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Disordered Si:P nanostructures as switches and wires for nanodevices
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Atomically precise placement of dopants in Si permits creating substitutional P nanowires by design. High-
resolution images show that these wires are a few atoms wide with some positioning disorder with respect to
the substitutional Si structure sites. Disorder is expected to lead to electronic localization in one-dimensional
(1D)-like structures. Experiments, however, report good transport properties in quasi-1D P nanoribbons. We
investigate theoretically their electronic properties using an effective single-particle approach based on a linear
combination of donor orbitals (LCDO), with a basis of six orbitals per donor site, thus keeping the ground state
donor orbitals’ oscillatory behavior due to interference among the states at the Si conduction band minima.
Our model for the P positioning errors accounts for the presently achievable placement precision allowing us to
study the localization crossover. In addition, we show that a gatelike potential may control its conductance and
localization length, suggesting the possible use of Si:P nanostructures as elements of quantum devices, such as
nanoswitches and nanowires.
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I. INTRODUCTION

The approaching breakdown of Moore’s law has trig-
gered a strong research effort to avoid compromising the
miniaturization spiral in electronics. One of the promising
strategies to keep it evolving consists in transferring current
device functionalities to nanostructures prepared with atomic-
scale control. Given the ubiquity of silicon integrated circuits
presently in use, atomic implantation of dopants in Si hosts
constitutes a very attractive road towards achieving such
structures. This requires effective control of donor positioning
at preassigned sites, i.e., fabricating devices at the atomic
level by design [1–3]. Reports of successful placement of P
arrays in Si suggest that this arrangement could, in principle,
play the role of nanowires connecting different components
of nanodevices, similar to a metallic wire in regular chips
[1–7].

The adequacy of P nanochains and nanoribbons in Si to
serve as channels for electronic transport in devices raises
some questions. In principle, a perfectly ordered array does
provide the desired connections [1–7]. However, in real sam-
ples the positioning uncertainties, inherent to the current fab-
rication processing standards, may spoil the desired conduc-
tance features: Due to the well known property that electronic
states in disordered one-dimensional (1D) materials are local-
ized [8], disordered nanowires can become insulators, with
negligible electronic transport. Since the nanowires of interest
here are finite, the electronic conductance is significant, as
long as the electronic localization length is comparable to or
larger than the system length itself [9].

Here we investigate these questions theoretically, modeling
P nanochains and nanoribbons by a tight-binding description
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with six orbitals per P substitutional site, corresponding to
the combinations of the six minima in the Si conduction
band, symmetrized according to the tetrahedral crystal field
potential at the donor site, see the Appendix. The sixfold
degenerate levels split into states that have the symmetry of
the different irreducible representations of the Td group [10].
This leads to a singlet with A1 symmetry, a triplet with T2

symmetry, and a doublet with E symmetry. Starting from an
ideal target configuration for the P sites, the actual positions
are individually chosen according to a Gaussian distribution
of lattice positions centered at each target site.

In this multiorbital scenario, we systematically study how
the choice of the device geometry, namely the interdonor
distance and the wire dimensions (width and length), affect the
system’s electronic conductance and localization. In addition,
we show that such generated nanostructures can serve as
nanoswitches controlled by an external gate potential.

This paper is organized as follows: In Sec. II we sum-
marize the theoretical LCDO scheme, the atomistic model
considered here, and the Landauer-Büttiker approach for
quantum coherent transport. In Sec. III we outline the lo-
calization length calculation scheme and compare the main
features of the different disorder intensities scenarios. In
Sec. IV we investigate the sensitivity of the localization
length parameter to an external gate potential and in Sec. V
we analyze the corresponding effects on the nanostructure
conductance. Our conclusions and summary are presented in
Sec. VI.

II. MODEL AND METHODS

The full set of electronic states that describe mesoscopic
nanostructures formed by donors in a Si host correspond to a
Hilbert space whose size is typically larger than 106 atomic
orbitals. As demonstrated in Refs. [9,11], the Hilbert space
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FIG. 1. (a) Target Si:P nanostructure fragment, along the Si [110] crystalline direction, for different widths W , specifying the geometric
parameters RW and RL . The rectangles define a neighboring region around a reference site (orange sphere). The number of neighbors sites
changes with W . For W > 2 one can define edge and bulk sites, with five and eight neighbors, respectively. (b) Sketch of the model system:
disordered Si:P sample connected to semi-infinite leads with translational symmetry, subjected to a back gate potential. (c) Probability
distribution P of an implanted donor to occupy the aimed position as a function of σd . Two cases are studied in this paper (blue squares):
σd = 0.1 and 0.2 nm, corresponding to a deposition matching the aimed position 90% and 50% of the time, respectively. Inset: Graphical
representation of the disorder cutoff radius δ. Here green spheres indicate the Si structure and the red circled sphere is the target position.

can be effectively represented by a reduced basis formed by
a linear combination of donor orbital (LCDO). In this hybrid
method each donor orbital is accounted for by a multivalley
central cell effective mass approach that incorporates the Si
host effects in the donor orbital itself.

We characterize the nanostructures by four geometric pa-
rameters, namely width (W ), length (L), transversal donor
distance (RW ), and longitudinal donor distance (RL), see
Fig. 1(a). Considering the placement process to occur along
the Si 〈110〉 direction, the target P donors form a rectangular
lattice with lattice parameters defined by RW and RL.

The model multiorbital Hamiltonian written in the LCDO
basis [9] reads

H =
∑

i,l

εi,l ni,l +
∑

〈i, j〉,l,m
t(i,l )( j,m)c

+
i,l c j,m, (1)

where c+
i,l (ci,l ) are creation (annihilation) operators of elec-

trons at the orbital l centered at the ith site, ni,l = c+
i,l ci,l is the

corresponding number operator, εi,l is the onsite energy, and
t(i,l )( j,m) the hopping term. In this equation 〈i, j〉 comprises
the sum over pairs of sites for which the hopping terms are
not negligible: The summation is performed over sites inside
rectangular regions like the ones in Fig. 1(a). For W = 1, 2,
and 3 we take up to two, five, and eight neighbors, respec-
tively. The parameters were calculated within the LCDO
scheme. In order to improve the reliability of the electronic
calculations at smaller interdonor distances, we extend the
treatment presented in Ref. [11] by including multiorbitals
and three-center corrections due to neighboring cores in the
hopping energies. A detailed presentation is found in the
Appendix. These developments allow us to accurately address
the nanoribbon model (W � 2 sites) placement parameters

(RL and RW ) of the order of 3 nm. We keep the isotropic
approximation.

The model system we study consists of a central region,
corresponding to the disordered Si:P nanostructure coupled
to leads in thermal and chemical equilibrium with electronic
reservoirs, see Fig. 1(b). The leads are semi-infinite, trans-
lational invariant, and define the electronic bands density of
states coupled to the system of interest [12]. In addition, we
investigate the effect of a uniform back gate potential and
study its applicability to control the nanostructure transport
properties. The gate potential VG is included in the model as
a correction to the onsite energy, namely, εi,l (VG) = εi,l (0) +
UG. Here UG is the shift in the electronic states energy and
εi,l (0) is the unbiased onsite energy calculated within the
LCDO scheme. The energy gained by the electron is UG =
ηeVG ∝ −VG, where VG is the gate potential, e is the electron
charge, and η is a sample-dependent constant incorporating
the Si dielectric screening, geometry, and the capacitive cou-
pling of the donor electron with other leads in the system. We
expect that some trends for a lateral gate potential as the one
present in Refs. [2,3] can be inferred by comparing different
nanoribbon widths, as a confining lateral potential decreases
the effective W .

For sufficiently large values of VG one expects that higher
orbitals (such as 2p orbitals) influence the results. We estimate
the validity of our approach as follows: Previous calculations
[13] show that the lower energy states of a single donor
remain in the A1, T2, E symmetry manifold. Remarkably, the
corresponding energy levels remain almost constant up to a
field strength of about 20 keV/cm, which are within the order
of magnitude required to generate the UG values we discuss.

We study the impact of positional disorder in such systems
using a Gaussian disorder model. The disorder is quantified by
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two parameters, namely a cutoff radius δ[14] around a target
substitutional site and the position standard deviation σd . For
simplicity, we choose δ = 0.4 nm, in which case each donor
can be placed at five different Si sites. The degree of disorder
is controlled by σd . Figure 1(c) gives the dependence of the
distribution of the implanted ion positions on σd . The main
panel shows the probability distribution P of an implanted
donor to occupy the aimed position as a function of σd and
the inset gives a graphical representation of the disorder cutoff
radius δ. The σd values considered in this work, namely σd =
0.1 nm and σd = 0.2 nm, are indicated by the blue squares.
These values are within state-of-the-art precision of STM
atomic placement techniques [1,6,7].

We calculate the nanostructure linear conductance using
the Landauer-Büttiker formula [15],

GAB = 2e2

h

∫ ∞

−∞
dE

(
− ∂ f

∂E

)
TAB(E ), (2)

given in terms of the Fermi-Dirac distribution function
f (E ) = [1 + e(E−μ)/kBT ]−1 and the electronic transmission
TAB(E ) = tr[�B(E )Gr (E )�A(E )Ga(E )] [16]. In Eq. (2),
Gr (Ga) is the retarded (advanced) Green’s function of the
complete system (nanoribbon and leads), which we compute
using the recursive Green’s function approach, implemented
as in Refs. [12,17,18]. The nth line or decay width, matrix ele-
ments �n = i[�r

n − (�r
n)†], are obtained from the embedding

self-energy �r
n = V†

nGr
nVn, where Vn contains the coupling

matrix elements of the sample with the nth lead, while Gr
n

is the contact Green’s function. There are several ways to
calculate the latter [19–22]; we compute Gr

n by a standard
decimation procedure based on renormalization-group ideas
[23,24].

We cast the nanostructures transport properties in terms
of the localization length ξ , formally defined by the wave
function asymptotic behavior, �(x) ∝ exp(−|x|/ξ ). In this
work, we infer the localization length by the analysis of the
conductance at zero temperature.

III. TRANSPORT AND PLACEMENT

Si:P nanostructures are multipath systems due to their
multiorbital nature. The hopping term in this multiorbital
framework plays an extremely nontrivial role, opening and
closing channels depending on the system parameters. To im-
prove the understanding of such a system towards applications
in nanodevices control, we investigate how the disorder and
placement parameters affect conductance and localization.

According to the localization theory in disordered systems
[25], the conductance is expected to decrease exponentially
with the ratio between the sample length L and the lo-
calization length ξ . Hence, we extract ξ from the relation
〈ln GAB(L)〉 ∝ −L/ξ , where 〈. . .〉 is an ensemble average [25]
(here typically over 103 . . . 104 realizations). For each set of
parameters, our algorithm selects iteratively a range of system
lengths, from the order of 101 to 102 sites, to accurately de-
termine the localization length ξ from the linear dependence
of 〈ln GAB(L)〉 with L. Figure 2 shows few representative
examples of 〈ln GAB〉 versus L and the corresponding linear
fit that gives ξ .

(a)

(b)

FIG. 2. Conductance G (in units of G0 = 2e2/h) for disordered
nanochains (W = 1) as a function of the system length L (in units
of RL or sites) for a few representative target interdonor distances RL

for (a) σd = 0.1 nm and (b) σd = 0.2 nm. The results correspond to
an average over 104 disorder realizations. In all cases the standard
deviations are smaller than the markers.

In Fig. 3 we present the localization length for W = 1
(nanochains) behavior with RL for two levels of disorder. As
expected, increasing RL or the disorder level lowers ξ . Note
that for small RL we observe an enhanced sensitivity of ξ

with σd . For these two disorder levels, ξ shows an abrupt fall
around RL = 5.7 nm.

In order to represent the combined effect of the geomet-
ric parameters RL and RW in the transport trends of our
system, we calculate the localization length ξ (RL, RW ) for
3.0 nm � [RL, RW ] � 6.5 nm. The range of values was chosen
to represent realistic geometries of the current experimental
realizations [1–3]. For technical reasons, our analysis is lim-
ited RW , RL � 3 nm, as discussed in the Appendix.

Figure 4 presents ξ as a function of RL and RW , where
for each pair of parameters, ξ is represented by the given
color code. In Figs. 4(a) and 4(b) we show ξ (RL, RW ) for
disorder σd = 0.1 nm and in Figs. 4(c) and 4(d) for σd =
0.2 nm. The frames on the left refer to W = 2 and on the

FIG. 3. Localization length ξ (in units of RL or sites) as a func-
tion of the interdonor target separation RL for nanochains (W = 1)
and disorder intensities σd = 0.1 and 0.2 nm.
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FIG. 4. Localization length ξ for nanoribbons of W = 2 and 3 as a function of the interdonor target separation RL and RW . Graphs with
the same σd present the same color bar. (a) σd = 0.1 nm and W = 2, (b) σd = 0.1 nm and W = 3, (c) σd = 0.2 nm and W = 2, and (d) σd =
0.2 nm and W = 3.

right to W = 3. The results suggest a metal-insulator phase
diagram with a very similar overall behavior for both disorder
intensities presented. In Figs. 4(a) and 4(c) our simulations
reveal a relatively small region in the investigated parameter
space with nonmonotonic behavior, roughly RW � 4.5 nm
and RL � 5.0 nm. In particular, ξ is peaked at RL ≈ 3.5 nm
and RW ≈ 5.4, 6.1, and 6.5 nm. Outside this nontrivial re-
gion, by increasing RL or decreasing RW the electronic states
tend to become more localized. In Figs. 4(b) and 4(d) we find
an overall increase of ξ and a wider region with nontrivial
extended states, corresponding to the parameter range defined
by RW � 6.0 nm and RL � 4.2 nm. In particular, ξ shows
peaks for RL ≈ 3.5 nm and RW ≈ 5.4, 6.1, and 6.5 nm. Out
of this nontrivial region, increasing RL or decreasing RW

favors localization.
Comparing W = 1, 2, and 3 we observe an overall increas-

ing in localization length with the system width, consistent
with the increasing in the maximum number of transport
channels, respectively, 6, 12, and 18. The sensitivity of ξ

on the disorder intensity seems to become stronger for larger
values of W .

IV. TUNING LOCALIZATION LENGTH

The nonmonotonic behavior of the localization length with
the lattice geometry, namely RL and RW , suggests that one

can tune it and hence control the system’s conductance G
by a suitable external handle. In what follows we show that
a back gate potential, as described in Sec. II, is capable of
dramatically modifying the transport properties of disordered
Si:P nanowires. We recall that for electrons, UG ∝ −VG.

In order to get some insight on the gate control over lo-
calization lengths in nanoribbons, we start with the nanowire
case, W = 1. Results for ξ under a gate bias from 0 down
to −250 meV are presented in Fig. 5 for two degrees of
disorder. For a fixed interdonor distance, according to the
smaller (larger) degree of disorder ξ oscillates in a larger
(smaller) range in the graph truncated to 100 (50) nm. This
nontrivial interference driven oscillatory behavior can be ex-
plained as follows: VG rigidly shifts the nanowire energy
spectrum. Hence, VG drives localized and extended states, as
well as small and large density of states of the disordered
system across the Fermi energy fixed by the contacts. Given
that the P donor in Si lower energy levels are 45 meV below
the bottom of the Si conduction band edges, applying a
bias of UG = 45 meV would ionize the donors completely
inside the active (sample) region. A wider range of control is
provided for negative values of UG which increases separation
of the P electrons levels to the Si conduction band edge, thus
remaining operational for the wide UG range shown in the
figures. Therefore we restrict our results to UG < 0 (VG > 0).
The parameter range for a conducting behavior (ξ/L � 1)
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FIG. 5. Localization length ξ for nanochains (W = 1) as a func-
tion of the gate energy UG and the interdonor target separation RL for
(a) σd = 0.1 nm and (b) σd = 0.2 nm.

shrinks for increasing values of RL, consistent with the drop
in the mean value of the hopping matrix elements.

The case W = 2 and σd = 0.1 nm is illustrated in Fig. 6.
The simulations indicate an overall increase of ξ as a function
of UG followed by an oscillatory pattern. As in the W = 1 case
we observe that the UG range corresponding to conducting
behavior shrinks with RL. In addition, a similar feature can
be observed for increasing values of RW . By varying UG

for different RW values, we find the formation of a gap—a
region of negligible values of ξ—followed by a “reactivation”
in the localization phase diagram for larger values of RL.
This gap is highlighted in Figs. 6(a)–6(c) where the threshold
RL values are 4.6 nm, 5 nm, and 5.4 nm, respectively. The
gap RL threshold value continues to increase monotonically
along Figs. 6(d)–6(f). In the last three panels [Figs. 6(g)–6(i)],
the gap closes resembling the signature of the W = 1 case.
Although it is reasonable to recover a phase diagram similar to
W = 1 case while increasing RW , we observe an enhancement

in the overall localization length values and VG range leading
to conducting behavior.

The wider ribbon case, W = 3, is given in Fig. 7. As in
W = 1 and 2 cases, one observes an increase in ξ with UG

followed by an oscillatory pattern and that the UG range lead-
ing to conducting behavior shrinks with RL and RW interdonor
distances. For smaller RW values, Figs. 7(a)–7(c) show a larger
gap than in the W = 2 case and the opening of a second gap.
Throughout Figs. 7(d)–7(f) we observe that this second gap
is short lived compared to the first one. In summary, we find
that both ξ and UG range leading to conducting behavior are
overall larger than in the W = 1 and 2 cases. We have also
performed calculations for σd = 0.2 nm, for both W = 2 and
3, not shown since all properties follow the trends identified
in the previous cases.

V. CONDUCTANCE CONTROL

In this section, we investigate the use of a gate potential
VG (UG ∝ −VG) as an external control of conductance GAB

for Si:P nanostructures. Here we set L = 60 sites for the
purpose of investigating a nanoswitch implementation in a
length comparable to the experimental realizations [1–3] of
higher P density.

Figure 8 shows the average conductance GAB as a function
of UG and RL for nanochains (W = 1). The results show os-
cillations in GAB as a function of both RL and VG. A minimum
in GAB occurs around RL ≈ 4.6 nm, which should be avoided
in practical implementations of the system as a nanoswitch.
Oscillations due to UG stand out for smaller RL values. In line
with the localization length analysis, an increase of RL causes
the range of UG values corresponding to a conducting behavior
to shrink. For RL ≈ 3.1 nm, introducing a gate potential, we
observe an increase in GAB of approximately 50% and 100%
for σd = 0.1 nm and 0.2 nm, respectively.

The conductance for W = 2 sites nanoribbons and σd =
0.1 nm results, presented in Fig. 9, show a rapidly oscil-
latory behavior as a function of UG for small RW values,
see Figs. 9(a) and 9(b). For larger RW values however [see
Figs. 9(e) and 9(f)] the oscillations are strongly damped for
small UG. In all cases, it is possible to observe a UG transition
edge between larger and smaller GAB values regimes. There
is also a minimum in GAB around RL ≈ 3.5 nm; the feature is
more pronounced in the cases shown in Figs. 9(b)–9(e). We
observe a very subtle gap opening in GAB while increasing RL.
The RL value corresponding to this opening increases with
RW . In Figs. 9(a), 9(c) and 9(e) the corresponding gapping
opening value is RL ≈ 4.2, 5.0, and 5.4 nm, respectively. As
in the W = 1 case, introducing a gate potential induces an
increase of approximately 50% in GAB.

The results for nanoribbons of W = 3 sites are presented in
Fig. 10. Some similarities with W = 2 case can be observed:
Rapidly oscillating GAB spectrum with a clear change in
overall behavior in a given transition edge, for an example see
Fig. 10(a) at RL ≈ 3.1 nm and UG = −350 meV. In contrast
with the W = 2 case we observe two gap openings and an
overall minimum in GAB values around RL ≈ 3.9 nm. The first
gap can be observed in Figs. 10(a), 10(c) and 10(e) for RL ≈
5.0, 5.4, and 5.9 nm, respectively. The second gap is more
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FIG. 6. Localization length ξ as a function of VG and RL (RW fixed) for nanoribbons of W = 2 and σd = 0.1 nm. (a)–(i) correspond to
different values of RW .

subtle but can be observed in Fig. 10(d) for RL ≈ 5.9 nm, for
example.

In summary, by considering nanostructures with increasing
width, W = 1, 2, and 3, we observe a corresponding increase
in: (i) the overall GAB values, (ii) the window of VG values
leading to a conducting behavior, and (iii) in the number
of gap openings. We also observe a change in the RL value
corresponding to an overall minimum in GAB. We also find
that the overall behavior of the conductance on the lattice
parameters does not depend on the disorder strength. This
can be explicitly seen for the W = 1 case by comparing the
simulations for σd = 0.2 nm and 0.1 nm.

Finally, let us stress the sharp VG driven metal-insulator
transition appearing for any given choice of RL in all cases we
analyze in this work. This remarkable feature strongly sug-
gests that Si:P nanostructures can act as switches by properly
tuning the gate potential.

VI. DISCUSSIONS AND CONCLUSIONS

In this work we extended the LCDO formalism [9,11]
to include Gaussian disorder, a multiorbital description, and
technical improvements, specified in the Appendix, which

results in a more realistic description of P nanochains and to
access nanoribbons of arbitrary widths. Our simulations treat
the problem considering realistic system sizes and disorder.
We also have put forward a proposal for an external control
of transport properties such as localization length and con-
ductance suggesting a new path of investigations for future
experimental implementations.

We have found nontrivial features of the electronic trans-
port properties due to system fabrication specifications still
remaining robust against disorder. Specific values of place-
ment parameters and nanostructure width provide optimized
localization length, favoring high conductance. Our calcula-
tions indicate that a similar behavior is expected for different
disorder levels.

We further analyze the effects of an external back gate
potential VG to localization length and conductance. Properly
tuning VG one can control localization lengths, allowing donor
nanowires to keep current-carrying wave functions even for
relatively long samples, serving as efficient connectors among
nanodevices parts. In addition, it is possible to increase the
nanostructure conductance, or decrease it by using this ex-
ternal potential, which suggests the use of such structures as
nanoswitches. Both connectors and switches provide state-
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FIG. 7. Localization length ξ as a function of VG and RL (RW fixed) for nanoribbons of W = 3 and σd = 0.1 nm. (a)–(i) correspond to
different values of RW .

of-the-art resources contributing to nanodevices technology
development.
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APPENDIX: MICROSCOPIC MODEL—
TECHNICAL DETAILS

The multiorbital approach employed in this study rep-
resents a significant generalization of the method used in
our previous works, where only one A1 orbital per site was
considered [9,11]. Here, effects due to neighboring donor
potentials, known to change the ground-state symmetry for
small interdonor distances, are correctly treated. Nonetheless,
the first order perturbation theory breaks down for sufficiently

small values of the interdonor distances RL and RW . We
estimate the lower bound to be around 3 nm.

1. Linear Combination of Dopant Orbitals (LCDO)

Following the well established Kohn and Luttinger pre-
scription [10,26,27] for shallow donors in Si, we consider a
basis of six donor orbitals per site, corresponding to the six
minima in Si conduction band. Valley orbit coupling, included
by first order perturbation theory for degenerate states [28,29],
renders donor orbitals as superpositions of pure valley states
obtained by the effective mass approach:

� l
i (r) = 1

Nl

6∑
μ=1

al
μFμ(r − Ri )φμ(r − Ri ), (A1)

where l refer to the donor i orbitals pinned to the donor
coordinates Ri. The constants Nl and al

μ stand for the normal-
ization and valley population (presented in Table I), Fμ(r) =
F (r) = (πa∗3)−1/2 e−r/a∗

is for simplicity approximated as
an isotropic hydrogenlike envelope function, with a species
dependent effective Bohr radius a∗ (1.106 nm for Si:P), and
φμ(r) = eikμ·ruμ(r) are the Bloch functions of the six Si con-
duction band degenerate minima (μ = 1, . . . , 6). The latter
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FIG. 8. Conductance GAB (in units of G0 = 2e2/h) as a func-
tion of a gate potential VG and interdonor target separation RL for
nanochains (W = 1), L = 60 sites, and (a) σd = 0.1 nm, (b) σd =
0.2 nm.

are located along the equivalent directions ±x, ±y, ±z at
|kμ| = k0 = 0.85(2π/aSi ), where aSi is the conventionally
called Si lattice parameter [30]. The effective Bohr radius is
obtained by incorporating screening effects due to the Si host
charge carriers in the donor singular potential.

Screening effects are included through a potential that
interpolates the expected behavior for large and small values
of r, namely,

V (r) = − e2

4πr

[
1

εSi
+

(
1

ε0
− 1

εSi

)
e−r/r∗

]
, (A2)

the screening length r∗ defines the transition between
a bare V (r → 0) = −e2/4πε0r and a screened
V (r → ∞) = −e2/4πεSir potential. Here ε0 and εSi

are, respectively, the free space and the static relative
permittivities.

As in previous works [9,11] the Hamiltonian terms are
calculated by the atomistic Hamiltonian Ĥ = Ĥi + Ĥ ′, where
Ĥi is the single donor Hamiltonian and Ĥ ′ is the perturbation
due to neighboring donor cores. We project the donor orbital
to this atomistic Hamiltonian to extract the onsite and hopping
terms. For the onsite term we obtain,

εi,l = 〈i|Ĥi|i〉 + 〈i|Ĥ ′|i〉 ≈ −El +
∑

k

〈i|V̂k|i〉, (A3)

where El is the single donor level energy given in Table I,
which contains valley-orbit corrections.

Similarly the hopping reads,

t(i,l )( j,m) = 〈 j|Ĥi|i〉 + 〈 j|Ĥ ′|i〉 (A4a)

≈ −E0〈 j|i〉 +
∑

k

〈 j|V̂k|i〉 = Ti j (R)�lm(R)

�lm = 1

Nl Nm

6∑
μ,ν=1

al
μam

ν eikμ·R (A4b)

Ti j (R) = E0Si j + Ti j j +
∑

k

Tik j (A4c)

Si j (R) = 〈F (R j )|F (Ri )〉 (A4d)

Tik j = 〈F (R j )|V (Rk )|F (Ri )〉, (A4e)

where R = R j − Ri is the interdonor distance, E0 is the
donor ground state energy, �lm comes from the valley inter-
ference, and Ti j (R) depends on the envelope overlap function
Si j and on two-centers (Ti j j) and three-centers (Tik j) envelope
function integrals. The Ti j j integrals have a closed analytical
solution [11], while the Tik j are calculated numerically. The k
labels all cores in the neighborhood of the i and j donors, see
Fig. 1(a).

Comparisons with experiments show that this multivalley
central cell corrected dopant approximation gives an accu-
rate description of the single impurity spectrum [29] and
the corresponding wave functions [31], as well as the two
impurities spectra in ionized [32] and neutral excited states
[33]. The computational advantage is clear: By incorporating
the Si matrix explicitly in the orbitals, this approach allows
the investigation of shallow donor systems of mesoscopic
dimensions, a prohibitive task for a full atomistic approach.

2. Gaussian Expansion—Three-center Integrals

In this paper we consider hopping terms due to all neigh-
boring cores. Since the straightforward calculation of these
three-center integrals is computationally expensive, we write
the envelope orbitals and the Coulomb potential, as a Gaussian
expansion, namely

F (r) =
NG∑

n=1

cF
n e−sF

n r2
, (A5)

V (r) = − e2

4πr

[
1

εSi
+

(
1

ε0
− 1

εSi

) NG∑
n=1

cV
n e−sV

n r2

]
, (A6)

where the coefficients cF
n , cV

n , sF
n , and sV

n are obtained by a
standard least square fit and presented in Table II. We find
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FIG. 9. Conductance GAB (in units of G0 = 2e2

h ) for disordered nanoribbons of W = 2 and L = 60 sites with σd = 0.1 nm as a function of
a gate potential VG and interdonor target separations RL and RW . (a)–(f) correspond to different values of RW .

FIG. 10. Conductance GAB (in units of G0 = 2e2

h ) for nanoribbons of W = 3 and L = 60 sites with σd = 0.1 nm as a function of a gate
potential VG and interdonor target separations RL and RW . (a)–(f) correspond to different values of RW .
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TABLE I. Valley population al
μ, normalization constant Nl , and

P0 donor energy El for the six donor orbitals l .

l al
x al

−x al
y al

−y al
z al

−z Nl El (meV)

A1 1 1 1 1 1 1
√

6 −45.58
Tz

2 0 0 0 0 1 −1
√

2
Ty

2 0 0 1 −1 0 0
√

2 −33.90
Tx

2 1 −1 0 0 0 0
√

2
Exy 1 1 −1 −1 0 0 2 −32.60
Ez 1 1 1 1 −2 −2

√
12

that by taking NG = 13 Gaussian terms, the expansions agree
within 10−8 accuracy for all values of r where the target
function satisfies f (r) � 10−20.

3. Gaussian Coulomb Integrals—Product Rule

Let us now show the main derivation steps to obtain
very simple expressions for the Gaussian integrals introduced
above. The Gaussian expansion of the Coulomb three-center
integral Tacb reads

Tacb = 〈F (Rb)|V (Rc)|F (Ra)〉 (A7)

=
∑
m,n

cF
mcF

n

∫
V

dr e−sF
mr2

b e−sF
n r2

aV (rc),

where rn = |r − Rn| is the relative position to donor n.
Let us now use the Gaussian product rule, i.e.,

e−sF
mr2

b e−sF
n r2

a = e−ηmnR2
ba e−umnr2

u , (A8)

where the constants umn = sF
m + sF

n and ηmn = sF
msF

n /umn are
the total and reduced exponents, while Rba = |Ra − Rb| and
ru = (sF

mrb + sF
n ra)/umn are the relative and the Gaussian cen-

ter of mass positions. Equation (A8) expresses the product
of two Gaussians in a new product where the first term is
a constant and only the second term depends on r. In other

TABLE II. Gaussian expansion coefficients for the envelope
function F (r) and exponential in the screened Coulomb potential
V (r).

F (r) V (r)

cF
n sF

n (nm−2) cV
n sV

n (nm−2)

9.26 × 10−2 4.10 × 10−1 1.91 × 10−1 3.82 × 101

8.56 × 10−2 9.19 × 10−1 1.76 × 10−1 8.60 × 101

7.31 × 10−2 1.89 × 10−1 1.52 × 10−1 1.76 × 101

6.71 × 10−2 2.15 1.38 × 10−1 2.02 × 102

4.80 × 10−2 5.30 9.86 × 10−2 4.99 × 102

3.26 × 10−2 1.38 × 101 6.68 × 10−2 1.31 × 103

3.13 × 10−2 8.99 × 10−2 6.53 × 10−2 8.35
2.12 × 10−2 3.89 × 101 4.34 × 10−2 3.70 × 103

1.33 × 10−2 1.20 × 102 2.72 × 10−2 1.15 × 104

8.03 × 10−3 4.20 × 102 1.63 × 10−2 4.05 × 104

4.68 × 10−3 1.78 × 102 9.47 × 10−3 1.74 × 105

3.84 × 10−3 4.26 × 10−2 8.03 × 10−3 3.96
3.73 × 10−3 1.54 × 104 7.45 × 10−3 1.53 × 106

words, the problem is reduced to a two-center integral

Tacb =
∑
m,n

cF
mcF

n e−ηmnR2
ba

∫
V

dr e−umnr2
uV (rc). (A9)

When V (r) is a screened Coulomb potential, this two-
centers integral can be decomposed in two terms, i.e.,
TF (ru, rc) = TSi(ru, rc) + Tsc(ru, rc). The Gaussian expan-
sion of the exponential term in the V (r) gives

TSi = − e2

4πεSi

∑
m,n

cF
mcF

n e−ηmnR2
baISi

mn,

ISi
mn =

∫
V

dr e−umnr2
u

1

rc
,

Tsc = − e2

4π

(
1

ε0
− 1

εSi

) ∑
m,n,o

cF
mcF

n cV
o e−ηmnR2

baIsc
mno,

Isc
mno =

∫
V

dr e−umnr2
u

e−sF
o r2

c

rc
.

The next step consists of writing r−1
c as a Gaussian integral,

namely, r−1
c = π−1/2

∫ ∞
−∞dt e−t2r2

c . After rearranging the inte-
grals and applying the product rule in the sc term, one obtains

ISi
mn = 1√

π

∫ ∞

−∞
dt

∫
V

dr e−umnr2
u e−t2r2

c ,

Isc
mno = 1√

π
e−νmnoR2

uc

∫ ∞

−∞
dt

∫
V

dr e−vmnor2
v e−t2r2

c ,

where vmno = (umn + sF
o ), νmno = umnsF

o /vmno, Ruc = |Rc −
Ru|, and rv = |r − Rv| where Rv = (umnRu + sF

o Rc)/vmno.
Applying the product rule, as in Eq. (A8), we find

ISi
mn = 1√

π

∫ ∞

−∞
dt e

−
(

umnt2

umn+t2

)
R2

uc

∫
V
dr e−(umn+t2 )r2

p

where rp = (umnru + t2rc)/(umn + t2) and

Isc
mno = e−νmnoR2

uc

√
π

∫ ∞

−∞
dt e

−
(

vmnot2

vmno+t2

)
R2

vc

∫
V
dr e−(vmno+t2 )r2

q

where rq = (vmnorv + t2rc)/(vmno + t2) and Rvc = |Rc − Rv|.
As in Eq. (A8), the spatial integrals depend only on the
Gaussian center of mass rp and rq.

Finally, adjusting the integration limit in the remaining
integrals, we obtain the simple expressions

ISi
mn = 2√

π

∫ ∞

0

(
π

umn + t2

)3/2

e
−

(
umnt2

umn+t2

)
R2

uc dt,

Isc
mno = 2e−νmnoR2

uc

√
π

∫ ∞

0
dt

(
π

vmno + t2

)3/2

e
−

(
vmnot2

vmno+t2

)
R2

vc .

By introducing the change of variables q2
u = t2/(umn + t2)

and q2
v = t2/(vmno + t2) the integrals are conveniently

written as

ISi
mn = 2π

∫ 1

0
dqu e−umnRucq2

u = 2πF0
[
umnR2

uc

]
,

Isc
mno = 2πe−νmnoR2

uc

∫ 1

0
dqv e−vmnRvcq2

v (A10)

= 2πe−νmnoR2
uc F0

[
vmnR2

vc

]
,
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TABLE III. Fitting coefficients of Boys function, see Eq. (A11).

Coefficient Fitted value

s1 6.70 × 10−5

B0 1.00
B1 −3.33 × 10−1

B2 9.94 × 10−2

B3 −2.28 × 10−2

B4 3.81 × 10−3

B5 −3.99 × 10−4

B6 2.15 × 10−5

s2 6.01 × 10−5

where F0 is called zero degree Boys function [34,35]. To
optimize computational resources we choose to solve the
integral once, with high precision and in a range covering
small and large values, and to adjust a curve that interpolates
with rapidly decaying exponentials the expected behavior in
all domains.

F adj
0 (x) = e−s1x6

6∑
n=0

Bnxn + (
1 − e−s2x6)1

2

√
π

x
(A11)

The coefficients of the fitted curve are presented in Table III.
For the domain we considered, x ∈ [10−8, 104], we find that
|F adj

0 − F0| ≈ 10−7, confirming the fitting quality.
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