(Ŝμ,b · �̂σ + �mμ · �σ ) − 1

2
g0μB �B · �σ , (39)

with eigenenergies

ε± = ± JS

2π l2
B

√
1 + h2

μ + 2 �hμ · Ŝμ,b, (40)

in which

�hμ ≡ �mμ + π�2g0μB

JS
�B, (41)

and

�mμ = 2π�2nimp �Mμ. (42)

The resulting energy functional for sites binding an electron
takes the form

Eμ,b = − JS

2π�2

√
1 + h2

μ + 2�hμ · Ŝμ,b + Ŝμ,b

·[ �MμJ̄μμ
RKKY(nimp) + �Mμ̄J̄AB

RKKY(nimp) − SgimpμB �B],
(43)

where μ̄ = B(A) if μ = A(B). In analogy with the previous
section, Ŝμ,b and Ŝμ,g are thermally averaged with these en-
ergy functionals, and we search for self-consistent solutions
satisfying

�Mμ = fb〈Ŝμ,b〉 + (1 − fb)〈Ŝμ,g〉. (44)

Because of the antiferromagnetic coupling between impurity
spins on the A and B sublattices, in the presence of the Zeeman
coupling to the spins we do not expect them to be collinear; the
mean-field state should be a canted antiferromagnet, in which
�MA and �MB have parallel components along �B, and antiparallel
components perpendicular to it. It is important to recognize
that this is a broken-symmetry state, with the planar angle
of the latter components in the ground state determined arbi-
trarily; i.e., the state has broken U(1) symmetry. Without loss
of generality, for the purposes of the mean-field solutions we
can take the magnetizations to lie in the x̂-ẑ plane, assuming
�B = Bẑ. Note that because of the explicit Zeeman coupling,
there will always be nonzero components of �MA and �MB along
the ẑ direction at any temperature. The spontaneous ordering
is captured by the nonzero x̂ components of these.

Figures 10 and 11 illustrate typical results at B = 0.401 T.
At low temperature ẑ · �MA = ẑ · �Mb becomes pinned to a value
less than one at these fields, indicating that the spins have
become canted. Above a crossover temperature this value
begins to fall, showing that polar fluctuations of the spin
direction begin to become important. By contrast, x̂ · �MA =
−x̂ · �Mb falls continuously with temperature, reflecting the

FIG. 10. �MA · x̂ = − �MB · x̂ evaluated in mean-field theory for
B = 0.401 T.

behavior of in-plane spin fluctuations. This component truly
drops to zero at a mean-field transition temperature, and
the broken U(1) symmetry of the spin ordering is restored.
Figure 12 illustrates representative mean-field phase diagrams
at different magnetic fields.

There are well-known limitations to the use of mean-field
theory results for systems with broken continuous symmetries
in two dimensions, such as in our analyses in this and the
previous section. We now turn to a discussion of these, as well
as other implications and speculations related to our study.

VI. DISCUSSION AND SUMMARY

In the analyses above, we considered pairwise RKKY in-
teractions between spins in two situations where the electronic
states are organized as Landau levels, in one case generated
by nonuniform strain in the system, in the other by a magnetic
field. We found that, when the Fermi energy is in the lowest
Landau level (LLL), the large degeneracy of states leads to a
situation in which two pairs of states break off from the LLL,
two above and two below the Fermi energy, whose precise
energies depend on the relative orientations of the impurities.

FIG. 11. �MA · ẑ = �MB · ẑ evaluated in mean-field theory for B =
0.401 T.
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FIG. 12. Mean-field phase diagrams for real-magnetic-field case.
Schematic forms showing expected behavior of Kosterlitz–Thouless
transitions shown as dashed lines.

This means that the impurity pair binds a pair of electrons,
which leads to a relatively strong interaction between them,
up to a distance of order the magnetic length. Beyond this, the
RKKY interactions are dominated by perturbative changes to
the negative-energy states, which on a coarse-grained scale
leads to ferromagnetic interactions on the same sublattice,
and antiferromagnetic interactions across sublattices. Rapid
oscillations around these behaviors can be traced back to the
effect of the negative-energy cutoff, which is determined by
the total density of electrons in the pz orbitals of the carbon
atoms.

One natural question to ask is what happens to this picture
in the strain case when the strain field deviates from the
simple form we chose. Presuming the strain varies slowly
on the lattice scale, this will result in a nonuniform effective
magnetic field, still directed oppositely for the two valleys.
Within the nearest-neighbor hopping model, the electronic
spectrum will still be particle-hole symmetric, so we antici-
pate a highly degenerate lowest Landau level to persist in this
situation. The effective field, however, will vary slowly over
the plane of the system, and the RKKY coupling strength will
presumably vary along with this. The variation of the field
should also smear out the rapid oscillations we observed at
large distances, which depended on the Landau-level cutoff,
and in this situation varies spatially. The 1/R3 falloff at large
distance scales should be preserved, since this behavior occurs
at any effective field.

In practical situations, it is not sufficient to treat dilute spin
impurities on the graphene as simply coupled by the RKKY
interaction formally computed above, because the density of
electrons in the LLL at field scales that are practically realiz-
able is quite small compared with the density of impurities. In
this situation we expect that most impurities will not capture
bound electrons. We considered the implications of this in
a simple mean-field theory, in which a fraction of impurity
spins fb binds electrons, of sufficient number to precisely
deplete the LLL. We found that the effect of this can lead
to a significant increase in the mean-field Tc, but that the
magnetization above Tc for the situation with fb = 0 is very
small because fb is typically quite small. Interestingly, in the

case of magnetic fields due to nonuniform strain, the imbal-
ance between sublattices leads to a stronger magnetization on
one than the other at any finite temperature, so the ordered
state is formally ferrimagnetic. Again, because of the relative
smallness of fb, the net moment is small.

It is interesting to consider what might happen if the system
is modified such that the impurity density is below the density
of states for the Landau level, in which case the LLL will not
be totally depleted by electrons binding to impurities. A rough
model of this involves setting fb → 1, and one enters a regime
in which the spin coupling on one sublattice is much stronger
than on the other. At low, nonzero temperature this leads to
a situation with much larger magnetization on one sublattice
than the other, and the system becomes nearly ferromagnetic.
Unfortunately, the impurity densities at which this can happen
are extremely small: for B ∼ 10 T, one needs a coverage
well below 0.01%. The magnetization associated with such
a ferromagnet ends up far below any measurable scale.

The nature of the broken symmetries in these two-
dimensional magnets is such that we do not truly expect
spontaneous long-range magnetic order to set in at any fi-
nite temperature [35]. The mean-field phase diagram instead
indicates a crossover temperature at which measurements of
the spin-spin correlation length begins to exceed the typical
distance between neighboring magnetic moments. In principle
this effect could be observed by slowly lowering the temper-
ature of the system to some value below Tc, and then rapidly
quenching the system to very low temperature, so that thermal
magnetic fluctuations are frozen out. In principle, a local
measurement of the magnetization at this low temperature
would reveal domains of the size of the correlation length at
the temperature from which the system was quenched.

In the case of Landau levels generated by real fields, the
presence of Zeeman coupling has interesting implications.
The symmetry of the effective Hamiltonian for the spins is
lowered from SU(2) to U(1), and the mean-field ground state
when ordered is a canted antiferromagnet. Even in the absence
of long-range magnetic order, the system should still exhibit
a true thermodynamic, Kosterlitz–Thouless (KT) phase tran-
sition, in which vortices of the in-plane component of the
magnetization unbind at some temperature TKT . To estimate
this, we consider a very simple model in which the U(1)
spin degrees of freedom are on a square lattice, with nearest-
neighbor coupling constant Jeff . By computing the mean-field
Tc of this model and matching this to the simplest estimate of
the (KT) transition, kBTKT = πJeff/2 [39], one can obtain an
estimate for TKT , which turns out to be simply proportional to
the mean-field Tc, as illustrated in Fig. 12. An important caveat
with respect to this estimate is that it does not include any
renormalization of Jeff due to vortex-antivortex pairs, which
always decreases the transition temperature. In particular, this
renormalization should become quite large as B → 0, and
SU(2) symmetry is restored, in which case there will be no
KT transition, so that TKT → 0. The low barrier to spins tilting
into the ẑ direction in this limit suggests that the core energy of
vortices becomes small, so that our simple estimate becomes
increasingly unreliable. Figure 12 schematically shows the
form we expect TKT to take in a more sophisticated treatment.

We conclude with some speculations about further in-
teresting behavior this system might host. In the case of
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nonuniform strain, as noted above, the relatively large energy
scale associated with binding of LLL electrons to sites leads
to two temperature scales, a lower one at which the major-
ity of spins lose most of their collective order, and higher
one at which those binding electrons do so. While direct
magnetization measurements are unlikely to detect this, an
interesting possibility is that it might be visible in transport
due to scattering of electrons from these spin degrees of
freedom, or via an anomalous Hall effect. Beyond this, the
behavior of the system with greater levels of doping may
show interesting effects; for example, yielding a mean-field Tc

that drops as the LLL is depleted. Further doping may yield
physics similar to that of the LLL when the Fermi energy
reaches negative Landau levels, which may yield oscillations
in Tc. Finally, in our mean-field analysis, collective behavior
among the degrees of freedom was not considered. For exam-
ple, correlations among nearby impurity spins could lead to
electrons binding to multiple impurities rather than individual
ones. In principle our mean-field theory could accommodate
this phenomenologically by adopting larger values of fb; since

� is typically much larger than the average distance between
impurities, this renormalization could be considerable. If such
effects are important, we expect ferrimagnetism in a strain-
induced field could be notably larger than our estimates above.
Beyond this, interactions among the electrons themselves may
induce a spin stiffness, which could lessen the correlation
between electron and impurity spins in the system and would
tend to work against the induced ferrimagnetism. Thus the net
effect of correlated behaviors in this system is unclear. We
leave their consideration for future research.
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APPENDIX

1. Derivation of Eqs. (14)

Following from Eq. (13) in Sec. III, the M − 2 states that are decoupled from the spin impurities are

φ̃m(z) ∝ (z2 − η2)zme− |z|2
4 , m = 0, 1, . . . , M − 3.

In general, the remaining states [ξ1,2(z)] that couple to the impurities are superpositions of angular-momentum LLL states, i.e.,

ξ1,2(z) =
M−1∑
m=0

c(1,2)
m zme− |z|2

4 , (A1)

where the coefficients c(1,2)
m are to be determined. This is achieved by using the fact that the subspace spanned by ξ1,2(z) and the

subspace spanned by φ̃m(z) are orthogonal, so that∫
d2rφ̃∗

m(z)ξ1,2(z) = 0, m = 0, 1, . . . , M − 3. (A2)

Substituting Eq. (A1), and we arrive at a recursion relation for the coefficients,

cm+2 = η2 2mm!

2m+2(m + 2)!
cm. (A3)

Choosing c0 = 1, c1 = η

2 , these generate power-series expansions for the states,

ξ1(z) = e− |z|2
4

(
(ηz/2) + (ηz/2)3

3!
+ (ηz/2)5

5!
+ · · · + (ηz/2)M−3

(M − 3)!

)
,

and

ξ2(z) = e− |z|2
4

(
1 + (ηz/2)2

2!
+ (ηz/2)4

4!
+ · · · + (ηz/2)M−4

(M − 4)!

)
.

For a large sample the angular-momentum cutoff M will be very large, and taking the M → ∞ limit one recognizes the above
expansions to represent hyperbolic sine and cosine forms of the ξ1,2(z) states. After normalization, the two coupled states are

ξ1(z) = 1√
2π sinh

(
η2

2

)e− |z|2
4 sinh

(ηz

2

)
,

ξ2(z) = 1√
2π cosh

(
η2

2

)e− |z|2
4 cosh

(ηz

2

)
.

(A4)
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2. Exact Forms for Bound-State Energies

When spin is included, Eqs. (A4) yield a four-dimensional Hamiltonian for electrons in the LLL in the presence of the two
spin impurities. For a strain-induced field, the two impurity spins can only be coupled by states in the LLL if they are on the
same sublattice. Focusing on the case when they are both on the B sublattice, the Hamiltonian for one valley can be taken to
simply be the projection of V (B,B) [see Eq. (10)]. Writing the single-particle states in the order (|ξ1,↑〉, |ξ1,↓〉, |ξ2,↑〉, |ξ2,↓〉),
the projected Hamiltonian becomes

H̄ = JS

2π
e− η2

2

√
sinh

(
η2

2

)
cosh

(
η2

2

)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n(1)
z

√
tanh

(
η2

2

)
n(1)

z

(
n(1)

x − in(1)
y

)√
tanh

(
η2

2

)
n(1)

x − in(1)
y

n(1)
z

n(1)
z√

tanh
(

η2

2

) n(1)
x − in(1)

y
n(1)

x −in(1)
y√

tanh
(

η2

2

)
(
n(1)

x + in(1)
y

)√
tanh

(
η2

2

)
n(1)

x + in(1)
y −n(1)

z

√
tanh

(
η2

2

) −n(1)
z

n(1)
x + in(1)

y
n(1)

x +in(1)
y√

tanh
(

η2

2

) −n(1)
z − n(1)

z√
tanh
(

η2

2

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n(2)
z

√
tanh

(
η2

2

)
−n(2)

z

(
n(2)

x − in(2)
y

)√
tanh

(
η2

2

)
in(2)

y − n(2)
x

−n(2)
z

n(2)
z√

tanh
(

η2

2

) in(2)
y − n(2)

x
n(2)

x −in(2)
y√

tanh
(

η2

2

)
(
n(2)

x + in(2)
y

)√
tanh

(
η2

2

)
−n(2)

x − in(2)
y −n(2)

z

√
tanh

(
η2

2

)
n(2)

z

−n(2)
x − in(2)

y
n(2)

x +in(2)
y√

tanh
(

η2

2

) n(2)
z − n(2)

z√
tanh

(
η2

2

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(A5)

In this expression, we have written the two classical spin vectors in the form �Si = S�n(i) with i = 1, 2. Notice that the result is
linearly proportional to J and S; the contribution to the RKKY interaction from these states will be linear in these quantities,
whereas standard RKKY interactions usually contain only contributions quadratic in these quantities.

If we choose our spin ẑ axis to be along the direction n̂(1) and write n̂(2) = (sin θ cos φ, sin θ sin φ, cos θ ), the energy
eigenvalues of H̄ can be written explicitly in the form

2πE1

JS
= −e− η2

2

√
sinh(η2)

√
2
√

tanh
(

η2

2

)
√√√√√4[cos (θ ) + 1](

eη2 + 1
)2 + 2

√
2

√√√√4e2η2 [cos (θ ) + 1] + cos (2θ ) − 1(
eη2 + 1

)4 − 8

eη2 + 1
+ 4,

2πE2

JS
= −e− η2

2

√
sinh(η2)

√
2
√

tanh
(

η2

2

)
√√√√√4[cos (θ ) + 1](

eη2 + 1
)2 − 2

√
2

√√√√4e2η2 [cos (θ ) + 1] + cos (2θ ) − 1(
eη2 + 1

)4 − 8

eη2 + 1
+ 4,

2πE3

JS
= e− η2

2

√
sinh(η2)

√
2
√

tanh
(

η2

2

)
√√√√√4[cos (θ ) + 1](

eη2 + 1
)2 − 2

√
2

√√√√4e2η2 [cos (θ ) + 1] + cos (2θ ) − 1(
eη2 + 1

)4 − 8

eη2 + 1
+ 4,

2πE4

JS
= e− η2

2

√
sinh(η2)

√
2
√

tanh
(

η2

2

)
√√√√√4[cos (θ ) + 1](

eη2 + 1
)2 + 2

√
2

√√√√4e2η2 [cos (θ ) + 1] + cos (2θ ) − 1(
eη2 + 1

)4 − 8

eη2 + 1
+ 4.

(A6)

The energies of these four states within the LLL will be sensitive to the relative orientation of the two spins, and this
determines the LLL contribution to the RKKY interaction between the spins.
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As mentioned in the main text, the corresponding calculation for a real magnetic field must incorporate the Zeeman energy for
the electrons. The problem nevertheless still involves diagonalization of a 4 × 4 matrix, whose eigenvalues may be determined
exactly. The resulting energies for the two filled negative-energy states for impurities on the same sublattice take the form

E1 = − 1

2π

[
π

JS

�2
g0μBB

[(
n(1)

z

)+ (n(2)
z

)]+ J2S2

�4

(
(h2 − 1)2X

(h2 + 1)2
+ 1

)
+ π2(g0μBB)2

+ πJS

(h2 + 1)�2

(
2(h2 − 1)2JSg0μBB(X + 1)

[(
n(1)

z

)+ (n(2)
z

)]
π�2

+ (h2 − 1)2J2S2(X + 1)[h4(X + 1) − 2h2(X − 3) + X + 1]

π2(h2 + 1)2�4

× (g0μBB)2
{
(h2 + 1)2

[(
n(1)

z

)2 + (n(2)
z

)2]+ 2(h4 − 6h2 + 1)n(2)
z n(1)

z

})1/2
⎤⎦1/2

(A7)

and

E2 = − 1

2π

[
π

JS

�2
g0μBB

(
n(1)

z + n(2)
z

)+ J2S2[(h2 − 1)2X + (h2 + 1)2]

(h2 + 1)2�4
+ π2(g0μBB)2

− πJS

(h2 + 1)�2

(
2(h2 − 1)2JSg0μBB(X + 1)

(
n(1)

z + n(2)
z

)
π�2

+ (h2 − 1)2J2S2(X + 1)[h4(X + 1) − 2h2(X − 3) + X + 1]

π2(h2 + 1)2�4

+ (g0μBB)2
{
(h2 + 1)2

[(
n(1)

z

)2 + (n(2)
z

)2]+ 2(h4 − 6h2 + 1)n(2)
z n(1)

z

})1/2
⎤⎦1/2

. (A8)

In these expressions, X ≡ cos θ and h =
√

tanh( η2

2�2 ).
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