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Slow sound in matter-wave dark soliton gases
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We demonstrate the possibility of drastically reducing the velocity of phonons in quasi-one-dimensional
Bose-Einstein condensates. Our scheme consists of a dilute dark soliton “gas” that provide the trapping for
the impurities that surround the condensate. We tune the interaction between the impurities and the condensate
particles in such a way that the dark solitons result in an array of qutrits (three-level structures). We compute
the phonon-soliton coupling and investigate the decay rates of these three-level qutrits inside the condensate. As
such, we are able to reproduce the phenomenon of acoustic transparency based purely on matter-wave phononics,
in analogy with the electromagnetically induced transparency effect in quantum optics. Thanks to the unique
properties of transmission and dispersion of dark solitons, we show that the speed of an acoustic pulse can be
brought down to ∼5 μm/s, ∼103 times lower than the condensate sound speed. This is a value that greatly
underdoes most of the reported studies for phononic platforms. We believe the present work could pave the stage
for a new generation of “stopped-sound”-based quantum information protocols.
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I. INTRODUCTION

Electromagnetically induced transparency (EIT) [1] is a
quantum interference effect in which the absorption of a weak
probe laser, interacting resonantly with an atomic transition,
is reduced in the presence of a coupling laser. EIT plays a
crucial role in the optical control of slow light [2] and optical
storage [3], having been extensively investigated in �-, V-,
and cascade-type three-level systems [4,5]. This fascinating
effect has been experimentally observed in both atoms [6]
and semiconductor quantum wells [7]. A major problem in
the initial studies of EIT in atomic vapors has to do with
the thermal spectral broadening [8,9], smearing out the EIT
window. In order to mitigate this issue, researchers have made
use of coherent Bose-Einstein condensates (BECs) [10–12].
The association of EIT with light-matter coupling can be
used to prepare and detect coherent many-body phenomena
in ultracold quantum gases [13].

Soon after the engineering of photonic crystal structures,
attention was drawn to the propagation of acoustic waves in
periodic media [14,15]. Many intriguing phenomena, such as
the analog of EIT [16,17] and Fano resonances [18,19], have
been envisaged in the context of acoustics as well [20,21]. For
example, an isotropic metamaterial consisting of grooves on a
square bar traps acoustic pulses due to strong modulation of
wave group velocity [22]; slowing down the speed of sound
in sonic crystal waveguides has also been achieved, with a
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reported group velocity of 26.7 m/s [23]. Soliton propagation
and soliton-soliton interaction in EIT media were studied
by Wadati [24], and the formation of solitons via dark-state
polaritons was proposed [25].

Recently, we showed that a dark soliton (DS) qubit in a
quasi-one-dimensional (quasi-1D) BEC is an appealing can-
didate to store quantum information, thanks to its appreciably
long lifetimes (∼0.01–1 s) [26]. Moreover, we explored the
creation of quantum correlation between DS qubits displaced
at appreciably large distances (a few micrometers) [27–29].
Dark soliton qubits thus offer an appealing alternative to
quantum optics in solid-state platforms, where information
processing involves only phononic degrees of freedom: the
quantum excitations on top of the BEC state.

In this paper, we propose to make use of dark solitons
to achieve a phenomenon with EIT-like characteristics, the
acoustic transparency (AT). The active medium is composed
of a set of dark soliton qutrits, i.e., three-level objects com-
prising an impurity trapped at the interior of a dark soliton
potential. Quantum fluctuations are provided by the BEC
acoustic (Bogoliubov) modes or simply phonons (see Fig. 1
for a schematic representation). We start by recalling the
conditions under which that qutrit is achievable. Then, the
qutrit array is shown to be an open quantum system, where
the reservoir is composed by the BEC phonons [30]. We
compute the linewidth of each of the qutrit transitions by
treating the qutrit-phonon interaction within the Born-Markov
approximation. We conclude by computing the dispersion
relation of a weak envelope of sound waves and show that
its group velocity can be drastically reduced to ∼0.06 mm/s.
Our study represents an advance in the direction of “slow-
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FIG. 1. Schematic representation of dark soliton qutrit array
immersed in a BEC. The impurities (free particles) are trapped inside
a dark soliton potential. The wiggly lines represent the quantum
fluctuations on top of the condensate (phonons).

sound” schemes, and the results have potential applications
in phononic information processing.

This paper is organized as follows: In Sec. II, we start with
the set of coupled Gross-Pitaevskii and Schrödinger equations
to study the properties of dark solitons in a quasi-1D BEC,
imprinted on a dilute set of impurities. The coupling between
DSs and phonons is computed in Sec. III, followed by a
discussion of spontaneous decay of the three-level system
in Sec. IV. The concept of slow sound due to the quantum
interference phenomenon is described in Sec. V. We conclude
the practical implications of the present scheme in Sec. VI.

II. DARK SOLITON QUTRITS

We starting by considering a dark soliton in a quasi-1D
BEC, with the latter being surrounded by a dilute gas of
impurities (see Fig. 1). The DS plays the role of a potential
for the impurities (considered to be free particles), and the
phonons act like a quantum (zero-temperature) reservoir. The
solitons and the impurities can be treated at the mean-field
level, being respectively governed by the Gross-Pitaevskii and
Schrödinger equations,

ih̄
∂ψ1

∂t
= − h̄2

2m1

∂2ψ1

∂x2
+ g11|ψ1|2ψ1 + g12|ψ2|2ψ1,

ih̄
∂ψ2

∂t
= − h̄2

2m2

∂2ψ2

∂x2
+ g21|ψsol|2ψ2. (1)

Here, g11 represents the BEC interparticle interaction strength,
g12 = g21 is the BEC-impurity coupling constant (see
Appendix A), and m1 and m2 denote the BEC particle and
impurity masses, respectively. To distinguish the weakly
interacting quasi-1D regime from the strongly interacting
Tonks-Girandeau gas [31], the dimensionless quantity α =
2aslz/l2

r � 1 is ∼0.06 for BEC and ∼0.07 for impurity par-
ticles in the case of dark solitons. Here, lz (lr) is the longitu-
dinal (transverse) size, and as ∼ 0–37 nm is the 85Rb s-wave
scattering length [32].

The singular nonlinear solution corresponding to the soli-
ton profile is [33,34]

ψsol(x) = √
n0 tanh

(
x

ξ

)
, (2)

where n0 denotes the BEC linear density and ξ =
h̄/

√
m1n0g11 is the healing length. The latter lies in the range

0.7–1.0 μm in a typical 1D BEC, for which the condensate
is homogeneous along a trap of size L ∼ 70 μm [35]. More
recent experiments showed eventual trap inhomogeneities to
be much less critical by providing much larger traps, L ∼
100 μm [36]. The time-independent version of the impurity
equation in (1) reads

E ′ψ2 = − h̄2

2m2

∂2ψ2

∂x2
− g21n0sech2

(
x

ξ

)
ψ2, (3)

where E ′ = E − n0g21 [37]. To find the analytical so-
lution of Eq. (3), the potential is cast in the Pöschl-
Teller form V (x) = −h̄2ν(1 + ν)sech2(x/ξ )/2m2ξ

2, with
2ν = −1 + √

1 + 4g21m2/g11m1 and the energy spectrum
E ′

n = −h̄2(ν − n)2/2m2ξ
2, where n is an integer [38]. The

number of bound states created by the DS is nbound = �ν +
1 + √

ν(1 + ν)�, where the symbol �·� denotes the integer
part. As such, for a DS to contain exactly three bound states
(i.e., the condition for the qutrit to exist), the parameter ν must
lie in the range

4
5 � ν < 9

7 . (4)

At ν � 9/7, the number of bound states increases. How-
ever, the effect of the impurity on the profile of the soliton
itself becomes more important, and therefore, special care
must be taken in the choices of the mass ration m2/m1.
In our numerical calculations below, we choose 85Rb BEC
solitons trapping 134Cs impurities (see Appendix A). How-
ever, other choices are possible, and our analysis remains
general.

III. QUANTUM FLUCTUATIONS

The total BEC quantum field includes the DS wave
function and quantum fluctuations, ψ1(x) = ψsol(x) + δψ (x),
where δψ (x) =∑k[uk (x)bk + v∗

k (x)b†
k] and bk are the

bosonic operators verifying the commutation relation
[bk, b†

q] = δk,q. The amplitudes uk (x) and vk (x) satisfy
the normalization condition |uk (x)|2 − |vk (x)|2 = 1
and are explicitly given in Appendix B. The total
Hamiltonian then reads H = Hq + Hp + Hint , where
Hq = h̄ω1(|e2〉〈e2| − |e1〉〈e1|) + h̄ω0(|e1〉〈e1| − |g〉〈g|) is
the qutrit Hamiltonian, with ω1 = h̄(2ν − 3)/(2mξ 2) and
ω0 = h̄(2ν − 1)/(2mξ 2) being the gap energies for the
|e2〉 ↔ |e1〉 and |e1〉 ↔ |g〉 transitions, respectively. The
term Hp =∑k εkb†

kbk represents the phonon (reservoir)
Hamiltonian, where εk = μξ

√
k2(ξ 2k2 + 2) is the

Bogoliubov spectrum with chemical potential μ = g11n0.
The interaction Hamiltonian is given by

Hint = g12

∫
dxψ†

2 ψ
†
1 ψ1ψ2, (5)
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where ψ2(x) =∑2
l=0 ϕl (x)al describes the impurity field

spanned in terms of the bosonic operators al , with
ϕ0(x) = A0sechα (x/ξ ), ϕ1(x) = 2A1 tanh(x/ξ )ϕ0(x), and
ϕ2(x) = √

2A2[1 − (1 + 3α) tanh2(x/ξ )]ϕ0(x), where
Aj ( j = 0, 1, 2) are the normalization constants and
α = √

2g12m2/(g11m1) (see Appendix B). Using the
rotating wave approximation (RWA), the first-order perturbed
Hamiltonian can be written as

H (1)
int =

∑
k

(
gk

0σ
+
0 + gk

1σ
+
1

)
bk + (gk∗

0 σ−
0 + gk∗

1 σ−
1

)
b†

k,

where σ+
0,1 = a†

e1,e2
ag,e1 , σ−

0,1 = a†
g,e1

ae1,e2 , while the coupling
constants gk

ll ′ = gk
i (i = 0, 1) are explicitly given in Appendix

B. In our RWA calculation, the counterrotating terms propor-
tional to bkσ

−
i and b†

kσ
+
i are dropped. The accuracy of such

an approximation can be verified a posteriori, provided that
the emission rates γ0 and γ1 are much smaller than the qutrit
transition frequencies ω0 and ω1, respectively.

IV. WIGNER-WEISSKOPF THEORY
OF SPONTANEOUS DECAY

We employ the Wigner-Weisskopf theory to find the spon-
taneous decay rate of the states by neglecting the effect of
temperature and other external perturbations [39]. In this
regard, the qutrit is assumed to be initially at the excited state
|e2〉, and the phonons are assumed to be in the vacuum state
|0〉. Under such conditions, the wave function of the total
system (qutrit + phonons) can be described as

|�(t )〉 = a(t )|e2, 0〉 +
∑

k

bk (t )|e1, 1k〉

+
∑
k,p

bk,p(t )|g, 1k, 1p〉, (6)

where a(t ) is the probability amplitude of the excited state
|e2〉. The qutrit decays to the state |e1〉 with probability
amplitude bk (t ) by emitting a phonon of wave vector k
and frequency ωk . Subsequently, the qutrit deexcites to the
ground state |g〉 via the emission of a phonon of momentum
p, frequency ωp, and probability amplitude bk,p(t ). In the
interaction picture, these coefficients can be written as (see
Appendix C)

a(t ) = e−γ1t/2,

bk (t ) = −igk
0

[ei(ωk−ω1 )t−γ1t/2 − e−γ0t/2]

i(ωk − ω1) − γ1−γ0

2

,

bk,p(t ) = gk
0gk

1

i(ωk − ω1) − γ1−γ0

2

[
ei(ωp−ω0 )t−γ0t/2 − 1

i(ωp − ω0) − γ0

2

+ 1 − ei(ωk+ωp−ω0−ω1 )t−γ1t/2

i(ωk + ωp − ω0 − ω1) − γ1

2

]
, (7)

where γi (i = 0, 1) is the ith-state decay rate

γi = L√
2h̄ξ

∫
dωk

√
1 + ηi

ηi

∣∣gk
i

∣∣2δ(ωk − ωi ), (8)

FIG. 2. (a) The impurity states and the respective transition
frequencies ωi (i = 0, 1) in the dark soliton potential. (b) The de-
pendence of the transition frequencies on the BEC-impurity coupling
g12. The vertical dashed lines correspond to the range 4/5 � ν < 9/7
defined for the qutrit. For definiteness, we have used m2 = 1.56m1,
corresponding to a 134Cs impurity loaded in a 85Rb BEC dark soliton.

where ηi =
√

μ2 + h̄2ω2
i . The validity of both the RWA and

the Born-Markov approximations is illustrated in Figs. 2 and
3, which show that the decay rates of both transitions are
much smaller than the respective transition frequencies. The
soliton retains its shape, which was confirmed by Akram and
Pelster [31] while investigating the quasi-1D model of 133Cs
impurities in the center of a trapped 87Rb BEC. Moreover,
the occurrence of impurity condensation on the bottom of the
soliton due to a sufficiently high concentration of impurities
leads to the breakdown of the single-particle assumption and
a spurious energy shift. This can be avoided if fermionic
impurities are used instead [40]. It is pertinent to mention here
two experimental considerations. First, notice that Feshbach
resonances can be used to tune the value of g12, allowing
for an additional control of the rates γi. Second, dark soliton
quantum diffusion may be the only immediate limitation to
the performance of the qutrits [41], a feature that has been
theoretically predicted but not yet experimentally validated. In
any case, quantum evaporation is expected if important trap
anisotropies are present, a limitation that we can overcome
with the help of boxlike or ring potentials [35]. This is exactly
the situation we will consider in the numerical calculations
below.

FIG. 3. Dependence of the decay rates γ0 (blue line) and γ1 (red
line) on the BEC-impurity coupling. The solid lines correspond to the
range 4

5 � ν < 9
7 that defines the qutrit. We have used m2 = 1.56m1,

as in Fig. 7.
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V. ACOUSTIC BLOCH EQUATIONS

To produce the interference effect necessary for the AT,
we consider the situation where the qutrit is externally driven
by two (probe and control) acoustic fields by following the
scheme of Raman lasers, described in Refs. [42–44]. The DS
qutrit states are coupled to the phonons with a Raman laser
driving the transition |g〉 ↔ |e1〉 with frequency ωp and de-
tuning �p = ωp − ω0 to interact with BEC. Simultaneously,
a Raman laser field of frequency ωc and detuning �c =
ωc − ω1 couple the states |e1〉 and |e2〉. Therefore, the qutrit
driving can be described, within the RWA approximation, by
the following Hamiltonian:

Hdrive = h̄

2
(�p|e1〉〈g| + �c|e2〉〈e1| − 2�p|e1〉〈e1|

− 2δ|e2〉〈e2|) + H.c., (9)

where δ = �p + �c and �p,c denote the Rabi frequency of
the probe and control fields, respectively. We obtain the solu-
tion for the density matrix ρ by solving the master equation

ρ̇q(t ) = − i

h̄
[Hq, ρq(t )] +

1∑
i=0

γiLi[ρ], (10)

with ρi j = ρ∗
ji and the Lindblad operator L[ρ] =

[σ−ρq(t )σ+ − 1
2 {σ+σ−, ρq(t )}]. In the limit of the weak-probe

approximation, �p � �c, the steady-state coherences are
given by

ρ21 = i�p

(γ0 − 2i�p) + �2
c

γ1−2iδ

,

ρ31 = −i�c

(γ1 − 2iδ)
ρ21. (11)

In what follows, we consider a set of solitons, i.e., a soliton
gas [45], of density N = 1/d , with d denoting the average
distance between the solitons. If the solitons are well sepa-
rated, d � ξ , we can assume the qutrits are independent. This
is not usually the case in one-dimensional systems, unless in
the special commensurability situation, as a consequence of
the infinite-range (sinusoidal) character of the collective decay
rate [46,47]. Fortunately, in our case, because the solitons
locally deplete the condensate density, the collective scatter-
ing rate vanishes at distances largely exceeding the healing
length, d � ξ [27,28]. As such, we can determine the long-
wavelength behavior, kd � 1, of the probe field envelope.
Using the Heisenberg relation ih̄∂ (δ�)/∂t = [Ĥ, δ�] and the
fluctuating field δ� = φbqeiqx + ψ∗b†

qe−iqx, where φ and ψ

are the Bogoliubov coefficients, we obtain the propagating
equation (see Appendix D)

∂�p

∂t
+ ωq

q

∂�p

∂x
= − i

2h̄2

(
gkres

0

)2
ρ12, (12)

where �p = Nξgkres
0 |δ�|/h̄ and kres = 0.9/ξ is the reso-

nant wave vector. By ignoring the time derivative from
Eq. (12) (the time-independent fluctuating field) and compar-
ing it with ∂zδ� = ikχδ�/2 [48], we express the soliton-gas

FIG. 4. Acoustic susceptibility χ dependence on the probe de-
tuning �p. (a) The dispersion and (c) absorption spectra calculated
for g12 = 1.1g11 (dashed line) and g12 = 1.85g11 (solid line), with
�c > γ1. (b) The dispersion and (d) absorption for �c = 0.2γ0

(dashed line) and �c = 2γ0 (solid line).

susceptibility as

χ = − iNξ
(
gkres

0

)2
h̄εk
[
(γ0 − 2i�p) + �2

c
γ1−2iδ

] , (13)

where we have replaced ρ12 by its mean value in the soliton
gas,

〈ρ12〉 = ρ
gas
12 = Nξρ12,

containing the information about the number of solitons per
unit length Nξ . The acoustic response of the envelope can be
determined by the refractive index n = √

1 + χ . The onset of
the AT is demonstrated in Fig. 4. The system initially reveals
a normal Lorentzian peak under �c � γ1, but a dip appears as
we increase the control laser power �c. Moreover, the width
of the transparency window increases significantly for �c �
γ1 and carries a signature of the Autler-Townes doublet. We
expect that the destructive interference between the excitation
pathways is reduced due to a large value of γ1. It is important
to realize that a change in absorption over a narrow spectral
range must be accompanied by a rapid and positive change in
the refractive index due to which a very low group velocity is
produced in AT. Therefore, the group velocity for the acoustic
field is given by

vg = cs

1 + χR

2 + ωp

2 (∂χR/∂ωp)
, (14)

where we assume that �2
c � �p�c.

Slow sound in box potentials

For the sake of experimental estimates, we consider a
one-dimensional BEC loaded in a large box potential. In a
typical trap of size ∼100 μm, healing length ξ ∼ 0.7 μm, and
sound speed cs ∼ 1 mm/s [35], we can imagine placing up to
20 well-separated (d ∼ 3.5 μm) solitons. Under these condi-
tions, the envelope group velocity can be brought down to a
value of ∼0.06 mm/s, corresponding to the peak appearing in
Fig. 5. Indeed, for a wavelength compared to an intersoliton
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FIG. 5. (a) The dispersion curves, where the solid line illustrates
the solutions of Eq. (12) for g12 = 1.85g11 and the dashed line shows
the Bogoliubov energy spectrum. The inset shows the dependence
of the absorption (transparency) width on the control Rabi frequency
�c. (b) The group velocity vg of the order of 0.06 of the sound speed
cs. In all cases, we have set m2 = 1.56m1 and a soliton concentration
of Nξ = 0.2.

separation d , the estimated group velocity is vg 
 5.0 μm/s.
This is much smaller than that obtained in band-gap arrays
[49] and detuned acoustic resonators [50]. In the latter, a
sound speed of ∼9.8 m/s is experimentally reported, which
makes our scheme able to produce slow pulses by an ∼105

smaller factor.

VI. CONCLUSION

In conclusion, we proposed a scheme for the realization
of an acoustic transparency phenomenon with dark soliton
qutrits in a quasi-one-dimensional Bose-Einstein condensate,
in analogy with the well-known phenomenon of electromag-
netically induced transparency. The qutrits consist of three-
level structures formed by impurities trapped by the dark
solitons. We investigated the spontaneous decay rates to
analyze the interference effect of the acoustic transparency,
due to which a narrow absorption window, depending on the
BEC-impurity coupling, can be achieved. We showed that an
acoustic pulse can be slowed down to a speed of 5.0 μm/s.
We believe that the suggested approach opens a promising
research avenue in the field of acoustic transport. In general,
the present scheme will motivate numerous applications based
on the concept of slow or stopped sound, such as quantum
memories and quantum information processing [51,52].
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APPENDIX A: TRAPPING IMPURITIES
WITH DARK SOLITONS

We consider a dark soliton in a quasi-1D BEC, which in
turn is surrounded by a dilute set of impurities (see Fig. 1

FIG. 6. Schematic representation of a four-level system obtained
for ν = 10/7. The highest excited state exists at the border of the
potential created by the dark soliton.

of the main text). The BEC and the impurity particles are
described by the wave functions ψ1(x, t ) and ψ2(x, t ), respec-
tively. At the mean-field level, the system is governed by the
Gross-Pitaevskii and Schrodinger equations, respectively,

ih̄
∂ψ1

∂t
= − h̄2

2m1

∂2ψ1

∂x2
+ g11|ψ1|2ψ1 + g12|ψ2|2ψ1,

ih̄
∂ψ2

∂t
= − h̄2

2m2

∂2ψ2

∂x2
+ g21|ψ1|2ψ2. (A1)

Here, the discussion is restricted to repulsive interactions
(g11 > 0) where the dark solitons are assumed to be not
significantly disturbed by the presence of impurities, which
we consider to be fermionic in order to avoid condensation
at the bottom of the potential, and g12 = g21. To achieve
this, the impurity gas is chosen to be sufficiently dilute, i.e.,
|ψ1|2 � |ψ2|2. Such a situation can be produced, for example,
by taking 134Cs impurities in a 85Rb BEC [53]. Therefore, the
impurities can be regarded as free particles that feel the soliton
as a potential,

ih̄
∂ψ2

∂t
= − h̄2

2m2

∂2ψ2

∂x2
+ g21|ψsol|2ψ2, (A2)

where the singular nonlinear solution corresponding to
the soliton profile is ψsol(x) = √

n0 tanh [x/ξ ]. The time-
independent version of Eq. (A2) reads

(E − g21n0)ψ2 = − h̄2

2m2

∂2ψ2

∂x2
− g21n0sech2

(
x

ξ

)
ψ2. (A3)

To find the analytical solution of Eq. (A3), the potential is cast
in the Pöschl-Teller form

V (x) = − h̄2

2m2ξ 2
ν(ν + 1)sech2

(
x

ξ

)
, (A4)

with ν = (−1 + √
1 + 4g21m2/g11m1)/2. The particular case

of ν being a positive integer belongs to the class of reflec-
tionless potentials [38], for which an incident wave is totally
transmitted. For the more general case considered here, the
energy spectrum associated with the potential in Eq. (A4)
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FIG. 7. Qutrits in a possible experimental situation: numerical profiles of the dark soliton (black lines) and the impurity eigenstates (red
lines). From left to right, we depict the ground state ϕ0(x) and the first and second states, ϕ1(x) and ϕ2(x), respectively, of a fermionic 134Cs
impurity trapped in a 85Rb BEC dark soliton. The solid lines are the numerical solutions, while the dashed lines are the analytical expression
described in the main text. We have used the following parameters: m2 = 1.56m1, g12 = 1.25g11 (corresponding to ν = 1.13). We fix the
number of depleted condensate atoms by the dark soliton to be n0ξ 
 50.

reads

E
′
n = − h̄2

2m2ξ 2
(ν − n)2, (A5)

where n is an integer. The number of bound states created by
the dark soliton is nbound = �ν + 1 + √

ν(1 + ν)�, where the
symbol �·� denotes the integer part. As such, the condition for
exactly three bound states (i.e., the condition for the qutrit to
exist) is obtained if ν sits in the range

4

5
� ν <

9

7
, (A6)

as discussed in the main text. At ν � 9/7, the number of
bound states increases (see Fig. 6 for a schematic illustration).

In Fig. 7, we compare the analytical estimates with the full nu-
merical solution of Eqs. (A1) for both the soliton and the qutrit
wave functions under experimentally feasible conditions.

APPENDIX B: SOLITON-PHONON HAMILTONIAN

The interaction Hamiltonian is given by

Hint = g12

∫
dxψ†

2 ψ
†
1 ψ1ψ2, (B1)

where ψ2(x) =∑2
l=0 ϕl (x)al describes the qutrit field

in terms of the bosonic operators an, with ϕ0(x) =
A0sechα (x/ξ ), ϕ1(x) = 2A1 tanh(x/ξ )ϕ0(x), and ϕ2(x) =√

2A2[1 − (1 + 3α) tanh2(x/ξ )]ϕ0(x), where Aj ( j = 0, 1, 2)
are the normalization constants, given by

A0 =
(√

π�[α]

�
[

1+2α
2

]
)− 1

2

,

A1 =
[

22(1+α)A2
0

(
2F1[α, 2(1 + α), 1 + α,−1]

α
− 2F1[1 + α, 2(1 + α), 2 + α,−1]

1 + α
+ 2F1[2 + α, 2(1 + α), 3 + α,−1]

2 + α

)]− 1
2

,

A2 =
[

2A2
0A2

1

(
9α

2(1 + α)
+ 9α2

4(1 + α)
+ 9α2√π (6 + 5α + α2)�[α]

16�
[

5
2 + α

]
+ 3 × 22(1+α)α(2 + 3α)2F1[1 + α, 2(2 + α), 2 + α,−1]

1 + α
+ 4(2+α)

2F1[2 + α, 2(2 + α), 3 + α,−1]

2 + α

+ 3 × 22(2+α)α2F1[2 + α, 2(2 + α), 3 + α,−1]

2 + α
+ 27 × 4(1+α)α2

2F1[2 + α, 2(2 + α), 3 + α,−1]

2(2 + α)

+ 3 × 2(3+2α)α2F1[3 + α, 2(2 + α), 4 + α,−1]

3 + α
+ 9 × 22(1+α)α2

2F1[3 + α, 2(2 + α), 4 + α,−1]

3 + α

+ 9 × 22αα2
2F1[4 + α, 2(2 + α), 5 + α,−1]

4 + α

)]− 1
2

, (B2)

where 2F1 and �[α] represent the hypergeometric and gamma function, respectively, and α = √
2g12/g11. The inclusion

of quantum fluctuations is performed by writing the BEC field as ψ1(x) = ψsol(x) + δψ (x), where δψ (x) =∑k[uk (x)bk +
v∗

k (x)b†
k] and bk are the bosonic operators verifying the commutation relation [bk, b†

q] = δk,q. The amplitudes uk (x) and vk (x)
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satisfy the normalization condition |uk (x)|2 − |vk (x)|2 = 1 and are explicitly given by [41],

uk (x) =
√

1

4πξ

μ

εk

{[
(kξ )2 + 2εk

μ

][
kξ

2
+ i tanh

(
x

ξ

)]
+ kξ

cosh2
(

x
ξ

)
}

and

vk (x) =
√

1

4πξ

μ

εk

{[
(kξ )2 − 2εk

μ

][
kξ

2
+ i tanh

(
x

ξ

)]
+ kξ

cosh2
(

x
ξ

)
}

.

Using the rotating wave approximation (RWA), the first-order
perturbed Hamiltonian can be written as

H (1)
int =

∑
k

(
gk

0σ
+
0 + gk

1σ
+
1

)
bk + (gk∗

0 σ−
0 + gk∗

1 σ−
1

)
b†

k,

where σ+
0,1 = a†

e1,e2
ag,e1 , σ−

0,1 = a†
g,e1

ae1,e2 , and the coupling
constants gk

ll ′ = gk
i (i = 0, 1) are explicitly given by

gk
0 = ig12k2ξ 3/2

80εk

√
n0π

6
(2μ + 8k2μξ 2 + 15εk )

× (−4 + k2ξ 2)csch

(
kπξ

2

)
,

gk
1 = ig12k2ξ 3/2

896εk

√
n0π

15
[28(2k4ξ 4 − 35k2ξ 2 + 68)εk

+μ(29k6ξ 6 − 504k4ξ 4 + 896k2ξ 2 + 64)]csch

(
kπξ

2

)
.

Technically speaking, the RWA approximation here means
neglecting the intraband terms in Eq. (B3), whose amplitudes
are given by the coefficients gk

ll , illustrated in Fig. 8. This
is achieved if we assume that only resonant processes (i.e.,
phonons with wave vectors k such that their energies ωk

are in resonance with the transitions ω0 and ω1, promoting
excitation-deexcitation of the impurity inside the soliton) par-
ticipate in the dynamics. As explained in the main text and
as we see below, the validity of our RWA approximation is
verified a posteriori, holding if the corresponding spontaneous
emission rates γi (i = 0, 1) are much smaller than the qutrit
transition frequencies ωi.

APPENDIX C: WIGNER-WEISSKOPF THEORY OF
SPONTANEOUS DECAY

We employ the Wigner-Weisskopf theory to find the spon-
taneous decay rate of the states by neglecting the effect

of temperature and other external perturbations. This is ex-
tremely well justified in our case, as BECs can nowadays
be routinely produced well below the critical temperature for
condensations. The qutrit is assumed to be initially at the
excited state |e2〉, and the phonons are assumed to be in the
vacuum state |0〉. Under such conditions, the wave function of
the total system (qutrit + phonons) can be described as

|φ(t )〉 = a(t )|e2, 0〉 +
∑

k

bk (t )|e1, 1k〉

+
∑
k,p

bk,p(t )|g, 1k, 1p〉, (C1)

where a(t ) is the probability amplitude of the excited state
|e2〉. The qutrit decays to the state |e1〉 with probability
amplitude bk (t ) by emitting a phonon of wave vector k and
frequency ωk . Subsequently, the qutrit deexcites to the ground
state |g〉 via the emission of a q phonon of frequency ωp and
probability amplitude bk,p(t ). The Wigner-Weisskopf ansatz
(C1) is then let to evolve under the total Hamiltonian in
Eq. (B3), for which the corresponding Schrödinger equation
yields

ȧ(t ) = −γ1

2
a(t ),

ḃk (t ) = − i

h̄
gk∗

1 ei(ωk−ω1 )t− γ1
2 t − γ0

2
bk (t ),

ḃk,p(t ) = − i

h̄
gp∗

0 bk (t )ei(ωp−ω0 )t , (C2)

which are simplified by following the procedure of Ref. [26].
Here, γi (i = 0, 1) is the ith-state decay rate given by

γi = L√
2h̄ξ

∫
dωk

√
1 + ηi

ηi

∣∣gk
i

∣∣2δ(ωk − ωi ), (C3)

with

γ0 = πN0g2
12

76800h̄μ5ξ 2η0

√
μ+η0

μ

(−μ + η0)(−5μ + η0)2

⎡
⎣8η0 + 3μ

⎛
⎝−2 + 5ξ

√
h̄2ω2

0

μ2ξ 2

⎞
⎠
⎤
⎦

2

× csch2

(
π

√−μ + η0

2
√

μ

)
,

γ1 = πN0g2
12

2.4 × 107h̄μ7ξ 2η1

√
μ+η1

μ

(−μ + η1)

⎧⎨
⎩−1956μ3 + h̄2ω2

1

[− 591μ + 56
√

η2
1 − μ2 + 29η1

]

+ 4μ2

⎡
⎣505η1 + 7

√
η2

1

μ2
− 1(107μ − 39η1)

⎤
⎦
⎫⎬
⎭

2

csch2

(
π

√−μ + η1

2
√

μ

)
,
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FIG. 8. Interband gk
ll ′ (l �= l ′; solid lines) and intraband gk

ll ′ (l =
l ′; dashed and dot-dashed lines) coupling amplitudes. Near resonance
(k ∼ 0.9ξ−1 for the first transition and k ∼ 0.7ξ−1 for the second
transition), the interband terms clearly dominate over the intraband
transitions, allowing us to neglect the latter within the rotating wave
approximation.

where ηi =
√

μ2 + h̄2ω2
i . In the long-time limit t � γi,

Eq. (C2) can be simplified to obtain

a(t ) = e−γ1t/2,

bk (t ) = −igk
0

[ei(ωk−ω1 )t−γ1t/2 − e−γ0t/2]

i(ωk − ω1) − γ1−γ0

2

,

bk,p(t ) = gk
0gk

1

i(ωk − ω1) − γ1−γ0

2

[
ei(ωp−ω0 )t−γ0t/2 − 1

i(ωp − ω0) − γ0

2

+ 1 − ei(ωk+ωp−ωeg)t−γ1t/2

i(ωk + ωp − ωeg) − γ1

2

]
, (C4)

where ωeg = ω0 + ω1, leading to Eq. (7) of the main text.

APPENDIX D: HEISENBERG’S EQUATION AND
SOUND PROPAGATION

With the aim of studying how a dilute array of qutrits affects
the propagation of sound waves inside the condensate, we
compute the equation of motion for a weak acoustic probe
coupling the ground and first excited states (i.e., driving the
lower transition of the qutrits). This is done with the help of
Heisenberg’s relation

ih̄
∂ (δ� )

∂t
= [Ĥ , δ�], (D1)

where Ĥ = Hq + Hp + Hdrive denotes the total Hamiltonian
and δ� = φbqeiqx + ψ∗b†

qe−iqx is the fluctuating field with the
Bogoliubov coefficients φ and ψ . Noticing that the commuta-
tion relation with the driving Hamiltonian provides

[Hdrive, δ�] = gkres
0

2h̄
ρ12, (D2)

where �p = Nξgkres
0 |δ�|/h̄, and proceeding similarly for the

commutation with Hq and Hp, we obtain the following wave
equation:

∂�p

∂t
+ ωq

q

∂�p

∂x
= − i

2h̄2

(
gkres

0

)2
ρ12, (D3)

corresponding to Eq. (12) of the main text. The quantum
interference with the second transition, driven by a coupling
field of intensity �c � �p, is contained in the coherence ρ12

appearing in the right-hand side of Eq. (D3). The latter can be
identified as the acoustic analog of a dynamical susceptibility.
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[6] K.-J. Boller, A. Imamoğlu, and S. E. Harris, Phys. Rev. Lett. 66,

2593 (1991).
[7] G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov,

and C. C. Phillips, Phys. Rev. Lett. 84, 1019 (2000).
[8] E. A. Cornell and C. E. Wieman, Rev. Mod. Phys. 74, 875

(2002).
[9] W. Ketterle, Rev. Mod. Phys. 74, 1131 (2002).

[10] I. Vadeiko, A. V. Prokhorov, A. V. Rybin, and S. M. Arakelyan,
Phys. Rev. A 72, 013804 (2005).

[11] J. G. Ri, C. K. Kim, and K. Nahm, Commun. Theor. Phys. 48,
461464 (2007).

[12] V. Ahufinger, R. Corbalan, F. Cataliotti, S. Burger, F. Minardi,
and C. Fort, Opt. Commun. 211, 159 (2002).

[13] J. Ruostekoski and D. F. Walls, Phys. Rev. A 59, R2571 (1999);
Eur. Phys. J. D 5, 335 (1999).

[14] E. Lheurette, Metamaterials and Wave Control (Wiley-ISTE,
London, 2013).

[15] R. V. Craster and S. Guenneau, Acoustic Metamaterials: Nega-
tive Refraction, Imaging, Lensing and Cloaking, Springer Series
in Metamaterials (Springer, Berlin, 2013), Vol. 166.

[16] N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T.
Pfau, and H. Giessen, Nat. Mater. 8, 758 (2009).

[17] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod.
Phys. 77, 633 (2005).

[18] B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P.
Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707
(2010).

[19] C. Wu, A. B. Khscianikaev, R. Adato, N. Arju, A. A. Yanik, H.
Altug, and G. Shvets, Nat. Mater. 11, 69 (2011).

[20] A. Santillan and S. I. Bozhevolnyi, Phys. Rev. B 84, 064304
(2011).

[21] M. Amin, A. Elayouch, M. Farhat, M. Addouche, A. Khelif,
and H. Bagci, J. Appl. Phys. 118, 164901 (2015).

[22] J. Zhu, Y. Chen, X. Zhu, F. J. Garcia-Vidal, X. Yin, W. Zhang,
and X. Zhang, Sci. Rep. 3, 1728 (2013).

[23] A. Cicek, O. A. Kaya, M. Yilmaz, and B. Ulug, J. Appl. Phys.
111, 013522 (2012).

[24] M. Wadati, Eur. Phys. J. Spec. Top. 173, 223 (2009).
[25] X. J. Liu, H. Jing, and M. L. Ge, Phys Rev. A 70, 055802 (2004).

205408-8

https://doi.org/10.1103/PhysRevLett.64.1107
https://doi.org/10.1103/PhysRevLett.64.1107
https://doi.org/10.1103/PhysRevLett.64.1107
https://doi.org/10.1103/PhysRevLett.64.1107
https://doi.org/10.1038/17561
https://doi.org/10.1038/17561
https://doi.org/10.1038/17561
https://doi.org/10.1038/17561
https://doi.org/10.1103/PhysRevLett.86.783
https://doi.org/10.1103/PhysRevLett.86.783
https://doi.org/10.1103/PhysRevLett.86.783
https://doi.org/10.1103/PhysRevLett.86.783
https://doi.org/10.1103/PhysRevA.81.053836
https://doi.org/10.1103/PhysRevA.81.053836
https://doi.org/10.1103/PhysRevA.81.053836
https://doi.org/10.1103/PhysRevA.81.053836
https://doi.org/10.1103/PhysRevLett.107.163604
https://doi.org/10.1103/PhysRevLett.107.163604
https://doi.org/10.1103/PhysRevLett.107.163604
https://doi.org/10.1103/PhysRevLett.107.163604
https://doi.org/10.1103/PhysRevLett.66.2593
https://doi.org/10.1103/PhysRevLett.66.2593
https://doi.org/10.1103/PhysRevLett.66.2593
https://doi.org/10.1103/PhysRevLett.66.2593
https://doi.org/10.1103/PhysRevLett.84.1019
https://doi.org/10.1103/PhysRevLett.84.1019
https://doi.org/10.1103/PhysRevLett.84.1019
https://doi.org/10.1103/PhysRevLett.84.1019
https://doi.org/10.1103/RevModPhys.74.875
https://doi.org/10.1103/RevModPhys.74.875
https://doi.org/10.1103/RevModPhys.74.875
https://doi.org/10.1103/RevModPhys.74.875
https://doi.org/10.1103/RevModPhys.74.1131
https://doi.org/10.1103/RevModPhys.74.1131
https://doi.org/10.1103/RevModPhys.74.1131
https://doi.org/10.1103/RevModPhys.74.1131
https://doi.org/10.1103/PhysRevA.72.013804
https://doi.org/10.1103/PhysRevA.72.013804
https://doi.org/10.1103/PhysRevA.72.013804
https://doi.org/10.1103/PhysRevA.72.013804
https://doi.org/10.1016/S0030-4018(02)01826-6
https://doi.org/10.1016/S0030-4018(02)01826-6
https://doi.org/10.1016/S0030-4018(02)01826-6
https://doi.org/10.1016/S0030-4018(02)01826-6
https://doi.org/10.1103/PhysRevA.59.R2571
https://doi.org/10.1103/PhysRevA.59.R2571
https://doi.org/10.1103/PhysRevA.59.R2571
https://doi.org/10.1103/PhysRevA.59.R2571
https://doi.org/10.1007/s100530050263
https://doi.org/10.1007/s100530050263
https://doi.org/10.1007/s100530050263
https://doi.org/10.1007/s100530050263
https://doi.org/10.1038/nmat2495
https://doi.org/10.1038/nmat2495
https://doi.org/10.1038/nmat2495
https://doi.org/10.1038/nmat2495
https://doi.org/10.1103/RevModPhys.77.633
https://doi.org/10.1103/RevModPhys.77.633
https://doi.org/10.1103/RevModPhys.77.633
https://doi.org/10.1103/RevModPhys.77.633
https://doi.org/10.1038/nmat2810
https://doi.org/10.1038/nmat2810
https://doi.org/10.1038/nmat2810
https://doi.org/10.1038/nmat2810
https://doi.org/10.1038/nmat3161
https://doi.org/10.1038/nmat3161
https://doi.org/10.1038/nmat3161
https://doi.org/10.1038/nmat3161
https://doi.org/10.1103/PhysRevB.84.064304
https://doi.org/10.1103/PhysRevB.84.064304
https://doi.org/10.1103/PhysRevB.84.064304
https://doi.org/10.1103/PhysRevB.84.064304
https://doi.org/10.1063/1.4934247
https://doi.org/10.1063/1.4934247
https://doi.org/10.1063/1.4934247
https://doi.org/10.1063/1.4934247
https://doi.org/10.1038/srep01728
https://doi.org/10.1038/srep01728
https://doi.org/10.1038/srep01728
https://doi.org/10.1038/srep01728
https://doi.org/10.1063/1.3676581
https://doi.org/10.1063/1.3676581
https://doi.org/10.1063/1.3676581
https://doi.org/10.1063/1.3676581
https://doi.org/10.1140/epjst/e2009-01075-9
https://doi.org/10.1140/epjst/e2009-01075-9
https://doi.org/10.1140/epjst/e2009-01075-9
https://doi.org/10.1140/epjst/e2009-01075-9
https://doi.org/10.1103/PhysRevA.70.055802
https://doi.org/10.1103/PhysRevA.70.055802
https://doi.org/10.1103/PhysRevA.70.055802
https://doi.org/10.1103/PhysRevA.70.055802


SLOW SOUND IN MATTER-WAVE DARK SOLITON GASES PHYSICAL REVIEW B 99, 205408 (2019)

[26] M. I. Shaukat, E. V. Castro, and H. Terças, Phys. Rev. A 95,
053618 (2017).

[27] M. I. Shaukat, E. V. Castro, and H. Terças, Phys. Rev. A 99,
042326 (2019).

[28] M. I. Shaukat, E. V. Castro, and H. Terças, Phys. Rev. A 98,
022319 (2018).

[29] M. I. Shaukat, A. Slaoui, H. Terças, and M. Daoud,
arXiv:1903.06627.

[30] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation
(Clarendon, Oxford, 2003).

[31] J. Akram and A. Pelster, Phys. Rev. A 93, 033610 (2016).
[32] J. L. Roberts, N. R. Claussen, S. L. Cornish, and C. E. Wieman,

Phys. Rev. Lett. 85, 728 (2000).
[33] V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62

(1972); ibid. 37, 823 (1973).
[34] G. Huang, J. Szeftel, and S. Zhu, Phys. Rev. A 65, 053605

(2002).
[35] A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and

Z. Hadzibabic, Phys. Rev. Lett. 110, 200406 (2013).
[36] P. Krüger, S. Hofferberth, I. E. Mazets, I. Lesanovsky, and J.

Schmiedmayer, Phys. Rev. Lett. 105, 265302 (2010).
[37] The present eigenvalue problem can easily be generalized for

the case of gray solitons traveling with speed v by replacing
ψsol (x) = √

n0[iθ + γ tanh(xγ /ξ )], where θ = v/cs and γ =
(1 − θ 2)1/2. Because this situation is of little use here, we
restrict the discussion to only the dark soliton (v = 0) case.

[38] J. Lekner, Am. J. Phys. 75, 1151 (2007).
[39] M. Scully and M. Zubairy, Quantum Optics (Cambridge

University Press, Cambridge, 1997).

[40] A. H. Hansen, A. Khramov, W. H. Dowd, A. O. Jamison,
V. V. Ivanov, and S. Gupta, Phys. Rev. A 84, 011606
(2011).

[41] J. Dziarmaga, Phys. Rev. A 70, 063616 (2004).
[42] C. Sabin, A. White, L. Hackermuller, and I. Fuentes, Sci. Rep.

4, 6436 (2014).
[43] A. Recati, P. O. Fedichev, W. Zwerger, J. von Delft, and P.

Zoller, Phys. Rev. Lett. 94, 040404 (2005).
[44] E. Compagno, G. D. Chiara, D. G. Angelakis, and G. M. Palma,

Sci. Rep. 7, 2355 (2017).
[45] H. Terçaas, D. D. Solnyshkov, and G. Malpuech, Phys. Rev.

Lett. 110, 035303 (2013); 113, 036403 (2014).
[46] A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-

Moreno, C. Tejedor, and F. J. Garcia-Vidal, Phys. Rev. Lett.
106, 020501 (2011).

[47] T. Ramos, H. Pichler, A. J. Daley, and P. Zoller, Phys. Rev. Let.
113, 237203 (2014).

[48] P. Lambropoulos and D. Petrosyan, Fundamentals of Quantum
Optics and Quantum Information (Springer, Berlin, 2007).

[49] W. M. Robertson, C. Baker, and C. B. Bennett, Am. J. Phys. 72,
255 (2004).

[50] A. Santillan and S. I. Bozhevolnyi, Phys. Rev. B 89, 184301
(2014).

[51] H. S. Borges and C. J. Villas-Boas, Phys. Rev. A 94, 052337
(2016).

[52] O. Lahad and O. Firstenberg, Phys. Rev. Lett. 119, 113601
(2017).

[53] M. Hohmann, F. Kindermann, B. Gänger, T. Lausch, D. Mayer,
F. Schmidt, and A. Widera, EPJ Quantum Technol. 2, 23 (2015).

205408-9

https://doi.org/10.1103/PhysRevA.95.053618
https://doi.org/10.1103/PhysRevA.95.053618
https://doi.org/10.1103/PhysRevA.95.053618
https://doi.org/10.1103/PhysRevA.95.053618
https://doi.org/10.1103/PhysRevA.99.042326
https://doi.org/10.1103/PhysRevA.99.042326
https://doi.org/10.1103/PhysRevA.99.042326
https://doi.org/10.1103/PhysRevA.99.042326
https://doi.org/10.1103/PhysRevA.98.022319
https://doi.org/10.1103/PhysRevA.98.022319
https://doi.org/10.1103/PhysRevA.98.022319
https://doi.org/10.1103/PhysRevA.98.022319
http://arxiv.org/abs/arXiv:1903.06627
https://doi.org/10.1103/PhysRevA.93.033610
https://doi.org/10.1103/PhysRevA.93.033610
https://doi.org/10.1103/PhysRevA.93.033610
https://doi.org/10.1103/PhysRevA.93.033610
https://doi.org/10.1103/PhysRevLett.85.728
https://doi.org/10.1103/PhysRevLett.85.728
https://doi.org/10.1103/PhysRevLett.85.728
https://doi.org/10.1103/PhysRevLett.85.728
https://doi.org/10.1103/PhysRevA.65.053605
https://doi.org/10.1103/PhysRevA.65.053605
https://doi.org/10.1103/PhysRevA.65.053605
https://doi.org/10.1103/PhysRevA.65.053605
https://doi.org/10.1103/PhysRevLett.110.200406
https://doi.org/10.1103/PhysRevLett.110.200406
https://doi.org/10.1103/PhysRevLett.110.200406
https://doi.org/10.1103/PhysRevLett.110.200406
https://doi.org/10.1103/PhysRevLett.105.265302
https://doi.org/10.1103/PhysRevLett.105.265302
https://doi.org/10.1103/PhysRevLett.105.265302
https://doi.org/10.1103/PhysRevLett.105.265302
https://doi.org/10.1119/1.2787015
https://doi.org/10.1119/1.2787015
https://doi.org/10.1119/1.2787015
https://doi.org/10.1119/1.2787015
https://doi.org/10.1103/PhysRevA.84.011606
https://doi.org/10.1103/PhysRevA.84.011606
https://doi.org/10.1103/PhysRevA.84.011606
https://doi.org/10.1103/PhysRevA.84.011606
https://doi.org/10.1103/PhysRevA.70.063616
https://doi.org/10.1103/PhysRevA.70.063616
https://doi.org/10.1103/PhysRevA.70.063616
https://doi.org/10.1103/PhysRevA.70.063616
https://doi.org/10.1038/srep06436
https://doi.org/10.1038/srep06436
https://doi.org/10.1038/srep06436
https://doi.org/10.1038/srep06436
https://doi.org/10.1103/PhysRevLett.94.040404
https://doi.org/10.1103/PhysRevLett.94.040404
https://doi.org/10.1103/PhysRevLett.94.040404
https://doi.org/10.1103/PhysRevLett.94.040404
https://doi.org/10.1038/s41598-017-02398-5
https://doi.org/10.1038/s41598-017-02398-5
https://doi.org/10.1038/s41598-017-02398-5
https://doi.org/10.1038/s41598-017-02398-5
https://doi.org/10.1103/PhysRevLett.110.035303
https://doi.org/10.1103/PhysRevLett.110.035303
https://doi.org/10.1103/PhysRevLett.110.035303
https://doi.org/10.1103/PhysRevLett.110.035303
https://doi.org/10.1103/PhysRevLett.113.036403
https://doi.org/10.1103/PhysRevLett.113.036403
https://doi.org/10.1103/PhysRevLett.113.036403
https://doi.org/10.1103/PhysRevLett.106.020501
https://doi.org/10.1103/PhysRevLett.106.020501
https://doi.org/10.1103/PhysRevLett.106.020501
https://doi.org/10.1103/PhysRevLett.106.020501
https://doi.org/10.1103/PhysRevLett.113.237203
https://doi.org/10.1103/PhysRevLett.113.237203
https://doi.org/10.1103/PhysRevLett.113.237203
https://doi.org/10.1103/PhysRevLett.113.237203
https://doi.org/10.1119/1.1596192
https://doi.org/10.1119/1.1596192
https://doi.org/10.1119/1.1596192
https://doi.org/10.1119/1.1596192
https://doi.org/10.1103/PhysRevB.89.184301
https://doi.org/10.1103/PhysRevB.89.184301
https://doi.org/10.1103/PhysRevB.89.184301
https://doi.org/10.1103/PhysRevB.89.184301
https://doi.org/10.1103/PhysRevA.94.052337
https://doi.org/10.1103/PhysRevA.94.052337
https://doi.org/10.1103/PhysRevA.94.052337
https://doi.org/10.1103/PhysRevA.94.052337
https://doi.org/10.1103/PhysRevLett.119.113601
https://doi.org/10.1103/PhysRevLett.119.113601
https://doi.org/10.1103/PhysRevLett.119.113601
https://doi.org/10.1103/PhysRevLett.119.113601
https://doi.org/10.1140/epjqt/s40507-015-0036-y
https://doi.org/10.1140/epjqt/s40507-015-0036-y
https://doi.org/10.1140/epjqt/s40507-015-0036-y
https://doi.org/10.1140/epjqt/s40507-015-0036-y

