
PHYSICAL REVIEW B 99, 205429 (2019)

Floquet topological phase transition in the α-T3 lattice
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We investigate topological characteristics of the photon-dressed band structure of the α-T3 lattice on being
driven by off-resonant circularly polarized radiation. We obtain exact analytical expressions of the quasienergy
bands over the first Brillouin zone. The broken time-reversal symmetry caused by the circularly polarized light
lifts the triple point degeneracy completely at both the Dirac points. The gaps become unequal at K and K′

(except at α = 0 and 1), which reveals the absence of inversion symmetry in the system. At α = 1/
√

2, the gap
between the flat and valence bands closes at K, while that between the conduction and flat bands closes at K′,
thereby restoring a semimetalic phase. At the gap closing point (α = 1/

√
2) which is independent of the radiation

amplitude, there is a reappearance of low-energy Dirac cones around K and K′ points. Under the influence of the
circularly polarized radiation, the α-T3 lattice is transformed from semimetal to a Haldane-like Chern insulator
characterized by nonzero Chern number. The system undergoes a topological phase transition from C = 1(−1)
to C = 2(−2) at α = 1/

√
2, where C is the Chern number of the valence (conduction) band. This sets an example

of a multiband system having larger Chern number. These results are supported by the appearance of chiral edge
states in an irradiated α-T3 nanoribbon.

DOI: 10.1103/PhysRevB.99.205429

I. INTRODUCTION

Nontrivial topological phases in electronic and photonic
systems have drawn enormous interest since the discovery of
quantum Hall effect [1]. Topological insulators (TIs) [2–4]
are distinctive states of matter characterized by an insulating
bulk gap and gapless chiral or helical edge/surface modes that
are topologically protected [5–12]. There are several classes
of TIs, each of which is represented by a topological index.
Chern insulators (CIs), also known as anomalous quantum
Hall insulators (AQHIs) belong to a class of TIs characterized
by a topological invariant called Chern number C associated
with each band. A band with nonzero C gives rise to quantized
Hall conductance even in the absence of a net magnetic flux.
This feature was first predicted in an exotic 2D lattice model
with broken time-reversal (TRS) symmetry, popularly known
as the Haldane model [8] and was later verified experimentally
[13]. These materials host chiral edge states (unidirectional
propagating modes along an edge) that are robust against
backscattering. The edge states are guaranteed by a nonzero
Chern number of the bulk band through bulk-edge correspon-
dence [14]. On the other hand, Z2 TIs, also called quantum
spin Hall insulators (QSHIs), constitute another class of TIs in
which the edge states are protected by time-reversal symmetry
[5,6]. Z2 phases have been studied in large number of systems
including two-dimensional (2D) quantum materials, strong
spin-orbit coupled quantum wells and exotic lattice models.
The gapless edge states in Z2 TIs are helical, i.e., they form
pairs of counter-propagating modes with opposite spins along
an edge, that are time-reversed copies of each other. The topol-
ogy of these edge states is described by another topological
invariant called the Z2 index. The topological phases exist
in static [15] as well as in time-periodic systems [16–22].
Such a periodic drive can also transform a topologically trivial

insulator to a CI [23,24]. The properties of periodically driven
systems can be analyzed using Floquet theory [25,26].

The Chern number, in principle, can have any integral
value. Most of the theoretically and experimentally studied
CIs have Chern number C = 1. Therefore it would be inter-
esting to have a system with Chern number C � 2. Recently,
large Chern numbers have been predicted [27] and experi-
mentally [28] realized in photonic 2D square and hexagonal
crystals.

The α-T3 lattice, as shown in Fig. 1, is the extension
of a honeycomb lattice. This is a conventional honeycomb
lattice with two lattice points (A,B) and an additional lat-
tice point (C) at the center of each honeycomb cell. The
quasiparticle can hop from C sites to the alternate vertices
(say, B) of the same honeycomb lattice. The hopping ampli-
tude between A and B sites is τ cos φ and that between the
B and C sites is τ sin φ, where the angle φ parameterizes
the hopping amplitude. It is convenient to express the angle
φ by another parameter α such that α = tan φ. For φ = 0
(α = 0), the C site is decoupled from the honeycomb lattice
and it resembles to the monolayer graphene. The upper-left
2 × 2 matrix block in Eq. (1) describes the quasiparticle
dynamics of monolayer graphene. For α = 1 (φ = π/4), the
α-T3 model becomes conventional dice or T3 lattice having
pseudospin-1 [29–36]. The α-T3 lattice with nonzero α has
three energy bands since it has three sublattices consisting of a
hub site (B) connected to six rim sites (A, C). The dice lattice
can naturally be built by growing trilayers of cubic lattices
(e.g.,SrTiO3/SrIrO3/SrTiO3) in (111) direction [37]. It has
been proposed theoretically that a dice lattice can be generated
by interfering three counter-propagating pairs of identical
laser beams [32] on a plane with wavelength λ = 3a/2, with
a being the lattice constant. Later, it was shown that the α-T3

optical lattice can be achieved by dephasing one of the pairs
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FIG. 1. Schematic diagram of the α-T3 lattice illuminated by off-
resonant circularly polarized light.

of the laser beams while keeping other parameters unaltered
[32,38]. Therefore a continuous change of α, through tuning
phase of one of the three pairs of the laser beams, will allow
us to study the changes in the topological properties of the
system. The Hamiltonian of a Hg1−xCdxTe quantum well can
be mapped to that of a low-energy α-T3 model with effective
α = 1/

√
3 on appropriate doping [39].

In recent years, there have been several studies [38,40–50]
on various properties of the α-T3 lattice. The role of variable
Berry phase in orbital susceptibility [38], magnetotransport
coefficients [41] (quantized Hall conductivity and SdH oscil-
lation) and optical conductivity [40] of the α-T3 lattice has
been established. Very recently, Floquet states and the variable
Berry phase dependent photoinduced gap in the α-T3 lattice
irradiated by the circularly polarized on-resonant light have
been studied in detail [45]. It has been shown that an off-
resonant radiation induces a gap in graphene, on the surface
states of TI [22], silicene [51], semi-Dirac systems [52], MoS2

[53], etc. and transforms them to Chern insulating states. It
is to be noted that the multiple Floquet bands formed by
on-resonant light cannot be treated as a new static/effective
band structure to determine the transport properties of such a
nonequilibrium system, as shown by Kitagawa et al. [20]. A
nonzero Chern number of any of these Floquet bands would
not simply imply a quantized Hall conductance as there are
additional contributions from photon-assisted electron con-
ductions. However, on off-resonant (high-frequency) driving,
the electrons cannot directly absorb or emit any photon; only
its static band structure gets modified through virtual photon
absorption-emission processes. So, the off-resonant condition
provides an advantage to deal with systems strongly driven out
of equilibrium and the transport properties of the system may
be well approximated as those originating from the effective
static band structure.

Since the proposal of Haldane’s Chern insulator on a hon-
eycomb lattice [8], several multiband CIs such as the kagome
[10,54,55], dice [56], and Lieb [57] lattices with tunable
parameters controlling the band topology have been studied.
The α-T3 lattice is another example of a multiband system
having trivial topology. In this work, we will show that an
application of circularly polarized radiation on the α-T3 lattice
makes it Haldane-type CI having nonzero Chern number and
tuning the parameter α leads to a topological phase transitions
at α = 1/

√
2 by changing the Chern number of the valence

(conduction) band from C = 1(−1) to larger Chern number

C = 2(−2). This phase transition results in doubling of the
number of chiral edge modes from one to two in the irradiated
α-T3 nanoribbon. First we derive Floquet-Magnus Hamilto-
nian of the α-T3 lattice for the entire Brillouin zone. We
get exact analytical expressions of quasienergy band structure
over the full Brillouin zone. The triple-point degeneracy at the
Dirac points is completely removed by breaking time-reversal
symmetry due to time-periodic circularly polarized light. An
intriguing state, independent of the radiation amplitude, ap-
pears at α = 1/

√
2, where the gap between flat and valence

bands closes at K, while that between conduction and flat
bands closes at K′. The low-energy bands around both K and
K′ points display a Dirac-like dispersion with the reduced
slope, as compared to monolayer graphene, at the gap closing
points.

This paper is arranged as follows. In Sec. II, we provide
topological band structure of the α-T3 lattice irradiated by the
circularly polarized light. In Sec. III, we present the analytical
calculations of the Chern number and show that the system
undergoes a topological phase transition at α = 1/

√
2. We

present results of chiral edge states of an irradiated α-T3

nanoribbon in Sec. IV. In Sec. V, a summary and conclusion
of our results are presented.

II. TOPOLOGICAL BAND STRUCTURE OF THE α-T3

LATTICE IRRADIATED BY CIRCULARLY
POLARIZED LIGHT

Considering only the nearest-neighbor (NN) hopping in-
tegrals, the rescaled tight-binding Hamiltonian for the α-T3

lattice is given by

H0(k) =
⎛
⎝ 0 h(k) cos φ 0

h∗(k) cos φ 0 h(k) sin φ

0 h∗(k) sin φ 0

⎞
⎠, (1)

where k = (kx, ky) and h(k) = τ (eik·δ1 + eik·δ2 + eik·δ3 ). Also,
the three nearest neighbor position vectors with respect to the
rim site B are δ1 = a(

√
3/2,−1/2), δ2 = a(−√

3/2,−1/2)
and δ3 = a(0, 1), with a is the lattice constant of graphene.
The energy-wave-vector dispersion, independent of α, over
the full Brillouin zone consists of three bands: two dispersive
bands E±(k) = ±|h(k)| having electron-hole symmetry and
a zero energy nondispersive band E0(k) = 0. The dispersion
E±(k) is identical to that of graphene. The corresponding
normalized eigenvectors over the full Brillouin zone are given
by

ψk,± = 1√
2

⎛
⎝cos φe−iψ (k)

±1
sin φeiψ (k)

⎞
⎠, ψk,0 =

⎛
⎝ sin φe−iψ (k)

0
− cos φeiψ (k)

⎞
⎠,

where h(k) = |h(k)|e−iψ (k). The low-energy quasiparticles in
the α-T3 lattice are described by the two-dimensional (2D)
Dirac-Weyl equation. It is a semimetalic system in absence
of any external fields/perturbations. It will behave like a TI
if a Haldane-type energy gap is induced at the Dirac points
by external means. Next we show that circularly polarized
off-resonant radiation opens up gaps and induces topological
states in the α-T3 lattice.
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The α-T3 lattice is irradiated with circularly polarized
radiation falling normal to the lattice plane. The correspond-
ing vector potential is A(t ) = A0(cos ωt, sin ωt ), where A0 =
E0/ω with E0 and ω being the electric field amplitude and
frequency of the radiation, respectively. By Pierl’s substitution
k → (k + eA(t )/h̄) in Eq. (1), we obtain

H (k, t ) =
⎛
⎝ 0 h(k, t ) cos φ 0

h∗(k, t ) cos φ 0 h(k, t ) sin φ

0 h∗(k, t ) sin φ 0

⎞
⎠,

(2)

where h(k, t ) = τ
∑3

j=1 ei(k+eA(t )/h̄)·δ j . The Hamiltonian
H (k, t ) is periodic in time since A(t + T ) = A(t ) with the
periodicity T = 2π/ω. Using the NN vectors δ j and the
Jacobi-Anger expansion eiz sin θ = ∑∞

n=−∞ Jn(z)einθ with
Jn(z) being the nth order cylindrical Bessel function, we get

h(k, t ) = τ

∞∑
n=−∞

Jn(η)[einωt eik·δ3 + e−in(π/3+ωt )eik·δ2

+ ein(π/3−ωt )eik·δ1 ].

Here, η = eA0a/h̄ is a dimensionless parameter characteriz-
ing the light intensity (can be expressed as square root of
intensity and fine structure constant). Typically, η � 1 for
the intensity of lasers and pulses available in the terahertz
(THz) frequency domain. The off-resonant condition can be
achieved when the photon energy is much larger than the
band width of the undriven system, i.e., h̄ω > 6τ . When
the light frequency satisfies the off-resonant condition, the
band structure is modified by the second-order virtual photon
absorption-emission processes.

The effective time-independent Hamiltonian valid under
off-resonant condition [58–60] is

Heff (k) = H0(k) + [H−(k), H+(k)]/h̄ω + O(1/ω2), (3)

where

H±(k) = 1

T

∫ T

0
dt e∓iωt H (k, t )

is the Fourier component of the Hamiltonian H (k, t ). By
Fourier transform, we obtain

[H−(k), H+(k)] = �(k)

2
Sz(α), (4)

where Sz(α) is defined as

Sz(α) = 2

⎛
⎝cos2 φ 0 0

0 − cos 2φ 0
0 0 − sin2 φ

⎞
⎠ (5)

and �(k) = |g(k)|2 − | f (k)|2 = h̄ω γ (k) with

g(k) = τJ1(η)[eik·δ1 eiπ/3 + eik·δ2 e−iπ/3 − eik·δ3 ], (6)

f (k) = τJ1(η)[−eik·δ1 e−iπ/3 − eik·δ2 eiπ/3 + eik·δ3 ]. (7)

Hence, the light-matter coupling results in a mass term of
the form γ (k)Sz(α)/2 which lifts the threefold degeneracy
at the Dirac points. It can be shown that the mass term
reduces to μβ2 h̄ωSz(α)/2 in the linearized low-energy limit

where β = 3ητ/(2h̄ω) and μ = 1(−1) corresponds to K(K′)
valleys. On time-reversal operation, γ (k) changes sign, which
implies the breaking of TRS in the system. Similarly, the
term also changes sign on switching from right to left circular
polarization. So, the mass term is trivially zero in case of
linearly polarized light since it is a linear combination of both
the polarizations with equal weights.

Interestingly, the mass term is Haldane-type which has
opposite signs in the two valleys. It has been shown that the ef-
fective Hamiltonian in irradiated graphene under off-resonant
condition can be mapped to the Haldane model with no sub-
latice potential and complex next-nearest-neighbor hoppings,
which break TRS [20]. In Haldane model, the NN hoppings
do not accumulate Aharonov-Bohm (AB) phases since the net
magnetic flux through a unit cell is zero. In this model, the
magnetic flux is locally zero everywhere on the lattice plane
at a given time. However, the time-varying vector potential is
spatially constant over the lattice, due to which NN hoppings
acquire time-dependent AB phases.

The effective Hamiltonian (3) can now be written explicitly
as

Heff (k) =

⎛
⎜⎝

γ (k) cos2 φ h(k) cos φ 0

h∗(k) cos φ −γ (k) cos 2φ h(k) sin φ

0 h∗(k) sin φ −γ (k) sin2 φ

⎞
⎟⎠.

(8)
The Hamiltonian Heff (k) satisfies the following anticommuta-
tion relations for α = 0 and α = 1:{

HG
eff (k),PG

} = 0,
{
HD

eff (k),PD
} = 0. (9)

Here, PG and PD are operators defined for graphene and dice,
respectively, as follows:

PG = K

⎛
⎝0 −1 0

1 0 0
0 0 1

⎞
⎠, PD = K

⎛
⎝ 0 0 −1

0 1 0
−1 0 0

⎞
⎠ (10)

with K being the complex-conjugation operator. The relations
(9) imply that a band with energy ε(k) will have a partner band
with energy −ε(k). This symmetry confirms the presence of
a zero-energy band in the three-band system. Hence, the flat
band in dice lattice will not be perturbed by radiation. Also,
the Hamiltonian is traceless, implying the sum of energies of
the bands will be zero for all values of α.

The eigenvalues εm(k) of Heff (k) represent the off-resonant
quasienergy band structure. The characteristic equation for
the eigenvalue problem turns out to be a depressed cubic
equation: λ3 + pλ + q = 0, where

p = −
[
|h(k)|2 + γ (k)2

(
cos2 2φ + sin2 2φ

4

)]
, (11)

q = −γ (k)3

4
sin2 2φ cos 2φ. (12)

The eigenvalues are of the form

εm(k) = 2

√−p

3
cos

[
1

3
cos−1

(
3q

2p

√
−3

p

)
− 2πm

3

]
(13)

with m = 0, 1, and 2 correspond to the quasienergies of the
conduction, flat and valence bands, respectively. The band
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   a a a

FIG. 2. Plots of low-energy Floquet bands for various values of α: (a) α = 0, (b) 0.6, (c) 1/
√

2, (d) 1, (e) 1.2, and (f)
√

2. The bands are
plotted along the line joining the high-symmetry K, M, and K′ points. Bands are no longer symmetric under exchange of valleys except at
α = 0 and 1. Here we have taken J1(η) = 0.57.

structure of the undriven α-T3 lattice is strongly modified
by the off-resonant radiation and becomes α as well as η

dependent. It exhibits interesting features as we tune α, which
will be discussed in detail. The components of the normalized
eigenvectors |�m(k)〉 = (am(k) bm(k) cm(k))T can be writ-
ten as

am(k) = d (k) sin θ cos φe−iψ (k)

εm(k) − d (k) cos θ cos2 φ
bm(k), (14)

cm(k) = d (k) sin θ sin φeiψ (k)

εm(k) + d (k) cos θ sin2 φ
bm(k) (15)

with

bm(k) =
[

1 +
(

d (k) sin θ cos φ

εm(k) − d (k) cos θ cos2 φ

)2

+
(

d (k) sin θ sin φ

εm(k) + d (k) cos θ sin2 φ

)2]−1/2

, (16)

where we have parameterized γ (k) and h(k) as
γ (k) = d (k) cos θ , h(k) = d (k) sin θe−iψ (k), with d (k) =√

|h(k)|2 + γ (k)2.
Now we shall analyze the topological band structures

as we vary α continuously. Figure 2 shows the low-energy
topological bands for different values of α in the first Brillouin
zone. For three-band systems, there can be two distinct band
gaps at the Dirac points: the gaps between the (i) conduction
and flat bands (�K/K′

cf ) and (ii) flat and valence bands (�K/K′
fv )

at K/K′ points. In presence of TRS breaking circularly po-
larized light, the triple point degeneracy at both the Dirac
points is completely lifted (i.e., �

K/K′
cf 
= 0 and �

K/K′
fv 
= 0)

except at α = 1/
√

2. The photoinduced gaps at α = 0 and 1
are �

K/K′
cf = �

K/K′
fv = β2 h̄ω and �

K/K′
cf = �

K/K′
fv = β2h̄ω/2,

respectively. It is interesting to note that �K
cf = 0 but �K

fv 
= 0
and �K′

cf 
= 0 but �K′
fv = 0 at α = 1/

√
2. It implies that the

band gaps at the Dirac points do not open completely at
α = 1/

√
2. Note that this result is independent of the radiation

amplitude η (as long as the off-resonant approximation is
valid). The partial closing of the band gap at α = 1/

√
2 can be

deduced by obtaining the eigenvalues at a Dirac point (say K)
viz. ε0 = cos2 φ, ε1 = − cos 2φ, ε2 = − sin2 φ. Equating ε0

with ε1, we find that the band touching occurs at α = 1/
√

2.
We present plots of �K

cf and �K
fv versus α in Fig. 3. The

system exhibits an interesting property of α → 1/α duality.
The measurable quantities of the system will be same for
α and 1/α. Hence, similar gap closing is also seen at α =√

2. However, the duality exchanges the Dirac points i.e.,
�K

cf (α) = �K′
cf (1/α) and �K

fv(α) = �K′
fv (1/α). The band gaps

(in units of β2 h̄ω) at the Dirac point K are tabulated in
Table I. For K′ point, one can easily check that �K′

cf = �K
fv

and �K′
fv = �K

cf for given α.
Substituting k = K + q with q → 0 in Eq. (8), we get the

low-energy Hamiltonian around K. Interestingly, the touching
bands, i.e., flat and conduction bands, exhibit Dirac cones in
the low-energy limit as

ε0,1(q) = β2h̄ω

3
± h̄v f√

3
|q|.

FIG. 3. Plots of the photoinduced gaps at the Dirac point K as a
function of α.
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TABLE I. Photoinduced gaps at the Dirac point K as a function
of α.

Gaps 0 � α � 1/
√

2 1/
√

2 � α �
√

2 α �
√

2

�K
cf 1 cos2 φ + cos 2φ −(cos 2φ + cos2 φ)

�K
fv − sin2 φ + cos 2φ sin2 φ − cos 2φ 1

It is to be noted that in the field free case, εm(k) = εm(−k)
for all values of α. However, for the irradiated model, we
have εm(k) = εm(−k) for α = 0, 1 and εm(−k) 
= εm(k)
for α 
= 0, 1. This can be explained as follows − In the
radiation-free case, the Kramer’s degeneracy ensured by TRS
guarantees εm(k) = εm(−k) irrespective of the value of α or
other symmetries. On application of TRS-breaking circularly
polarized light, the Kramer’s degeneracy is lifted. Now, the
band structure will be an even function in k only if the
lattice has inversion symmetry (IS). Since graphene and dice
lattice have IS, the band structure remains an even function in
quasimomentum despite a broken TRS.

The topology of the band structure remains same if the
energy gap in the band structure does not close and reopen
while tuning the parameter continuously. Here we have seen
that one of the gaps closes at α = 1/

√
2 and reopens when

1/
√

2 < α <
√

2. Hence, we expect a transition in band
topology at α = 1/

√
2. In 2D, a change in the Chern number

or TKNN integer can be used to identify whether the system
undergoes a topological transition or not. In the next section,
we show that there is indeed a topological phase transition at
α = 1/

√
2 (equivalently at α = √

2) by evaluating the Chern
number explicitly as a function of α.

III. CALCULATIONS OF THE CHERN NUMBER
AND TOPOLOGICAL PHASE TRANSITIONS

We need to analyze the behavior of the Berry connection
and Berry curvature in order to calculate the Chern number
of each band analytically [61–63] as well as numerically [64].
The Berry connection for the band εm(k) can be written as
Am(k) = i〈�m(k)|∇k|�m(k)〉. Under the gauge used in (14)
and (15), the Berry connection reduces to

Am(k) = sm(k)∇kψ (k), (17)

with sm(k) = [|am(k)|2 − |cm(k)|2]. The Berry curvature of
the mth band is defined as

�m(k) = ẑ · [∇k × Am(k)]. (18)

Figure 4 shows the plots of �2(k) around the two valleys
for three values of α. The distribution of �2(k) in graphene
[Figs. 4(a) and 4(b)] is identical in the two valleys. Since
K = −K′, �2(k) is an even function indicating the presence
of inversion (IS) symmetry in the lattice, but a broken TRS.
This also holds true for α = 1, i.e., dice lattice [Figs. 4(e)
and 4(f)]. However, for α = 0.5, �2(k) is largely different in
the two valleys [Figs. 4(d) and 4(e)]. This is a signature of the
absence of IS and a broken TRS.

The Berry connection depends on the gauge and may
have singularities within the first Brillouin zone (FBZ). The
Berry curvature of the mth band is well defined when the

quasienergy εm(k) is nondegenerate (i.e., mth band does not
touch any other bands) for all values of k within the FBZ.
Contour plots of the Berry curvature near the two Dirac points
K and K′ for different values of α are shown in Fig. 4. The
surface integral of the Berry curvature �m(k) over the FBZ
gives 2πCm, where Cm is an integer called the Chern number
or TKNN index [65] for the mth band:

Cm = 1

2π

∫
FBZ

ẑ · [∇k × Am(k)] d2k. (19)

It is important to mention here that any contributions due
to gauge-dependent singularities in Am(k) must be excluded
from the above equation. If a global gauge transformation
removes all the singularities, then Chern number of the band
will be trivially zero by Stokes theorem. Note that Cm 
= 0
implies the absence of a global gauge under which the Berry
connection has no singularities in the FBZ. The Berry con-
nection Am(k) given in Eq. (17) is proportional to ∇kψ (k).
The gauge-dependent singularities in the Berry connection
Am(k) arise at the k points where the phase ψ (k) of the
off-diagonal matrix elements h(k) is ill defined. It occurs if
the function h(k) = 0 for certain values of k. In this band
structure, since h(K) = h(K′) = 0, ψ (K) and ψ (K′) are not
defined and hence there may be singularity in Am(k) at the
Dirac points if sm(K) 
= 0 or sm(K′) 
= 0. Thus we expect a
nonzero Chern number in this case. First we calculate the
Chern number for the valence band corresponding to m = 2.
The variation s2(K) and s2(K′) with α is displayed in Fig. 5.
Note that s2(K) and s2(K′) are evaluated very close to the
Dirac points since they are not defined exactly at the Dirac
points. These two functions can be written mathematically as

s2(K) = −�(α − 1/
√

2), s2(K′) = �(
√

2 − α), (20)

where �(x) is the usual unit step function.
Now we calculate the Chern number of the valence band

for α < 1/
√

2. Since s2(K′) = 1 and s2(K) = 0, we have
A2(K′) not defined and A2(K) = 0. For convenience, we re-
move the subscript 2 from A2, as we will stick to the quantities
related to the valence band only. The Berry connection for
valence band under the chosen gauge [say AI(k)] has a singu-
larity at K′ point. Hence, AI(k) is not smoothly defined across
the FBZ. We make a gauge transformation AII(k) → AI(k) −
∇kψ (k) = [sI(k) − 1]∇kψ (k), which gives AII(K′) = 0 and
AII(K) not defined. In this gauge, K is the singular point. As
long as there is a singularity under a given gauge, integral of
the Berry curvature will not be defined if the gauge is chosen
globally across the FBZ. So, we divide the FBZ, as depicted
in Fig. 6, into two regions RI and RII surrounding K and
K′, respectively. We assign gauge-related Berry connections
AI(k) and AII(k) in RI and RII, respectively, so that the
Berry curvature [�(k)] obtained from them is well-defined
in each region. �I and �II are contours enclosing RI and
RII respectively. The two regions share a common boundary
coinciding with �I. Now, the Chern number can be written as

C2 = 1

2π

[∫
RI

∇k × AI(k) +
∫

RII

∇k × AII(k)

]
· ẑd2k

= 1

2π

[∮
�I

∇kψ (k) · dk
]

(21)
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FIG. 4. Density-contour plots of the Berry curvature (�(k)) around the two Dirac points K and K′ for different values of α: (top) 0,
(middle) 0.5, and (bottom) 1. Here, kx and ky are in units of a−1.

where we have used the fact that integral along the outer
boundary of �II vanishes due to periodicity in A(k) across the
FBZ. The region RI can be chosen as an infinitesimally small
circle around the Dirac point K. Then, the term within the

brackets is the vorticity vK around K point. Since vK = 2π ,
C2 = 1. The valence band is degenerate with flat band at
α = 1/

√
2. Hence, the Chern number of the valence band at

α = 1/
√

2 is not defined.
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FIG. 5. (Top) Plots of s2(K) and s2(K′) vs α. (Bottom) Plots of
the Chern number C2 vs α.

We have already seen that the three bands are
nondegenerate again when α lying between 1/

√
2 and√

2, i.e., 1/
√

2 < α <
√

2. In this case, sI(K′) = 1 and
sI(K) = −1. Hence, both AI(K) and AI(K′) are not defined.
Since, we need at least one nonsingular point, this gauge
choice is redundant. However, the gauge transformed
AII(K′) = [sI(K′) − 1]∇kψ (K′) = sII(K′)∇kψ (K′) = 0
and AII(K) = [sI(K) − 1]∇kψ (K) = sII(K)∇kψ (K) =
−2∇kψ (K). Thus, we have sII(K′) = 0 and sII(K) = −2,
i.e., A(k) is singular at K and is nonsingular at K′. On making
a gauge transformation AIII(k) → AII(k) + 2∇k(ψ (k)) =
[sII(k) + 2)∇kψ (k) = sIII(k)∇kψ (k). Now, we have
sIII(K′) = 2 and sIII(K) = 0, i.e., K is nonsingular.

Again, we divide the BZ, similar to Fig. 6, into two regions
RII and RIII surrounding K′ and K, respectively. We assign
gauge-related Berry connections AII(k) and AIII(k) in RII and
RIII, respectively, such that that �(k) is well-defined in each
region. So, the Chern number is given by

C2 = 1

2π

[∫
RII

∇k × AII(k) +
∫

RIII

∇k × AIII(k)

]
· ẑd2k

= 1

2π

[
2

∮
�I

∇kψ (k) · dk
]

= 2, (22)

FIG. 6. Sketch of the FBZ with the locations of the singular points.

where we have taken the infinitesimal loop around K point to
have the positive sense of rotation.

The Chern number for the valence band for all α as shown
in Fig. 5 can be expressed as

C2(α) = �(1/
√

2 − α) + 2�(α − 1/
√

2) − �(α −
√

2).

The Chern number for the nondegenerate flat band turns
out to be zero for all values of α i.e. C1(α) = 0. Therefore
the Chern number for the conduction band corresponding to
m = 0 is C0(α) = −C2(α). Using Eqs. (18) and (19), we have
also calculated the Berry curvature and Chern numbers Cm

numerically. Our numerical results support the exact analyt-
ical results. Figure 5 displays that the system undergoes a
topological phase transition at α = 1/

√
2 (also at α = √

2 due
to the duality) since there is a change in the Chern number.

The anomalous Hall conductivity is directly related to the
Chern number. When the Fermi energy is located in a band
gap, the Hall conductivity can be expressed in terms of the
Chern number as σH = (e2/h)

∑
m Cm, where m is restricted to

the filled bands below the Fermi energy. By complete filling
of the valence band or both the valence and flat bands, the
system becomes a QHI with the Hall conductivity σH = e2/h
for α < 1/

√
2 and σH = 2e2/h for 1/

√
2 < α <

√
2.

IV. CHIRAL EDGE STATES

In transport measurements through a mesoscopic two-
dimensional system, the pair of edges parallel to the lon-
gitudinal current offers a sharp confining potential to the
charge carriers in the transverse direction. As a result, the bulk
2D bands decompose into several 1D bands (or subbands)
whose propagation vector is restricted along the longitudinal
direction. The transport coefficients of a finite system is hence
controlled by these subbands. The wave functions associated
with these bands may be spread out in the bulk of the sample
or localized at the edges.

The bulk-boundary correspondence (BBC) [14] tells that
chiral edge states appear at the boundaries of a band insulator,
if the Chern number of the 2D bulk band is nonzero. The
number of the chiral modes along an edge is equal to the
Chern number of the bulk band. These edge states show
up in the 1D band structure as channels bridging the gap
between the bulk bands. Since the irradiated α-T3 lattice is
a Floquet-Chern insulator, it is expected to host topological
edge states. We show the existence of chiral edge states by
numerically computing the low-energy band structure of the
α-T3 armchair nanoribbon driven by the off-resonant radiation
(Fig. 7). The following parameters have been used: width of
the ribbon ≈130 a, τ/h̄ω = 0.1, and J1(η) = 0.8. The edge
states denoted by blue and red curves are localized at opposite
edges of the ribbon. The slope of the edge bands determine
the group velocity of the electronic states. Thus the edge
states move with opposite group velocities at the two edges.
They form a connection between the gapped bulk bands (black
ensemble of curves). There is only one gapless edge band for
α < 1/

√
2 as shown in Figs. 7(a) and 7(b), consistent with the

obtained Chern number shown in Fig. 5. On the other hand,
Figs. 7(c) and 7(d) display that there are two edge bands for
α = 0.8 and α = 1, which agrees with the calculated Chern

205429-7
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FIG. 7. Radiation-dressed band structure of the α-T3 nanoribbon with armchair edges for (a) α = 0, (b) 0.5, (c) 0.8, and (d) 1.0. The
red/blue curves represent edge states propagating on top/bottom edges, while the black curves represent the bulk bands.

number C = 2. The BBC principle holds true in all these
observations.

V. SUMMARY AND CONCLUSION

We have considered the α-T3 lattice illuminated by intense
circularly polarized radiation of frequency much higher than
the bandwidth of the system. Using the off-resonant approx-
imation, we have derived exact analytical expressions of the
effective static band structure over the full Brillouin zone.
It is observed that the triple point degeneracy is completely
lifted due to the broken TRS symmetry caused by circularly
polarized light. It leads to unequal photoinduced gaps at K and
K′ (except for monolayer graphene and dice lattice) due to the
lack of inversion symmetry. At α = 1/

√
2, the semimetalic

phase is restored due to closing of gap between flat and
valence bands at K and that between the conduction and flat
bands at K′. The low-energy Dirac cones at K and K′ points

resurface at the gap closing point. The gap-closing value of
α is insensitive to the radiation amplitude and polarization
of light (except linear) within the off-resonant approxima-
tion. The α-T3 lattice illuminated by the circularly polarized
radiation is transformed to a Haldane-like Chern insulator.
We find that there is a topological phase transition from the
Chern number C = 1(0,−1) to a Chern number C = 2(0,−2)
at the band closing point, where C is the Chern number of
the valence (flat, conduction) band. This is an example of a
three-band system having larger Chern number. The effect of
nontrivial topology of the system should get reflected in the
transport measurements through the chiral edge channels as
shown for the armchair configuration.
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