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Weak localization in transition metal dichalcogenide monolayers
and their heterostructures with graphene
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We calculate the interference correction to the conductivity of doped transition metal dichalcogenide (TMDC)
monolayers. Because of the interplay between valley structure and intrinsic spin-orbit coupling (SOC), these
materials exhibit a rich weak localization (WL) behavior that is qualitatively different from conventional metals
or similar two-dimensional materials such as graphene. Our results can also be used to describe graphene/TMDC
heterostructures, where the SOC is induced in the graphene sheet. We discuss parameter regimes that go beyond
existing theories, and can be used to interpret recent experiments in order to assess the strength of SOC and
disorder. Furthermore, we show that an in-plane Zeeman field can be used to distinguish the contributions of
different kinds of SOC to the WL magnetoconductance.
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I. INTRODUCTION

Transition metal dichalcogenide (TMDC) monolayers are
a class of two-dimensional semiconductors of the form MX2,
where M is a transition metal and X is a chalcogen. Simi-
larly to graphene, TMDCs have a hexagonal lattice structure,
and a number of them (M = Mo, W; X = S, Se, Te) have
minima/maxima of the conduction/valence band at the two
corners (valleys) ±K of the Brillouin zone. Unlike graphene,
however, TMDCs have two inequivalent lattice sites and no
inversion symmetry, which allows for a large band gap in their
spectrum [1,2].

Because of the heavy constituent atoms, these materials
also host strong intrinsic spin-orbit coupling (SOC), which
acts as an effective out-of-plane Zeeman field with opposite
orientation in the two valleys [3–5]. This valley-dependent
SOC enables a variety of applications of TMDCs in optoelec-
tronics and so-called valleytronics, as electrons from different
valleys can be excited selectively with circularly polarized
light [6,7]. When sufficiently doped, several TMDCs become
superconducting [8–11], where intrinsic SOC plays an impor-
tant role, as it causes unconventional “Ising pairing” of the
Cooper pairs and a great enhancement of the in-plane upper
critical field [8,12].

The possibility of inducing SOC in a graphene sheet by
coupling it to gapped TMDCs in heterostructures has recently
sparked scientific interest, as it can lead to phenomena such
as edge states [13,14] and the spin Hall effect [15–17]. The
induced SOC originates from hybridization of the transition
metal and carbon orbitals [14]. It has two contributions: Kane-
Mele SOC [18], which can open a topological gap at the Dirac
points ±K, and so-called valley-Zeeman SOC, which breaks
the inversion symmetry of graphene and causes spin splitting
in the band structure.

Transport measurements in doped TMDCs [19–21] and
graphene/TMDC heterostructures [14,22–26] can give in-
formation about the amplitude and mechanism of SOC by
studying the quantum correction to the conductance, due

to weak localization (WL) and/or antilocalization (WAL) of
electrons. W(A)L can be probed by applying a perpendicular
magnetic field B⊥, which suppresses the quantum correction
by breaking time-reversal symmetry. By measuring the re-
sulting magnetoconductance as a function of B⊥ and fitting
it to theoretical models, one can extract parameters such as
scattering and spin relaxation rates.

So far, the experiments have been interpreted using the
so-called Hikami-Larkin-Nagaoka (HLN) [27] formula (for
TMDC experiments [19–21]) or a similar formula provided
by the McCann-Fal’ko (MF) [28] theory in the regime of
strong intervalley scattering (for graphene/TMDC experi-
ments [14,22–26]). HLN theory holds for two-dimensional
single-band systems in the presence of SOC. If SOC is
weak, constructive electron interference along time-reversed
trajectories gives rise to a negative correction to the Drude
conductance (WL). By contrast, strong SOC leads to a phase
shift due to the spin precession, which results in destructive in-
terference and a positive correction to the Drude conductance
(WAL). In Dirac materials, such as TMDCs and graphene, the
physical picture becomes more complex. Here, the quantum
correction is sensitive to the sublattice degree of freedom, or
so-called lattice isospin. Due to the associated Berry phase,
it can introduce phase shifts similarly to the spin physics.
Furthermore, the multivalley nature of these materials and
intervalley scattering also influence the quantum correction.
MF theory takes these effects into account for the case of
graphene, and gives a full description of WL and WAL
with any disorder that satisfies time-reversal symmetry. In
the presence of spin-orbit impurities and in the regime of
strong intervalley scattering, such that the valley physics is
suppressed, it reduces to the HLN formula.

However, the applicability of MF and HLN theories to
TMDCs and graphene/TMDC is limited, since they were
both developed to describe spin-degenerate systems and do
not capture the spin splitting caused by the presence of
valley-dependent SOC. A theory for TMDCs that takes it
into account was given by Ochoa et al. [29] in the regime
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close to the bottom/top of the conduction/valence band,
|μ| ≈ Eg, where μ is the chemical potential and 2Eg is the
band-gap. This parameter regime, however, does not fully
describe graphene/TMDC heterostructures and highly doped
TMDCs, where |μ| � Eg.

In this work, we present a general theory of the inter-
ference correction for a massive Dirac material with valley-
Zeeman SOC. Furthermore, we account for the effect of an
in-plane Zeeman field. Our formula can be applied to TMDCs
and graphene/TMDC heterostructures. Namely, we generalize
Ref. [29] to any chemical potential μ, and we show that
several contributions to the interference-induced magnetocon-
ductance are sensitive to the magnitude of doping, and are
modified or suppressed as the doping increases. We discuss in
detail the regime where intervalley scattering dominates over
any spin-dependent scattering, which is the most commonly
invoked regime when interpreting the experimental data. We
find that the interplay between valley-dependent SOC, �so,
and intervalley scattering, parametrized by the scattering time
τiv , leads to different regimes of WL and WAL. In the limit
τ−1

iv � �so, MF still holds and HLN is valid if τ−1
iv � τ−1

φ ,
where τφ accounts for inelastic dephasing of electrons. How-
ever, we find new behavior not captured by these formulas
if �so � τ−1

iv . Since both TMDCs and graphene/TMDC are
expected to have substantial valley-dependent SOC [4,13,14],
our regimes are experimentally relevant and can be used to
extract parameters from the interference-induced magneto-
conductance in both systems.

This paper is organized in the following way: In Sec. II, we
introduce the model Hamiltonian for disordered TMDCs and
graphene/TMDC heterostructures. In Sec. III, we calculate the
interference correction for these materials using the standard
diagrammatic technique for disordered systems. We discuss
our results in Sec. IV.

II. MODEL

The low-energy Hamiltonian describing TMDC monolay-
ers in the vicinity of the ±K points and in the presence of
a parallel magnetic field is given by [4] Hq = H0 + HSOC +
HW + H||, where

H0 = v(qxσxηz + qyσy) + Egσz,

HSOC = �KMσzszηz + �V Zszηz + λ(σxsyηz − σysx )

+ ζ (qxσxsz + qyσyszηz ),

HW = κ
(
q2

x − q2
y

)
σx − 2κqxqyσyηz,

H|| = hsx. (1)

Here, we use units where h̄ = kB = 1. The two Dirac cones
are described by H0, where q = (qx, qy) = q(cos θ, sin θ ) is
a small momentum measured from ±K, v is the velocity
associated with the linearized kinetic dispersion, and Eg is
the difference in on-site energy responsible for opening the
band gap. Spin-orbit coupling is described by HSOC, where
�KM and �VZ characterize Kane-Mele and valley-Zeeman
SOC, respectively. Rashba SOC, which is related to a mirror
symmetry breaking due to the substrate or external fields, is
described by λ. The spin dependence of the velocity is ac-
counted for by ζ . HW describes the so-called trigonal warping.

Finally, H|| is the in-plane Zeeman field, where the Zeeman
energy h = 1

2 gμBB|| is determined by the amplitude of the
in-plane magnetic field and the g-factor, which is expected to
take the value g ≈ 2 in these materials. We introduce Pauli
matrices σx,y,z, sx,y,z, and ηx,y,z acting in sublattice, spin, and
valley space, respectively. The Hamiltonian (1) contains all
terms up to the first order in q allowed by the symmetries of
the system, as well as HW and H||, which break rotational and
time-reversal symmetry, respectively.

Furthermore, the low-energy sector of graphene/TMDC
heterostructures is also well described by the Hamiltonian
(1). First-principle calculations [13,14] show that the Dirac
cones of graphene in these heterostructures are preserved and
are within the TMDC band gap. The coupling to the TMDC
modifies the graphene spectrum by introducing the staggered
sublattice potential, Egσz, and SOC, HSOC.

To proceed, we assume that the Dirac Hamiltonian
H0 gives the dominant contribution to the energy of
the system. H0 is diagonalized by a unitary transfor-
mation Uq = e−iηzαq eiβqσyηz eiαqσzηz , where tan(2αq) = qy/qx

and tan(2βq) = vq/Eg. It has a simple spectrum, ±Eq =
±

√
q2v2 + E2

g . After projecting UqHqU †
q onto the conduction

band, we obtain the effective Hamiltonian

Hq = ξq + �soszηz + λ
vqF

μ
(sy cos θ − sx sin θ )

+ κ
vq3

F

μ
cos 3θηz + hsx. (2)

Here, the energy is measured from the chemical potential,
ξq = Eq − μ. Furthermore, we have introduced the Fermi

momentum qF =
√

μ2 − E2
g /v and spin-orbit splitting �so =

�KMEg/μ + �V Z + ζvq2
F /μ. Note that at μ � Eg (as in the

case of graphene), Kane-Mele SOC does not contribute to the
spin-orbit splitting. The chemical potential μ is assumed to be
sufficiently above the band gap Eg, so that it is the dominant
energy scale, |μ| − Eg � �so, λ, h, κq2

F . A Hamiltonian of
a similar form can be found in the valence band after the
substitution ξq → −ξq, μ → −μ. Although, in the remainder
of the text, we will focus only on the conduction band for
simplicity, our results also hold in the valence band as long as
both spin-split bands are occupied. This is readily achieved in
graphene/TMDC heterostructures, while a very high doping is
required in TMDCs, due to the large spin-splitting caused by
the intrinsic SOC in the valence band [4].

The effect of potential impurities can be modeled
by introducing a random disorder, HD0

qq′ = U 0
q−q′ +∑

i=±,x

∑
j=x,y V i j

q−q′σiη j , where σ± = 1 ± σz. The first
term is the intravalley contribution, which is diagonal
in spin and sublattice space. The second term represents
all spin-independent intervalley contributions allowed by
time-reversal [30] and hexagonal symmetry. Intervalley
disorder requires large momentum transfer, and is caused by
short-range impurities, such as atomic defects. Upon rotating
UqHD0

qq′U †
q′ and projecting to the conduction band, a variety of

other scattering processes will be generated as combinations
of the band structure and potential scattering parameters.

For simplicity, we will account for these processes,
as well as all other possible scattering processes,
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phenomenologically, by independent scattering potentials.
To do so, we supplement HD0

qq′ with all the other disorder
terms allowed by the time-reversal symmetry, as was done
previously in similar studies of weak localization [28,29]. The
disorder Hamiltonian is then given as HD

qq′ = HD0
qq′ + δHD

qq′ ,
where

δHD
qq′ =

∑
i=x,y,z

U i
q−q′�i +

∑
i=0,x,y,z

∑
j=x,y,z

Ai j
q−q′�is jηz

+
∑
j=x,y

∑
i=x,y,z

Mi j
q−q′σysiη j . (3)

Here �0,z,x = σ0,x,z and �y = σyηz. The first line in Eq. (3)
describes intravalley disorder. Here, the first and second term
account for spin-dependent and spin-independent contribu-
tions, respectively. The second line describes spin-dependent
intervalley disorder. We characterize the random disorder
potentials by Gaussian correlators and assume that different
kinds of disorder are uncorrelated:〈

U i
qU j

q′
〉 = U 2

i δi jδqq̄′,
〈
X i j

q X kl
q′
〉 = X 2

i jδikδ jlδqq̄′ . (4)

Here, the brackets 〈. . .〉 represent disorder averaging and X =
A,V, M. Furthermore, we use the abbreviation q̄ = −q.

We proceed by writing the rotated phenomenological dis-
order potential, UqHD

qq′U †
q′ , in the projected basis,

HD
qq′ =

∑
i=0,x,y,z

[
U i

q−q′ f i
θ,θ ′ +

∑
j=x,y,z

Ai j
q−q′ f i

θ,θ ′s jηz

]

+
∑
j=x,y

[ ∑
i=±,x

V i j
q−q′gi

θ,θ ′η j +
∑

i=x,y,z

Mi j
q−q′g

y
θ,θ ′siη j

]
,

(5)

where the functions f i
θ,θ ′ and gi

θ,θ ′ capture the anisotropy
of the projected disorder potential, which is due to the
momentum dependence of the unitary transformation Uq. In
particular, 2 f 0

θ,θ ′ = 1 + e−iηz (θ−θ ′ ) + Eg

μ
(1 − e−iηz (θ−θ ′ ) ) and

2 f x
θ,θ ′ = vqF

μ
(e−iηzθ + eiηzθ

′
)ηz. Furthermore, f y

θ,θ ′ = i f x
θ,θ̄ ′ηz,

f z
θ,θ ′ = f 0

θ̄ ,θ ′ , g+
θ,θ ′ = (1 + Eg

μ
), g−

θ,θ ′ = ( Eg

μ
− 1)eiηz (θ+θ ′ ),

gx
θ,θ ′ = f 0

−θ̄ ,θ ′ , and gy
θ,θ ′ = iηz f x

−θ,θ ′ . Here, we used the

notation θ̄ = θ + π . In simple metals, anisotropic disorder
usually only leads to the renormalization of the diffusion
constant and the transport time. It has more profound physical
consequences in our system, as it captures the sublattice
isospin physics and the effect of the Berry curvature.

In order to describe quantum transport in our system, we
will employ the standard diagrammatic technique for disor-
dered systems. In particular, we introduce disorder-averaged,
zero-temperature retarded (R) and advanced (A) Green’s func-
tions as

GR,A
qω =

(
ω − Hq ± i

2τ

)−1

. (6)

Here, the self-energy ±i/(2τ ) is calculated from the self-
consistent Born approximation, ω is the frequency, and the
inverse scattering time τ−1 is given by

τ−1 = τ−1
0 + τ−1

z + τ−1
iv +

∑
i=z,zv,iv

∑
j=e,o

τ−1
i, j . (7)

FIG. 1. (a) Vertex renormalization. (b) Drude conductivity dia-
gram. Solid arrows represent Green’s functions, while the dashed
lines represent disorder. The upper (lower) branch of the diagrams
corresponds to retarded (advanced) Green’s functions.

The individual contributions to Eq. (7) are defined in the left
column of Table I, where we introduced the Fermi velocity,
vF = v2qF /μ, and the density of states per valley and per spin
at the Fermi level, ν = μ/(2πv2

F ). Furthermore, we will as-
sume that the diagonal disorder rate τ−1

0 is the dominant one,
i.e., τ−1 ≈ τ−1

0 , and we will use the diffusive approximation
|μ| − Eg � τ−1

0 � �so, h, λ, κq2
F .

Assuming that only potential disorder is present in the
system, we can estimate the phenomenological scattering
rates, related with the parameters in Eq. (4), as shown in the
right-hand column of Table I. We do so by comparing the
disorder terms generated by HD

qq′ after rotation and projection
onto the conduction band with the terms generated by HD0

qq′
only, but taking into account corrections up to order 1/μ.
In this way, we can relate the phenomenological disorder
parameters with the main Hamiltonian (1) and the magnitude
of the potential disorder.

The current operator along the x direction in the projected
basis is given by Jxq = vF cos θ . Due to the anisotropy of
the disorder potential, the current vertex is renormalized, as
illustrated in diagrammatic form in Fig. 1(a). Namely, the bare
vertex is dressed by a series of ladder diagrams, known as
diffusons. The renormalized vertex is then given as

J̃xq = τtr

τ0
Jxq with τtr =

(
1 + v2q2

F

4E2
g + v2q2

F

)
τ0. (8)

Here, we have introduced the transport time τtr , which takes
the value τ0 at the bottom of the conduction band μ ≈ Eg,
where the spectrum is parabolic (similarly to conventional
metals), and 2τ0 deep in the conduction band μ � Eg, where
the spectrum is linear (as in graphene) [32]. The Drude
conductivity is then given as

σ = e2

2π

∫
d2p

(2π )2
Tr
[
J̃xqGR

qωJxqGA
qω

]∣∣
ω=0 = 4e2νD, (9)

where D = 1
2v2

F τtr is the diffusion constant, and the factor 4
originates from spin and valley degeneracy. The correspond-
ing diagram is shown in Fig. 1(b).

III. INTERFERENCE CORRECTION

The interference correction to the Drude conductivity (9)
can be expressed in terms of Cooperons, Cab,a′b′

αβ,α′β ′ , which
represent disorder averages of two Green’s functions and
correspond to maximally crossed diagrams [33]. The Greek
indices in the subscript (Latin indices in the superscript)
correspond to the spin (valley) degree of freedom and take
values ±1. The Cooperons are determined from a system of
coupled Bethe-Salpeter equations, as shown in diagrammatic

205407-3
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TABLE I. Left: Dominant diagonal scattering rate τ−1
0 , and the 11 other independent scattering rates [31] originating from the disorder

Hamiltonian (3). The notation for the scattering rates was taken and adapted from Ref. [28]. The index z indicates that the related disorder
potential is sublattice dependent. zv and iv indicate coupling to the valley matrices ηz and ηx,y, respectively. Indices e and o indicate coupling
to the spin matrices sz and sx,y, respectively. Spin-independent disorder is represented by the rates τ−1

0 , τ−1
z , and τ−1

iv , which describe diagonal,
intervalley, and sublattice-dependent intravalley disorder. Spin-dependent disorder is represented by the rates τ−1

i, j (i = z, zv, iv; j = e, o),
which describe intra- (i = z, zv) or intervalley (i = iv), and spin-preserving ( j = e) or spin-flipping ( j = o) disorder. Right: Estimates of the
phenomenological scattering rates, obtained by the combination of band structure parameters and potential disorder only, assuming that all
intervalley components of the potential disorder are of similar strength.

Scattering rates Estimates

Intravalley scattering

τ−1
0 = πνU 2

0 (1 + E2
g

μ2 ) /

τ−1
z1 = πν(U 2

x + U 2
y )

v2q2
F

μ2 τ−1
z2 = πνU 2

z (1 + E2
g

μ2 ) τ−1
z = τ−1

z1 + τ−1
z2 τ−1

z1 , τ−1
z2 ∝ τ−1

0 (
κvq3

F
μ2 )2

τ−1
z,e1 = πν(A2

xz + A2
yz )

v2q2
F

μ2 τ−1
z,e2 = πνA2

zz(1 + E2
g

μ2 ) τ−1
z,e = τ−1

z,e1 + τ−1
z,e2 τ−1

z,e1, τ
−1
z,e2 ∝ τ−1

0 (
�KM v2q2

F
μ3 )2

τ−1
z,o1 = πν

∑
i, j=x,y(A2

i j )
v2q2

F
μ2 τ−1

z,o2 = πν(A2
zx + A2

zy )(1 + E2
g

μ2 ) τ−1
z,o = τ−1

z,o1 + τ−1
z,o2 τ−1

z,o1, τ
−1
z,o2 ∝ τ−1

0 ( λvqF
μ2 )2

τ−1
zv,e = πνA2

0z(1 + E2
g

μ2 ) τ−1
zv,e ∝ τ−1

0 (
κv�KM q3

F
μ3 )2

τ−1
zv,o = πν(A2

0x + A2
0y )(1 + E2

g

μ2 ) τ−1
zv,o ∝ τ−1

0 ( λEgvqF

μ3 )2

Intervalley scattering

τ−1
iv = πν

∑
i=x,y[2

∑
j=± V 2

ji (1 + j Eg

μ
)2 + V 2

xi
v2q2

F
μ2 ] /

τ−1
iv,e = πν(M2

zx + M2
zy )

v2q2
F

μ2 τ−1
iv,e ∝ τ−1

iv ( �KM vqF
μ2 )2

τ−1
iv,o = πν

∑
i, j=x,y(M2

i j )
v2q2

F
μ2 τ−1

iv,o ∝ τ−1
iv ( λvqF

μ2 )2

form in Fig. 2(a). Namely,

Cab,a′b′
αβ,α′β ′ (θ, θ ′; Q) = W ab,a′b′

αβ,α′β ′ (θ, θ ′) +
∫ 2π

0

dθ ′′

2π
W aa1,bb1

αα1,ββ1
(θ, θ ′′)�a1b1

α1β1,α2β2
(θ ′′; Q)Ca1b1,a′b′

α2β2,α′β ′ (θ ′′, θ ′; Q). (10)

Here, summation over repeated indices is assumed, and we have introduced the disorder correlator W and the polarization
operator � as

W ab,a′b′
αβ,α′β ′ (θ, θ ′) = 〈[

HD
qq′
]aa′

αα′
[
HD

q̄q̄′
]bb′

ββ ′
〉

and �ab
αβ,α′β ′ (θ ; Q) = ν

∫
dξq

[
GR

qε+ω

]a

αα′
[
GA

q̄+Qω

]b

ββ ′ , (11)

respectively. Note that the Green’s functions are diagonal in valley space, so the polarization operator only depends on two valley
indices. The weak localization correction δσ can now be expressed in terms of Cooperons as

δσ = e2

2π

∫
d2Q

(2π )2

∫ 2π

0

d θ

2π

d θ ′

2π
4πντ 3

0

[
2πδ(θ − θ ′) − 2πντ0W

ab,ab
αβ,αβ (θ, θ ′)

]
J̃xqJ̃xq̄′Cab,ba

αβ,βα (θ, θ̄ ′; Q). (12)

Here, the first contribution in the square bracket comes from
the bare Hikami box [33] [shown in Fig. 2(b)], while the
second one comes from two Hikami boxes dressed by an
intravalley impurity line [shown in Fig. 2(c)].

We proceed by solving Eq. (10) in the presence of the
dominant diagonal scattering only, in Sec. III A. Next, we
include all other types of disorder in Sec. III B. Finally, the
interference-induced magnetoconductance and the main result
of our work are presented in Sec. III C.

A. Cooperons in the presence of diagonal disorder only

In order to resolve the angular structure of the Cooper-
ons, we will first consider the case where only the diagonal
disorder with rate τ−1

0 is present. The other types of scat-
tering will not affect this structure, but only introduce addi-
tional Cooperon gaps. Furthermore, the angular structure is
independent of the spin structure. Therefore, we also neglect

the spin structure here, setting �so and h to zero. To simplify
the notation, spin indices are omitted in this subsection.

We proceed with this calculation in the same spirit as in
Ref. [34]. First, we expand the Cooperons and the disorder
correlator in harmonics,

Cab,a′b′
(θ, θ ′; Q) =

∞∑
n,m=−∞

Cab,a′b′
nm (Q)e−i(nθ−mθ ′ ),

W ab,a′b′
(θ, θ ′) =

∞∑
n=−∞

W ab,a′b′
n e−in(θ−θ ′ ). (13)

Furthermore, a = a′ and b = b′ in the absence of intervalley
scattering. The only Cooperon that enters the interference
correction (12) is the intravalley one, Caa,aa(θ, θ ′). From
Eqs. (10) and (13), we get a system of coupled equations for
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FIG. 2. (a) Bethe-Salpeter equation for the Cooperons. (b) Bare
Hikami box. The Hikami boxes with external lines that are diagonal
in spin-space give a dominant contribution to the quantum correction
in the diffusive limit. (c) Dressed Hikami boxes. For the definition of
diagram elements, see Fig. 1. Greek indices in the subscript describe
spin, while Latin indices in the superscript describe the valley degree
of freedom.

its harmonics, whose solution yields

Caa,aa(θ, θ ′; Q) = Caa,aa
00 (Q) + Caa,aa

aa (Q)e−ia(θ−θ ′ )

with Caa,aa
ii (Q) = 1

2πντ 2
0

1

Di|Q|2 − iω + τ−1
φ + �i

. (14)

Here, a = ±1, �0 = 1
τ0

(μ−Eg)2

(μ+Eg)2 and �a = 1
τ0

2E2
g

μ2−E2
g

are the rel-

evant Cooperon gaps, and D0 = 1
8v2

F τ0(3 + E2
g

μ2 ) and Da =
v2

F τ0
(E2

g +μ2 )2

(μ2−E2
g )2 are diffusion constants. Furthermore, we intro-

duced the inelastic dephasing rate, τ−1
φ .

We see that, in general, both C00 and Caa will have a
large gap of the order τ−1

0 and, thus, will be suppressed
in the diffusive limit, except in two special cases. First, �0

vanishes at μ = Eg. Close to the band bottom, for μ/Eg −
1 � 2

√
τ0/τφ , one finds �0 � τ−1

φ . Thus, in this regime, the
Cooperon C00 is not suppressed. Second, �a vanishes for
μ → ∞. Thus, deep in the band, at μ/Eg �

√
2τφ/τ0, one

finds �a � τ−1
φ , and the Cooperon Caa is not suppressed either.

Higher-order harmonics, although nonzero, will always have
a nonvanishing gap of the order τ−1

0 and will be neglected. We
can therefore write

Caa,aa(θ, θ̄ ; Q) = �

2πντ 2
0

1

D|Q|2 − iω + τ−1
φ + ��

,

where � =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1,
μ

Eg
− 1 � 2

√
τ0
τφ

,

0, 2
√

τ0
τφ

� μ

Eg
− 1 �

√
2τφ

τ0
,

−1,
μ

Eg
�
√

2τφ

τ0
,

(15)

and �1 = τ−1
0 [vqF /(2μ)]4, �−1 = 2τ−1

0 (Eg/μ)2. Note that
the diffusion constants D0 and Da reduce to D, introduced in
Eq. (9), in the limits where � = ±1.

Upon inserting Eq. (15) into Eq. (12), we obtain the
quantum correction for massive Dirac fermion systems in the

presence of smooth disorder, consistent with Ref. [34]. Its
behavior is governed by the doping-dependent coefficient �:
for a large Dirac mass Eg (� = 1), we get WL, whereas in
the massless system (� = −1), we get WAL. The quantum
correction vanishes in the intermediate mass regime. This can
be reinterpreted [34] in terms of the Berry phase of a massive
Dirac material given as ϕB = π (1 − Eg/μ), which introduces
no phase shift to the electron interference in the large mass
limit (leading to WL), and a shift of π for massless systems
(leading to WAL).

Next, we find the intervalley Cooperon Caā,aā(θ, θ ′). Note
that it does not enter the quantum correction (12), but it is
useful to resolve its angular structure for later use. We find
that the only harmonic that is not gapped is C00, and we
can write

Caā,aā(θ, θ ′; Q) = Caā,aā
00 (Q)

= 1

2πντ 2
0

1

D|Q|2 − iω + τ−1
φ

. (16)

B. Cooperons in the presence of all disorder terms

We proceed to solve the Cooperon equation (10) in the
presence of all disorder terms. Additional intervalley Cooper-
ons of the form Caā,āa can now exist. Since they are coupled
to Caā,aā via intervalley scattering, which does not introduce
additional angular dependence, they will also be angularly
independent. Using Eqs. (15) and (16), we can write for all
Cooperons

Cab,a′b′
(�; Q) = [

Caa,aa
00 (Q)δ�,1 + Caa,aa

aa (Q)δ�,−1
]

× δaa′δbb′δab + Caā,bb̄
00 (Q)δab̄δa′b̄′ ,

W ab,a′b′
(�) = [

W aa,aa
0 δ�,1 + W aa,aa

a δ�,−1
]

× δaa′δbb′δab + W aā,bb̄
0 δab̄δa′b̄′ . (17)

Then, Eq. (10) can be written in a simpler, angularly indepen-
dent form,

Cab,a′b′
αβ,α′β ′ (�; Q) = W ab,a′b′

αβ,α′β ′ (�) + W aa1,bb1
αα1,ββ1

(�)�a1b1
α1β1,α2β2

(Q)

×Ca1b1,a′b′
α2β2,α′β ′ (�; Q). (18)

Next, we employ a transformation to the singlet-triplet basis
[28] in spin and valley space,

Mll ′
ss′ = 1

4 [syss]αβ[ηxηl ]
abMab,a′b′

αβ,α′β ′[ss′sy]β ′α′[ηl ′ηx]b′a′
, (19)

where indices s, s′ = 0 and l, l ′ = 0 correspond to spin- and
valley-singlet Cooperon modes, respectively, while s, s′ =
x, y, z and l, l ′ = x, y, z correspond to spin- and valley-triplet
modes. Here, the operator M can stand for a Cooperon (C),
disorder correlator (W ), or a polarization operator (�). The
disorder correlator is diagonal in the singlet-triplet space,
W ll ′

ss′ (�) = W l
s (�)δss′δll ′ , and the Cooperon equation (18) after

the transformation becomes

Cll ′
ss′ (�; Q) = W l

s (�)δss′δll ′ + W l
s (�)�ll1

ss1
(Q)Cl1l ′

s1s′ (�; Q).

(20)

The quantum correction involves only the diagonal Cooperons
Cll

ss ≡ Cl
s . Note that triplets modes Cx

s and Cy
s are related to the
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TABLE II. Left: Relaxation gaps �l
s for intervalley Cooperons, where indices s and l denote spin and valley, respectively. There are eight

intervalley Cooperons. The time-reversal symmetry sets the gap �0
0 to zero, while the x-y symmetry imposes equality of all x and y spin-triplet

gaps. As a result, there are only five independent gaps. The scattering rates τ−1
asy and τ−1

s = τ−1
sym + τ−1

asy , related to the valley-singlet gaps �0
i

(i = x, y, z), are introduced in Eqs. (30) and (31). Right: Relaxation rates for intravalley Cooperons, which depend on the chemical potential,
captured by the coefficient �. In each regime, there are eight intravalley Cooperons. x-y symmetry imposes equality of all x and y triplet gaps,
in both spin and valley space. As a result, there are only three independent gaps. Since at � = 0 intravalley Cooperons do not contribute to the
quantum correction, the related gaps are not included in the table. For a definition of the different scattering rates, see Table I.

Relaxation gaps for C0 and Cz Relaxation gaps for Cx and Cy

�0
0 = 0 at � = −1:

�0
x = �0

y = 2τ−1
z,e + τ−1

z,o + 2τ−1
zv,e + τ−1

zv,o + 2τ−1
iv,e + τ−1

iv,o + τ−1
BR = τ−1

s �x
x = �x

y = �y
x = �y

y = τ−1
∗ + 2τ−1

z,e + τ−1
z,o + τ−1

zv,o + τ−1
BR

�0
z = 2τ−1

z,o + 2τ−1
zv,o + 2τ−1

iv,o + 2τ−1
BR = 2τ−1

asy �x
0 = �

y
0 = τ−1

∗ + 2τ−1
zv,e + 2τ−1

zv,o

�z
0 = 2τ−1

iv + 2τ−1
iv,e + 2τ−1

iv,o �x
z = �y

z = τ−1
∗ + 2τ−1

z,o + 2τ−1
zv,e + 2τ−1

BR

�z
x = �z

y = 2τ−1
iv + 2τ−1

z,e + τ−1
z,o + 2τ−1

zv,e + τ−1
zv,o + τ−1

iv,o + τ−1
BR at � = 1:

�z
z = 2τ−1

iv + 2τ−1
z,o + 2τ−1

zv,o + 2τ−1
iv,e + 2τ−1

BR �x
x = �x

y = �y
x = �y

y = τ−1
∗∗ + τ−1

z,o2 + τ−1
zv,o + τ−1

BR

�x
0 = �

y
0 = τ−1

∗∗ + 2τ−1
z,e2 + 2τ−1

z,o2 + 2τ−1
zv,e + 2τ−1

zv,o

�x
z = �y

z = τ−1
∗∗ + 2τ−1

z,e2 + 2τ−1
zv,e + 2τ−1

BR

τ−1
∗ = τ−1

iv + 2τ−1
z + τ−1

iv,e + τ−1
iv,o + τ−1

W + 2
τ0

E2
g

μ2

τ−1
∗∗ = τ−1

iv + τ−1
z1 + τ−1

z,e1 + τ−1
z,o1 + τ−1

iv,e + τ−1
iv,o + τ−1

W + 1
16τ0

v4q4
F

μ4

intravalley Cooperons, while the valley-singlet C0
s and triplet

Cz
s are related to intervalley ones. Finally, the interference

correction, Eq. (12), in the new basis has the form

δσ = −e2D

π
(2πντ 2

0 )
∫

d2Q
(2π )2

×
∑

s

cs

⎡
⎣∑

l=0,z

clCl
s (�; Q) + �

∑
l=x,y

clCl
s (�; Q)

⎤
⎦, (21)

where cs = −1, 1, 1, 1 and cl = 1, 1, 1,−1 for s, l =
0, x, y, z. Equation (21) generalizes similar expressions from
Refs. [28,29], which are valid at � = −1 and � = 1, respec-
tively.

The diagonal Cooperon modes Cl
s , necessary to compute

δσ , are determined by solving Eq. (20). Due to the spin
splitting described by �so and h, the polarization operator
�ll ′

ss′ (Q) is not diagonal in the singlet-triplet space. As a
consequence, some Cooperon modes are coupled. As will
be discussed further in the text, the coupling of different
Cooperon modes by the spin-splitting fields suppresses them.
In a physical sense, Cooperons coupled by the fields describe
interference of electrons coming from two spin-split bands,
which is suppressed by the energy difference of the electrons.
On the other hand, interference of electrons in degenerate
bands is described by the noncoupled Cooperons. Note that
momentum dependent parts of the Hamiltonian (1), such as
Rashba SOC and trigonal warping, do not cause coupling of
different Cooperon modes in the diffusive limit, but only enter
their gaps.

a. Noncoupled Cooperon modes. First, we solve the
Cooperons that are not coupled by the valley-dependent
SOC or the in-plane field, with the indices (s, l ) =
(y, x), (y, y), (z, 0), (z, z). They are given by

Cl
s = 1

2πντ 2
0

1

P l
s

. (22)

Here, we introduced P l
s = D|Q|2 − iω + τ−1

φ + �l
s, where the

Cooperon gaps �l
s are specified in Table II. Because the

intravalley Cooperons have different angular dependence in
the two extreme limits of Eq. (15), their gaps �x

s and �
y
s

will also depend on those limits (right-hand side of Table II).
Intervalley Cooperons, on the other hand, do not depend on
angles and chemical potential and have the same gaps for any
μ (left-hand side of Table II).

The Cooperon gaps contain the scattering rates originat-
ing from the phenomenological disorder potential (3). Their
estimates, listed in Table I, are inversely proportional to the
scattering times τ0 and τiv . These rates are therefore induced
and reinforced by disorder, and behave similarly to the Elliott-
Yafet spin-relaxation mechanism [35,36]. This includes the
well-known scattering rate due to the Kane-Mele SOC [28],

captured by τ−1
z,e ∝ τ−1

0 ( �KMv2q2
F

μ3 )2 (see Table I). Additionally,
scattering rates that are proportional to the potential scattering
time τ0 also enter the gaps:

τ−1
BR = 2

(
λvqF

μ

)2

τtr, τ−1
W = 2

(
κvq3

F

μ

)2

τ0. (23)

They are related with Rashba SOC and trigonal warping,
respectively. These rates appear since electrons, due to the
details of the band structure, acquire an additional phase upon
propagation in-between two scattering events. This effect is
suppressed by disorder. The first rate in Eq. (23) is asso-
ciated with the Dyakonov-Perel [37] spin-relaxation mecha-
nism. The second rate describes the suppression of intravalley
Cooperons due to the breaking of rotational symmetry by
trigonal warping, as discussed in Ref. [32].

b. Coupled Cooperon modes. Next, we address the cou-
pled Cooperon modes. The effect of the in-plane Zeeman field
h applied along the x direction is such that it couples the
spin-singlet Cl

0 and spin-triplet Cl
x Cooperons, as discussed

for conventional metals [38]. Valley-dependent SOC behaves
similarly to an effective Zeeman field in the z direction, but
acts differently from the true Zeeman field as it does not break
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the time-reversal symmetry, and therefore does not affect the
spin- and valley-singlet Cooperon C0

0 , which is protected by
this symmetry. It couples the Cooperons C0(z)

x with Cz(0)
y , and

Cx(y)
0 with Cy(x)

z , as discussed in Ref. [29]. The equations for
all the coupled Cooperon modes can be compactly written in
a matrix form,

⎡
⎢⎣

Px(y)
0 ∓2�so −2ih

±2�so Py(x)
z 0

−2ih 0 Px(y)
x

⎤
⎥⎦
⎡
⎢⎣Cxx(yy)

00 Cxy(yx)
0z Cxx(yy)

0x

Cyx(xy)
z0 Cyy(xx)

zz Cyx(xy)
zx

yCxx(yy)
x0 Cxy(yx)

xz Cxx(yy)
xx

⎤
⎥⎦= 1

2πντ 2
0

=

⎡
⎢⎣
P0(z)

x −2�so −2ih

2�so P z(0)
y 0

−2ih 0 P0(z)
0

⎤
⎥⎦
⎡
⎢⎣

C00(zz)
xx C0z(z0)

xy C00(zz)
x0

Cz0(0z)
yx Czz(00)

yy Cz0(0z)
y0

C00(zz)
0x C0z(z0)

0y C00(zz)
00

⎤
⎥⎦.

(24)

Equation (24) summarizes four matrix equations, each
involving three coupled modes. Since the Green’s func-
tions are diagonal in valley space, the equations for intra-
and intervalley Cooperons are decoupled. This can be seen
in Eq. (24), where the left-hand (right-hand) side de-
scribes matrix equations for intravalley (intervalley) Cooperon
modes.

Note that in Eq. (24), the spin-splitting fields, h and �so,
are considered only up to the leading order in τ0 in the
diffusive limit. As discussed in Appendix A, by considering
higher-order terms, we find that these fields also modify

the Cooperon gaps by supplementing them with terms of
the order �2

soτ0 and h2τ0. However, these terms can always
be neglected, as their effect is small compared to the one
produced by coupling of the Cooperon modes by these fields.

C. Interference-induced magnetoconductance

Finally, after inverting the matrices in Eq. (24), we obtain
all Cooperon modes. Combining them with Eq. (21), and
introducing the conductance quantum σ0 = e2/(2π2h̄), we
arrive at the expression for the interference correction,

δσ = 2πσ0D
∫

d2Q
(2π )2

[
− �

(
1

Px
y

+ 1

Py
y

+ A(y
z ,

x
x ,x

0 ) + A
(

x
z ,

y
x ,

y
0

))− 1

P0
z

+ 1

P z
z

+ A
(

z
y,

0
0 ,0

x

)− A
(

0
y,

z
0 ,z

x

)]
,

where A
(

l1
s1
,l2
s2

,l3
s3

) = 2πντ 2
0

(
Cl1

s1
+ Cl2

s2
− Cl3

s3

) = −P l1
s1
P l2

s2
+ P l3

s3
P l1

s1
+ 4h2 + P l2

s2
P l3

s3
+ 4�2

so

P l1
s1P l2

s2P l3
s3 + 4h2P l1

s1 + 4�2
soP l2

s2

. (25)

Here, each A accounts for one set of coupled Cooperons, that is, one matrix equation from Eq. (24).
The above equation is the main result of our work. It is readily evaluated analytically in the absence of the in-plane Zeeman

field. The divergent integral over momenta in Eq. (25) can be handled by introducing an upper cutoff associated with the inverse
mean free path l−1 = √

Dτ0, which is the smallest length scale in our system. At h = 0, we then obtain

δσ

σ0
= − 2� ln

(
τ−1

τ−1
φ + �x

x

)
− 1

2
ln

(
τ−1

τ−1
φ + �0

z

)
+ 1

2
ln

(
τ−1

τ−1
φ

)
− 1

2
ln

(
τ−1

τ−1
φ + �z

0

)
+ 1

2
ln

(
τ−1

τ−1
φ + �z

z

)

+ γiv

∑
±

± ln

⎛
⎝ τ−1

τ−1
φ + �+

iv ± �−
iv

γiv

⎞
⎠+ �γs

∑
±

± ln

(
τ−1

τ−1
φ + �+

s ± �−
s

γs

)
. (26)

Here, we have introduced �±
iv = (�z

x ± �0
x )/2 and �±

s =
(�x

0 ± �x
z )/2, as well as

γiv,s = 1√
1 − ( 2�so

�−
iv,s

)2
. (27)

The coefficients γiv and γs capture the effect of the spin
splitting. They are real if �−

iv,s � 2�so, and imaginary oth-
erwise. Although the rates �−

iv,s can be negative and the
coefficients γiv,s can be imaginary, their combination entering
Eq. (26) is such that the imaginary parts cancel out, so that the
conductance is always real (as it should be).

Quantum interference is very sensitive to a magnetic field
B⊥ perpendicular to the monolayer, as it breaks the coherence
of time-reversed paths of electrons, responsible for WL and
WAL. This is used as a probe of W(A)L in experiments,
which measure the magnetoconductance as a function of B⊥.
The perpendicular field couples to the momentum of the
electrons, unlike the parallel field B‖, which only couples
to spin via the Zeeman effect. It leads to a quantization
of momenta, |Q| → Qn = (n + 1/2)/l2

B, where n = 0, 1, 2 . . .

denotes the Landau levels and lB = √
h̄/4eB⊥ is the magnetic

length. We assume lB � l , such that the diffusive limit is not
violated, which imposes a constraint on the maximum field
B⊥ � h̄/(4eDτ0). We then evaluate the magnetoconductance
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�σ = δσ (B⊥) − δσ (0) as

�σ

σ0
= 2�F

(
B⊥

Bφ + Bx
x

)
+ 1

2
F

(
B⊥

Bφ + B0
z

)
− 1

2
F

(
B⊥
Bφ

)
+ 1

2
F

(
B⊥

Bφ + Bz
0

)
− 1

2
F

(
B⊥

Bφ + Bz
z

)

− γiv

∑
±

±F

⎛
⎝ B⊥

Bφ + B+
iv ± B−

iv
γiv

⎞
⎠− �γs

∑
±

±F

(
B⊥

Bφ + B+
s ± B−

s
γs

)
. (28)

Here, we have introduced

F (z) = ln(z) + ψ

(
1

2
+ 1

z

)
≈
{

z2

24 , z � 1,

ln z, z � 1,
(29)

where ψ (z) is the digamma function, and B j
i = h̄�

j
i /(4eD)

are effective magnetic fields associated with the scattering
rates.

Equation (28) acquires a simple form if the decoherence
rate τ−1

φ is either the dominant or the smallest scattering rate.

For very long τφ , such that τ−1
φ � �l

s, all the gapped Cooper-
ons can be neglected, and only the third term in Eq. (28)
remains. Then, we have �σ/σ0 = −(1/2)F (B⊥/Bφ ), as in
conventional metal with strong spin-dependent disorder. For
short decoherence times, τ−1

φ � �l
s, all the Cooperon gaps

can be neglected. Different contributions to Eq. (28) then
cancel pairwise, and we obtain �σ/σ0 = 2�F (B⊥/Bφ ). This
exhibits WL, WAL, or a vanishing quantum correction for
� = 1,−1, 0 respectively, similarly to a Dirac material in a
smooth disorder potential. This limiting case contributes to
the interference correction with a four times larger prefactor
compared to the previous one—a consequence of spin and
valley degeneracy.

The magnetoconductance formula Eq. (28) captures
the rich weak localization behavior of TMDCs and
graphene/TMDC. Due to the large number of parameters it is
difficult to apply it directly to experiments. In the next section,
we will present and discuss several realistic regimes in which
this result significantly simplifies, and compare them to the
existing theories. Furthermore, we will discuss the effect of a
finite in-plane Zeeman field.

IV. DISCUSSION

We will proceed by analyzing the magnetoconductance
formula (28) in the regimes of strong (Sec. IV A) and weak
short-range disorder (Sec. IV B). We will also address the
effect of an in-plane Zeeman field (Sec. IV C).

A. Strong short-range disorder

The regime where intervalley scattering dominates over all
spin-dependent scattering rates, τ−1

iv � τ−1
i, j , with i = z, zv, iv

and j = z, o, is the most commonly used regime when inter-
preting the measurements of the quantum correction. Such a
large magnitude of intervalley scattering is expected in sam-
ples with an abundance of atomic defects, or in small samples,
where the edges can contribute to this kind of scattering.
In that case, the effect of spin-dependent disorder can be

captured with only two scattering rates,

τ−1
sym = 2

(
τ−1

z,e + τ−1
zv,e + τ−1

iv,e

)
,

τ−1
asy = τ−1

z,o + τ−1
zv,o + τ−1

iv,o + τ−1
BR . (30)

Here τ−1
sym contains all the spin-dependent scattering processes

that satisfy mirror (z → −z) symmetry and, thus, preserve the
electron spin. On the other hand, τ−1

asy contains spin-flip pro-
cesses that break this symmetry. In the presence of potential
disorder only, we can use the estimates provided in Table I
to identify the dominant contributions to these rates. In that
case, we find that the symmetric rate is dominated by τ−1

z,e ,
which describes the Elliott-Yafet spin-relaxation mechanism
induced by Kane-Mele SOC, while the asymmetric rate is
dominated by τ−1

BR , which describes the Dyakonov-Perel spin-
relaxation mechanism induced by Rashba SOC. If additional
spin-orbit impurities are present in the system, the symmetric
and asymmetric rates are not limited by the band-structure
SOC parameters.

In the regime of strong short-range disorder, �−
iv ≈ �+

iv ≈
τ−1

iv , and γiv ≈ 1/
√

1 − 4�2
soτ

2
iv . Furthermore, we will assume

that the effect of trigonal warping captured in τ−1
∗ and τ−1

∗∗ for
intravalley Cooperons (see the bottom of Table II) is small
compared to intervalley scattering. Then, we have τ−1

∗ ≈
τ−1
∗∗ ≈ τ−1

iv , and the magnetoconductance (28) becomes

�σ

σ0
= 2�F

(
B⊥

Bφ + Biv

)
+ 1

2
F

(
B⊥

Bφ + 2Basy

)
− 1

2
F

(
B⊥
Bφ

)

− γiv

[
F

(
B⊥

Bφ + Biv
(
1 + 1

γiv

)
)

− F

(
B⊥

Bφ + Biv
(
1 − 1

γiv

)+ Bs

)]
. (31)

Here τ−1
s = τ−1

sym + τ−1
asy , and Bi = h̄/(4eDτi ). We see that

the magnetoconductance is determined by a combination of
valley and spin physics, described by the intervalley scattering
rate τ−1

iv , and spin scattering rates τ−1
sym and τ−1

asy . The interplay
between intervalley scattering and valley-dependent SOC is
captured by the coefficient γiv . We will proceed by analyzing
this interplay in two limits: τ−1

iv � �so and �so � τ−1
iv .

Within these two limits, we can readily address three
regimes of the decoherence rate: (i) τ−1

φ � τ−1
s , (ii) τ−1

s �
τ−1
φ � τ−1

iv , and (iii) τ−1
iv � τ−1

φ , where the quantum correc-
tion acquires a simple form. The cases (i) and (iii), where
the decoherence rate is the dominant or the smallest one,
respectively, were previously discussed in the general context
of Eq. (28). The intermediate regime (ii) is not universal.
In the limit τ−1

iv � �so, it yields �σ/σ0 = F (B/Bφ ). This
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is analogous to a conventional metal without SO impurities,
and represents a sum of three spin-triplet Cooperons C0

i
(i = x, y, z), which contribute as (3/2)F (B⊥/Bφ ), and a spin-
singlet Cooperon C0

0 , which contributes as −(1/2)F (B⊥/Bφ ).
For �so � τ−1

iv , the two triplet Cooperons C0
x and C0

y are
suppressed by the SOC, and the quantum correction vanishes.

We obtain more complex behavior in the crossover regimes
τ−1
φ ∼ τ−1

s [which includes (i) and (ii)] and τ−1
φ ∼ τ−1

iv [which
includes (ii) and (iii)]. Strong intervalley scattering com-
pletely suppresses the valley structure in the first regime,
so that the magnetoconductance is determined by the spin
physics only. On the other hand, the valley physics dominates
in the second regime, as the effect of spin scattering is washed
out by electron decoherence.

a. Limit τ−1
iv � �so. Here, Eq. (31) simplifies as γiv ≈ 1.

In the crossover regime τ−1
φ ∼ τ−1

s , the first and the fourth
terms of Eq. (31) are suppressed by the large intervalley
scattering, and we obtain

�σ

σ0
= 1

2
F

(
B⊥

Bφ + 2Basy

)
− 1

2
F

(
B⊥
Bφ

)
+ F

(
B⊥

Bφ + B̃s

)
.

(32)

Here, we have introduced

τ̃−1
s = τ−1

iv

(
1 − 1

γiv

)
+ τ−1

s ≈ 2�2
soτiv + τ−1

s , (33)

and B̃s = h̄/(4eDτ̃s). As valley structure and spin splitting are
suppressed in this regime, the system behaves similarly to
a diffusive metal with spin-orbit impurities, and Eq. (32) is
equivalent to the HLN formula. This remains true even when
intervalley scattering becomes comparable to intervalley scat-
tering, for τ−1

iv ∼ τ−1
0 . Equation (32) still holds in that case,

although with a modified diffusion constant (see Appendix B).
The effect of valley-dependent SOC is captured by an

additional contribution to the symmetric rate, τ−1
sym → τ−1

sym +
2�2

soτiv , which stems from the coupling of the Cooperon
modes C0(z)

x with Cz(0)
y by this SOC. This effect was already

discussed in Refs. [26,39,40] and used to estimate �so from
the experimental data in graphene/TMDC heterostructures.
However, the estimated SOC is of the same order of magni-
tude as τ−1

iv , which is outside of the region of validity of this
formula (τ−1

iv � �so). Instead, the full formula provided by
Eq. (31) should be used in order to get a more reliable estimate
of the valley-dependent SOC.

If τ̃−1
s ∼ τ−1

φ ∼ τ−1
asy , Eq. (32) exhibits WAL-WL crossover

as the magnitude of the perpendicular field is increased. We
next consider the regime τ̃s � τ−1

φ ∼ τ−1
asy . Here, the last term

of Eq. (32) is suppressed due to the combined effect of all
mirror-symmetric SOCs in the system, as τ−1

sym + 2�2
soτiv �

τ−1
φ . We thus have

�σ

σ0
= 1

2
F

(
B⊥

Bφ + 2Basy

)
− 1

2
F

(
B⊥
Bφ

)
. (34)

This corresponds to pure WAL behavior as a function of B⊥,
that saturates on the scale of Basy. This kind of saturation
was noticed in several recent experiments that show flat WAL
curves, such as Refs. [21,25,26]. The interference correction
vanishes for τ̃−1

s � τ−1
φ � τ−1

asy , and shows pure WL behavior

FIG. 3. Schematic representation of the WL behavior in the
regime of strong short-range disorder, τ−1

iv � τ−1
s . In the crossover

regions described by Eqs. (32)–(37), the magnetoconductance at low
(high) perpendicular field behaves the same as in the left (right)
adjacent region on the τ−1

φ arrow. In panel (a), the regime of van-
ishing interference correction between τ−1

asy and τ̃−1
s disappears if

τ−1
asy ∼ τ̃−1

sym.

if τ̃−1
s ∼ τ−1

φ � τ−1
asy , given as

�σ

σ0
= F

(
B⊥

Bφ + B̃s

)
. (35)

Next, we address the crossover regime τ−1
φ ∼ τ−1

iv . Here,
the spin scattering rates can be neglected, and the second and
third term of Eq. (31) cancel out, which yields

�σ

σ0
= 2�F

(
B⊥

Bφ + Biv

)
+ F

(
B⊥
Bφ

)
− F

(
B⊥

Bφ + 2Biv

)
.

(36)

This result at � = −1 is equivalent to Ref. [32], which
describes graphene without spin-dependent impurities. As a
function of a perpendicular field, it exhibits pure WL for
� = 1 and � = 0, and a WL-WAL crossover for � = −1.

Figure 3(a) gives a schematic representation of the different
regimes in the limit τ−1

iv � �so.
b. Limit �so � τ−1

iv . Since γiv ≈ 0, here only the first three
terms of Eq. (31) contribute to the magnetoconductance. In
the crossover regime τ−1

φ ∼ τ−1
s , we again obtain Eq. (34).

Similarly to the previously considered case analyzed below
Eq. (34), saturated WAL in this regime can be understood
as a consequence of strong mirror-symmetric SOC which
suppresses Cooperons that would lead to WL. However, this
suppression is now predominantly caused by spin splitting due
to �so, irrespective of the magnitude of τ−1

sym. This regime,
therefore, presents an alternative to the standard HLN theory
to interpret the experiments showing saturated WAL signals.

Finally, we analyze the crossover regime τ−1
φ ∼ τ−1

iv . We
find

�σ

σ0
= 2�F

(
B⊥

Bφ + Biv

)
, (37)

which exhibits pure WAL, pure WL, or vanishes for � = 1,
� = −1 and � = 0, respectively.
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FIG. 4. Interference-induced magnetoconductance as a function of a weak perpendicular magnetic field under the influence of increasing
valley-dependent SOC. We take the chemical potential to be deep in the conduction band, such that � = −1. The fields Bsym and Basy

are determined by the Elliott-Yaffet contribution from the Kane-Mele SOC and the Dyakonov-Perel contribution due to the Rashba SOC,
respectively, as well as other sources of spin-orbit scattering [see Table I and Eq. (30)]. The effect of the valley-Zeeman SOC is captured by
the parameter �soτiv . (a) All curves are plotted for the parameters Biv = 200Bφ, Bsym = Basy = 3Bφ . The dashed black line corresponds to
Eq. (32), while the dotted line corresponds to Eq. (34). (b) All curves are plotted for the parameters Biv = 10Bφ, Bsym = Basy = 0.02Bφ . The
dashed black line corresponds to Eq. (36), while the dotted line corresponds to Eq. (37).

Figure 3(b) gives a schematic representation of the differ-
ent regimes in the limit �so � τ−1

iv .
Figure 4 illustrates the behavior of the magnetoconduc-

tance beyond the two extreme limits τ−1
iv � �so and �so �

τ−1
iv , analyzed above. In particular, Fig. 4(a) addresses the

crossover from the regime described by Eq. (32) to the regime
described by Eq. (34) as the magnitude of valley-dependent
SOC is increased. Similary Fig. 4(b) shows a crossover from
Eq. (36) to Eq. (37).

B. Weak short-range disorder

In this section, we analyze the regime where intervalley
scattering rate is much weaker than the spin-scattering rates,
τ−1

sym, τ−1
asy � τ−1

iv , which is appropriate for large samples with-
out atomic defects. The intervalley spin-scattering rates are
assumed to be even weaker, τ−1

iv,e/o � τ−1
iv , and thus neglected.

The magnetoconductance formula is then given as

�σ

σ0
= 2�F

(
B⊥

Bφ + Bx
x

)
− 1

2
F

(
B⊥
Bφ

)
+ 1

2
F

(
B⊥

Bφ + 2Biv

)

−�γs

∑
±

±F

(
B⊥

Bφ + B+
s ± B−

s
γs

)
. (38)

In this regime, the quantum correction is governed by the in-
terplay between �so and a combination of the spin-scattering
rates �−

s , described by the coefficient γs. Unlike the case
of strong short-range disorder, the Cooperons containing γiv

cancel out in this regime, so the ratio of intervalley scattering
and valley-dependent SOC does not affect �σ . The three in-
travalley Cooperon gaps �x

i (i = 0, x, y, z) that enter Eq. (38)
have a similar structure. To simplify further analysis, we will
assume that they are of the same order of magnitude.

We proceed similarly to the previous section, and analyze
the three extreme limits with respect to the decoherence rate.
If it is the smallest, τ−1

φ � τ−1
iv , or the largest, �x

i � τ−1
φ ,

scattering rate, the general arguments presented after Eq. (28)
apply. In the intermediate limit τ−1

iv � τ−1
φ � �x

i , the quan-
tum correction vanishes.

We next examine the crossover regimes. For τ−1
φ ∼ τ−1

iv ,
we have

�σ

σ0
= −1

2
F

(
B⊥
Bφ

)
+ 1

2
F

(
B⊥

Bφ + 2Biv

)
. (39)

This formula is determined by intervalley scattering only, and
exhibits WAL behavior which saturates on the scale of Biv .
Finally, in the crossover regime τ−1

φ ∼ �x
i we have

�σ

σ0
= 2�F

(
B⊥

Bφ + Bx
x

)
− �γs

∑
±

±F

(
B⊥

Bφ + B+
s ± B−

s
γs

)
.

(40)

In the limit �−
s � �so, one should consider all three terms

in Eq. (40) since γs ≈ 1. As �so increases, the second line
of Eq. (40) becomes suppressed, until it vanishes for �so �
�−

s , where γs ≈ 0. We see that the qualitative behavior of
the magnetoconductance remains the same for any γs, and
thus, any �so. It only depends on the doping coefficient �,
and exhibits WL, WAL, or neither for � = 1, −1, and 0,
respectively. These conclusions are schematically represented
in Fig. 5.

C. Influence of the in-plane Zeeman field

One of the main difficulties when experimentally extract-
ing the parameters from quantum magnetoconductance fits
comes from the fact that there are multiple parameter combi-
nations that can fit the same data. For example, both valley-
dependent SOC and spin-dependent scattering can lead to
pronounced WAL signals. Applying an in-plane Zeeman field

FIG. 5. Schematic representation of the WL behavior in the
regime of weak short-range disorder, τ−1

sym, τ−1
asy � τ−1

iv � τ−1
iv,e/o. The

behavior in the crossover regions is represented in the same way as
in Fig. 3.
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FIG. 6. Influence of the in-plane Zeeman field on the magnetoconductance curves. The solid black line represents the curve at zero in-plane
Zeeman field, while the dashed line represents the saturation curve given by Eq. (42) at high fields. (a) The parameters for the plot are
Biv = 100Bφ , Bsym = Basy = 10Bφ, Bso = 0, and � = −1. The crossover to WL happens at B⊥ ≈ 10Bφ . (b) The parameters for the plot are
Biv = 100Bφ , Bsym = Basy = 3.5Bφ, Bso = 120Bφ , and � = −1. The crossover to WL happens at B⊥ ≈ 30Bφ.

can help overcome these ambiguities, as different kinds of
disorder and SOC interplay differently with the field.

At sufficiently high in-plane Zeeman field, all spin-singlet
Cl

0 and spin-triplet Cl
x Cooperons are suppressed, and we

arrive at the asymptotic formula for the magnetoconductance,

�σ

σ0
=
∑
i=x,z

[
�F

(
B⊥

Bφ + Bx
i

)
+ 1

2
F

(
B⊥

Bφ + B0
i

)

− 1

2
F

(
B⊥

Bφ + Bz
i

)]
. (41)

The magnitude of the in-plane Zeeman field required to reach
the high-field formula (41) differs depending on the parameter
regime, as will be discussed in the following. Note that it
will always be reached if h � �so, τ

−1
i , where τ−1

i are all
scattering rates except the diagonal one, τ−1

0 .
First, we analyze the regime where the short-range disorder

rate is much larger than all spin-dependent disorder rates,
τ−1

iv � τ−1
s . In this case the asymptotic formula acquires the

form

�σ

σ0
= 2�F

(
B⊥

Bφ + Biv

)
+ 1

2
F

(
B⊥

Bφ + 2Basy

)

+ 1

2
F

(
B⊥

Bφ + Bs

)
− F

(
B⊥

Bφ + 2Biv

)
. (42)

Starting from the general expression (25), we will next check
the magnitude of h needed to reach this formula in the limits
τ−1

iv � �so and �so � τ−1
iv .

Let us consider τ−1
iv � �so. If the decoherence rate τ−1

φ

is larger than all spin-scattering rates, the spin structure is
suppressed, and the in-plane Zeeman field has no effect. In
this case, the formula (42) is valid for any h and is equivalent
to Eq. (36). On the other hand, if τ−1

φ is of the order of
the spin-scattering rates, all the valley-singlet Cooperons, C0

s ,
contribute to the magnetoconductance at h = 0 [Eq. (32)],
and a finite h acts by suppressing the spin-singlet Cooperon
C0

0 and the spin-triplet Cooperon C0
x . For fields of the order

τ̃−1
s � h � τ−1

iv , Eq. (42) holds, but with Bs replaced with B̃s.
Therefore, unless τ−1

s � �2
soτiv , the valley-dependent SOC

still has an effect at such fields, through the contribution
2�2

soτiv to the effective rate τ̃−1
s . In that case, the high-field

asymptotic formula is reached only at very high fields of the
order of intervalley scattering, namely h � τ−1

iv .
Next, we consider the limit �so � τ−1

iv . In this regime,
the Cooperons C j

i and Ci
j , where i = x, y and j = 0, z, are

suppressed by the strong �so at h = 0. In order to reach
the asymptotic formula Eq. (42), a large field h � �so is
needed. It negates the effect of the valley-dependent SOC and
restores C j

y and Ci
z Cooperons, while suppressing all Cl

0 and
Cl

x Cooperons.
Finally, we address the limit of weak short-range disorder,

τ−1
sym, τ−1

asy � τ−1
iv � τ−1

iv,e/o, described by Eq. (38) at h = 0.
Similarly to the previously considered case, strong h negates
the effect of �so and suppresses all spin-singlet and x-triplet
Cooperons. Here, the asymptotic formula takes the form

�σ

σ0
= �

∑
i=x,z

F

(
B⊥

Bφ + Bx
i

)
, (43)

and is reached if the in-plane Zeeman field is the largest
energy scale, h � �x

i ,�so, τ
−1
φ (i = 0, x, y, z). The prefactor

� indicates that it can exhibit WAL, WL, or neither depending
on the doping, similarly to Eq. (40).

To illustrate a situation where applying the in-plane field
can help in the interpretation of the quantum correction, we
plot two magnetoconductance curves with a similar shape,
but with significantly different parameters, in Fig. 6 (black
line). The first curve [Fig. 6(a)] has strong spin scattering and
no valley-dependent SOC, while the second one has weaker
spin scattering and strong SOC [Fig. 6(b)]. The high-field
saturation curve (dashed line) has a similar shape in both
cases, and is described by Eq. (42). The amplitude of WL at
high fields is somewhat larger in the case of strong SOC, as the
spin-orbit scattering is weaker, which means that the second
line of Eq. (42) gives a larger contribution compared to the
other case. More importantly, this case is more resistant to the
effect of the applied field, and the crossover to WL happens
at a much higher field amplitude. This is consistent with the
above analysis, as the expected crossover field is h ∼ τ−1

s for
Fig. 6(a) and h ∼ �so for Fig. 6(b). Thus, applying an in-plane
field helps distinguish the contributions of valley-dependent
SOC and spin-dependent scattering to the quantum correction.
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V. CONCLUSIONS

In conclusion, we have developed a theory of weak lo-
calization and magnetoconductance for TMDC monolayers
and their heterostructures with graphene, using the standard
diagrammatic technique for disordered systems. The interplay
between spin and valley physics in these materials yields a
rich behavior of the quantum correction to the conductivity,
which we discuss in several regimes of interest for the in-
terpretation of recent experimental data. We generalize the
HLN and MF theories and propose a formula that can be
used to extract the magnitude of valley-dependent SOC and
disorder from the experiments in all regimes. In some cases,

interpreting the experiments is not straightforward, as differ-
ent parameter combinations may explain the data equally well.
An in-plane Zeeman field can be used as an additional tuning
parameter to help distinguish between the contributions of
different processes.
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APPENDIX A: HIGHER-ORDER CORRECTIONS DUE TO THE VALLEY-DEPENDENT
SOC AND IN-PLANE ZEEMAN FIELD

As discussed in Sec. III B, the main effect of the spin-splitting fields, h and �so, is the coupling of different Cooperon modes.
However, it is also important to consider the corrections beyond the leading order in τ0 in the diffusive limit, by keeping the
terms of the order �2

soτ0, h2τ0, and h�soτ0, as they can be of comparable magnitudes to the scattering rates appearing in the
Cooperon gaps. In this Appendix, we will discuss these corrections, and show that they can always be neglected when compared
to the leading-order effect of h and �so.

First, we generalize Eq. (24) to include these corrections. We have

⎡
⎢⎣
Px(y)

0 + 4ρ2τ0 ∓2�so −2ih

±2�so Py(x)
z + 4�2

soτ0 ±4ih�soτ0

−2ih ∓4ih�soτ0 Px(y)
x + 4h2τ0

⎤
⎥⎦
⎡
⎢⎣

Cxx(yy)
00 Cxy(yx)

0z Cxx(yy)
0x

Cyx(xy)
z0 Cyy(xx)

zz Cyx(xy)
zx

Cxx(yy)
x0 Cxy(yx)

xz Cxx(yy)
xx

⎤
⎥⎦ = 1

2πντ 2
0

,

⎡
⎢⎣
P0(z)

x + 4ρ2τ0 −2�so −2ih

2�so P z(0)
y + 4�2

soτ0 4ih�soτ0

−2ih −4ih�soτ0 P0(z)
0 + 4h2τ0

⎤
⎥⎦
⎡
⎢⎣

C00(zz)
xx C0z(z0)

xy C00(zz)
x0

Cz0(0z)
yx Czz(00)

yy Cz0(0z)
y0

C00(zz)
0x C0z(z0)

0y C00(zz)
00

⎤
⎥⎦ = 1

2πντ 2
0

, (A1)

where ρ2 = �2
so + h2. We see that all the gaps related to the Cooperons coupled by the in-plane Zeeman field, �l

0 and �l
x, are

now supplemented with a rate 4h2τ0. Similarly, all the gaps related to the Cooperons coupled by the valley-dependent SOC,
�

j
i (i ∈ {x, y}, j ∈ {0, z}, or i ∈ {0, z}, j ∈ {x, y}), are supplemented with the rate 4�2

soτ0. Furthermore, mixed terms of the form
±4ih�soτ0 introduce coupling of the Cooperons Cy(x)

z with Cx(y)
x , and Cz(0)

y with C0(z)
0 .

Next, let us consider the combinations of coupled Cooperons that enter the interference correction: A(l1
s1
,l2
s2

,l3
s3

) =
2πντ 2

0 (Cl1
s1

+ Cl2
s2

− Cl3
s3

), for (l1
s1
,l2
s2

,l3
s3

) = (y
z ,

x
x ,x

0 ), (x
z ,

y
x ,

y
0 ), (z

y,
0
0 ,0

x ), (0
y ,

z
0 ,z

x ), as introduced in Eq. (25). After inverting Eq. (A1)
and simplifying, we obtain

A
(

l1
s1
,l2
s2

,l3
s3

) = −P l1
s1
P l2

s2
+ P l2

s2
P l3

s3
+ P l3

s3
P l1

s1
+ 4�2

so

(
1 + P l1

s1
τ0 + P l3

s3
τ0 + 4ρ2τ 2

0

)+ 4h2
(
1 + P l2

s2
τ0 + P l3

s3
τ0 + 4ρ2τ 2

0

)
P l1

s1P l2
s2P l3

s3 + 4h2P l1
s1

(
1 + P l2

s2τ0 + P l3
s3τ0 + 4ρ2τ 2

0

)+ 4�2
soP l2

s2

(
1 + P l1

s1τ0 + P l3
s3τ0 + 4ρ2τ 2

0

) . (A2)

Finally, after neglecting terms which are small in the diffusive limit (1 � Pτ0, ρ
2τ 2

0 ), we find

A
(l1

s1
,l2
s2

,l3
s3

) = −P l1
s1
P l2

s2
+ P l3

s3
P l1

s1
+ 4h2 + P l2

s2
P l3

s3
+ 4�2

so

P l1
s1P l2

s2P l3
s3 + 4h2P l1

s1 + 4�2
soP l2

s2

, (A3)

which is exactly what enters Eq. (25), where higher-order corrections were not included.
Thus, we have shown that the higher-order corrections due to �so and h can be neglected. This result is not surprising, but

it becomes apparent only at a late stage of the calculation, as it is contingent upon exact cancellation of several terms coming
from two different sources: corrections to the Cooperon gaps of the form 4�2

soτ0 and 4h2τ0, and the coupling of Cooperons by
the terms of the form ±4ih�soτ0. This is a consequence of the basis chosen for our calculation.
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APPENDIX B: DIFFUSION CONSTANT IN THE REGIME τ−1
iv ∼ τ−1

0

We generalize the calculation of the transport time and the diffusion constant presented in Eq. (8), to account for intra- and
intervalley terms of the potential disorder HD0

qq′ on an equal footing. This yields

τ−1
tr = τ−1

0

μ2 + 3E2
g

2
(
μ2 + E2

g

) + τ−1
iv,+ + τ−1

iv,− + 3

2
τ−1

iv,x. (B1)

Here,

τ−1
iv,± = 2πν

∑
i=x,y

V 2
±i

(
1 ± Eg

μ

)2

(B2)

describes on-site intervalley disorder, while

τ−1
iv,x = πν

∑
i=x,y

V 2
xi

v2q2
F

μ2
(B3)

describes hopping intervalley disorder.
At μ ≈ Eg, the intervalley contribution to the transport time comes predominantly from one (“+”) site, and the diffusion

constant is D = 1
2vF (τ−1

0 + τ−1
iv,+)−1. At μ � Eg, both sites contribute equally, together with hopping disorder, and the diffusion

constant is D = 1
2vF ( τ−1

0
2 + τ−1

iv,+ + τ−1
iv,− + 3

2τ−1
iv,x )−1.
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ILIĆ, MEYER, AND HOUZET PHYSICAL REVIEW B 99, 205407 (2019)

[30] Note that the time-reversal operator in this basis is T = isyηxK,
where K is complex conjugation.

[31] The fact that there are 11 distinct scattering rates, excluding
the dominant τ−1

0 , can be understood as follows. As shown
in Table II in Sec. III C, there are five distinct intervalley and
six distinct intravalley gaps. Therefore, there should be 11
independent scattering rates to accommodate the same number
of independent Cooperon channels.

[32] E. McCann, K. Kechedzhi, V. I. Fal’ko, H. Suzuura, T. Ando,
and B. L. Altshuler, Phys. Rev. Lett. 97, 146805 (2006).

[33] E. Akkermans and G. Montambaux, Mesoscopic Physics
of Electrons and Photons (Cambridge University Press,
Cambridge, UK, 2007).

[34] H.-Z. Lu, J. Shi, and S.-Q. Shen, Phys. Rev. Lett. 107, 076801
(2011).

[35] R. J. Elliott, Phys. Rev. 96, 266 (1954).
[36] Y. Yafet, in Solid State Physics, edited by F. Seitz and D.

Turnbull (Academic, New York, 1963), Vol. 14.
[37] M. I. D’yakonov and V. I. Perel, Sov. Phys. JETP 33, 1053

(1971).
[38] S. Maekawa and H. Fukuyama, J. Phys. Soc. Jpn. 50, 2516

(1981).
[39] A. W. Cummings, J. H. Garcia, J. Fabian, and S. Roche,

Phys. Rev. Lett. 119, 206601 (2017).
[40] J. H. Garcia, M. Vila, A. W. Cummings, and S. Roche,

Chem. Soc. Rev. 47, 3359 (2018).

205407-14

https://doi.org/10.1103/PhysRevLett.97.146805
https://doi.org/10.1103/PhysRevLett.97.146805
https://doi.org/10.1103/PhysRevLett.97.146805
https://doi.org/10.1103/PhysRevLett.97.146805
https://doi.org/10.1103/PhysRevLett.107.076801
https://doi.org/10.1103/PhysRevLett.107.076801
https://doi.org/10.1103/PhysRevLett.107.076801
https://doi.org/10.1103/PhysRevLett.107.076801
https://doi.org/10.1103/PhysRev.96.266
https://doi.org/10.1103/PhysRev.96.266
https://doi.org/10.1103/PhysRev.96.266
https://doi.org/10.1103/PhysRev.96.266
https://doi.org/10.1143/JPSJ.50.2516
https://doi.org/10.1143/JPSJ.50.2516
https://doi.org/10.1143/JPSJ.50.2516
https://doi.org/10.1143/JPSJ.50.2516
https://doi.org/10.1103/PhysRevLett.119.206601
https://doi.org/10.1103/PhysRevLett.119.206601
https://doi.org/10.1103/PhysRevLett.119.206601
https://doi.org/10.1103/PhysRevLett.119.206601
https://doi.org/10.1039/C7CS00864C
https://doi.org/10.1039/C7CS00864C
https://doi.org/10.1039/C7CS00864C
https://doi.org/10.1039/C7CS00864C

