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Fundamental limits for nondestructive measurement of a single spin by Faraday rotation
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Faraday rotation, being a dispersive effect, is commonly considered as the method of choice for nondestructive
detection of spin states. Nevertheless Faraday rotation is inevitably accompanied by spin flips induced by Raman
scattering, which compromises nondestructive detection. Here, we derive an explicit general relation relating the
Faraday rotation and the spin-flip Raman scattering cross sections, from which precise criteria for nondestructive
detection are established. It is shown that, even in ideal conditions, nondestructive measurement of a single spin
can be achieved only in anisotropic media. Monolayers of transitions metal dichalcogenides are shown to be
promising candidates for this purpose.
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I. INTRODUCTION

Encoding information into the spin state of a single elec-
tron, nucleus, or atom and reading this information nonde-
structively constitute some of the main challenges of quantum
computing and spintronics. These challenges have motivated
strong experimental efforts towards electrical and optical de-
tection of single spin states in semiconductors [1]. Optical
detection has been demonstrated by polarized photolumines-
cence or polarization-dependent absorption [2–4], but these
methods are destructive. Dispersive methods like nonresonant
Kerr or Faraday rotation can be in principle nondestructive
and open a way to quantum nondemolition measurements of
a single spin state [5]. Nevertheless it is known that even
for dispersive measurements, the probe laser may eventu-
ally flip the targeted spin, compromising the nondestructive
measurement. This limitation is of fundamental nature, since
spin Faraday rotation is inevitably linked to spin-flip Raman
scattering [6–8]. This issue has been also addressed in details
in the context of spin noise spectroscopy, where the signal can
be interpreted either as Faraday or as Raman noise [9,10]. To
overcome this problem new schemes for quantum nondemo-
lition measurements have been proposed [11–14]. In practice
the conditions for nondestructive measurements can be even
more challenging to realize due to nonideal experimental
conditions, such as light scattering in the sample substrate,
low detector quantum efficiency, mixing of spin states, etc.
Since the first detections of a single spin by Kerr or Faraday
effect [15,16], and thanks to strong experimental efforts and
technological progress, nondestructive measurements with
these methods are within reach [17,18].

Until now the fundamental limits imposed by spin-flip
Raman scattering (SFRS) on such measurements have not
been established quantitatively. This work intends to fill this
gap through the derivation of an explicit and general relation
between the SFRS and the spin Faraday rotation (SFR) cross
sections. The notion of cross section is a very general and
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convenient way to characterize the probability of scattering,
capture, or absorption of light or particles when they interact
with atoms, defects, or impurities in solids. As shown in
Ref. [19] it is also adapted to characterize the Faraday rotation
induced by a spin polarization. Instead, in general the Faraday
rotation is characterized by the Verdet constant, which is the
proportionality factor between the rotation angle on one side
and the interaction length times the magnetic field intensity on
the other side. This definition is inconvenient for SFR because
the rotation angle is proportional to the spin polarization
density rather than the magnetic field. A spin polarization den-
sity can be created without applied magnetic field by optical
pumping or can appear locally because of a spontaneous spin
fluctuation. This property is exploited, for example, in spin
noise spectroscopy [20–22]. In these situations it is better to
introduce the proportionality factor σF between the rotation
angle θF and spin polarization density Jz such that θF = σFJz�,
where � is the interaction length [19]. σF has the dimen-
sion of a surface and can be considered as a cross section
for SFR.

As we show below there exists a direct and general relation
between the spin-flip Raman scattering cross section σR and
σF. This relation shows that a quantum nondemolition of a
single spin by Faraday rotation is not always feasible even in
an ideal experiment.

II. GENERAL RELATIONS BETWEEN CROSS SECTIONS

We consider a transparent dielectric material with spins
embedded in it. In these conditions the electric induction can
be written as [23]

D = ε′E + iE × (GJ). (1)

ε′ is the real part of the dielectric tensor, and E is the electric
field. In general G is a second rank tensor, which becomes
a scalar in optically isotropic media such as atomic vapors
or cubic semiconductors. J stands for the spin density. We
will consider below dielectric materials with point group
symmetry C3v (relevant for crystals with wurtzite structure
or for quantum dots with small in-plane asymmetry) or with
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cubic symmetry. With the high-symmetry axis along z, G
takes the form

G =
⎛
⎝G1 0 0

0 G1 0
0 0 G2

⎞
⎠. (2)

In the following we will only consider a light beam propa-
gating along z and linearly polarized along x. The field ampli-
tude in the dielectric is then given by E(r, t ) = E0x̂ exp[i(k ·
r − ωt )] with k = kẑ, and the light intensity in the dielectric
medium is I0 = 1

2ε0E2
0 cn, where n is the refractive index.

To calculate the Faraday rotation angle θF one first consid-
ers that J = Jẑ is time independent. The solution of the wave
equation is well known and gives

θF = ωG2J�

2cnε0
. (3)

From the definition of the Faraday rotation cross section [19]
one obtains

σF = ωG2

2cnε0
. (4)

Let us now calculate the spin-flip Raman scattering (SFRS)
cross section σR for nonpolarized spins. For this purpose
one can consider a small volume v whose dimensions are
much smaller than the optical wavelength and that contains
N noninteracting spins [24]. SFRS occurs because of spin
fluctuations. By definition of σR the power of light scattered
by the N spins in v is given by Ps = I0σRN . We have thus
to calculate Ps. In the volume v the amplitude of the spin-
dependent dipole moment induced by the incident field is
given by

p(r, t ) = i

⎛
⎝ 0

−G2E0Jz(r, t )v
G1E0Jy(r, t )v

⎞
⎠ei(k·r−ωt ). (5)

The total power emitted by this time-fluctuating dipole is
given by

Ps = 2

3

1

4πε(c/n)3
〈|p̈(r, t )|2〉, (6)

where 〈...〉 denotes time average. Since the spin fluctuations
are much slower than the variations of the electromagnetic
field one can neglect the time derivatives of Jy,z. Thus we get

Ps = E2
0 nω4

12πε0c3

[
G2

2 < (Jz(r, t )v)2 + G2
1〈(Jy(r, t )v)2〉]. (7)

For N independent and randomly oriented spins we have

〈(Jy,z(r, t )v)2〉 = 1
3 Ns(s + 1), (8)

where s is the value of the individual spins. Hence, we obtain
the SFRS cross section

σR =
(
G2

1 + G2
2

)
ω4

18πε2
0 c4

s(s + 1). (9)

By comparing Eqs. (4) and (9) we obtain one of the main
results of this paper, which relates σR and σF

σR = 8π

9
(1 + η)s(s + 1)

(
nσF

λ

)2

(10)

FIG. 1. Up: Schematics of the geometry for dispersive mea-
surement of a single spin by Faraday rotation. The oriented lines
represent a focused gaussian beam propagating from left to right,
and the arrow represents a spin at the beam waist (z = 0), polarized
along the z axis. The green (resp. red) circles represent the radiation
pattern for Rayleigh scattering (resp. SFRS). In an isotropic medium
and for a spin one half the Rayleigh and Raman scattering intensities
are exactly equal. Bottom: Illustration of the effect of the Gouy phase
shift on the light polarization of the gaussian beam. At z < 0 the
incident beam is linearly polarized along x. For λ/n � z � zc the
light is elliptically polarized, while for z � zc the light becomes
linearly polarized with the polarization rotated by the angle θF with
respect to the incoming light polarization.

with η = (G1/G2)2, and λ = 2πc/ω is the light wavelength
in vacuum.

It may be useful to give the expression of the differential
cross section for forward (or backward) scattering, taking into
account the radiation pattern of the dipole and that only the y
component of the Raman dipole [25] participates to forward
scattering. Starting from Eq. (7) one easily gets the differential
cross section (

dσR

d


)
0

= 1

3
s(s + 1)

(
nσF

λ

)2

, (11)

in agreement with Eq. (7) from Ref. [8] for s = 1/2.
We consider now a gaussian beam polarized along x and

interacting with a single spin s situated at the position of the
beam waist z = 0 and in a pure spin-up or spin-down state
sz = ±s (see Fig. 1). At the beam waist w0 the intensity of
the field decreases with the distance ρ from the beam axis
as I (ρ) = I0 exp(−(ρ/w0)2). Since the spin is in a pure state
there are no fluctuations along z but only quantum spin fluctu-
ations in the (x, y) plane. Among these, only spin fluctuations
in the y direction contribute to SFRS. Hence, in Eq. (7) only
the second term of the right-hand side must be kept but with
spin fluctuations evaluated for spin-up or spin-down state.
Using sz = ±s and 〈s2

x〉 = 〈s2
y〉 one finds 〈s2

y〉 = s/2. Inserting
this value in Eq. (7) one obtains the following expression for
the SFRS cross section for a pure spin-up or spin-down state

σR,pure = 4π

3
ηs

(
nσF

λ

)2

. (12)

Since the Raman dipole is along z there is no forward
SFRS in this case (see Fig. 1), in the sense that there is no
frequency-shifted scattered light in this direction. However,
the static spin component along z induces a dipole parallel
to y. The emitted light is not frequency shifted and is cross
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polarized with respect to the incident field. It corresponds to
spin-Rayleigh scattering and is at the origin of the Faraday
effect. The relevant dipole associated with a pure spin state
sz = ±s is according to Eq. (5) py = ∓iG2E0se−iωt . The field
emitted along the z axis by this oscillating dipole is given
by Ey(z, t ) = μ0

4πr p̈y(t )eikz in the far field (|z| � λ/n). Using
Eq. (4) one can express the emitted field as

Ey(z, t ) = ±iσFs
n

λ|z|E0ei(kz−ωt ), (13)

where k = nω/c is the wave vector inside the sample. Besides,
the field of the gaussian beam along the z axis is given by

Ex(z, t ) = E0√
1 + (

z
zc

)2
ei(kz−ωt−ψ (z)), (14)

where zc = nπw2
0/λ is the Rayleigh length, and ψ (z) is the

Gouy phase shift. For small rotation the Faraday rotation angle
is given by Re[Ey(z, t )/Ex(z, t )]. Close to the spin ψ (z) ≈ 0,
hence the Rayleigh field and the incident field are in phase
quadrature. They become in phase only for z � zc where
ψ (z) → π/2, resulting in a rotation of the polarization plane
(see Fig. 1)

θF± = ∓ σF

πw2
0

s = ∓θF. (15)

As expected SFR is proportional to the ratio of σF to the
beam cross section. Note however that the rotation angle is
not constant across the beam but generally increases off axis.
Also SFR is inevitably accompanied by SFRS. Thus there is
a finite probability of spin flips induced by light, which limits
the possibility of nondestructive measurement.

The total power of elastically scattered light is given by

Pel. = G2
2I0ω

4

6πε2
0 c4

s2. (16)

As for Raman scattering one gets the corresponding cross
section

σel. = 8π

3
s2

(
nσF

λ

)2

, (17)

so that
σR,pure

σel.
= η

2s
. (18)

III. CONDITION FOR NONDESTRUCTIVE
MEASUREMENT OF A SINGLE SPIN

We will consider the case of a spin one half only. For a
nondestructive measurement one demands that the acquisition
time be short enough to avoid any spin flip induced by
inelastic light scattering but long enough to determine the spin
state |sz〉 = | ± 1

2 〉 from a Faraday effect based measurement.
This can be done by measuring the light intensity after a linear
polarizer averaged over a large number of photons. But the
fundamental detection limit is more rigorously determined by
looking at the level of the single spin-single photon interac-
tion, which amounts to detect the single-photon Faraday effect
[26,27]. We first consider a statistical measurement based on
many photons, and then we will turn to the single-photon
detection.

A. Nondestructive measurement with many photons

In the simple approach considered here the induced Fara-
day rotation is detected with a polarimetric setup consisting
of a linear polarizer followed by a detector. The measurement
time is such that n0 photons interact with the spin. As before,
we assume that the spin is in a pure state |± 1

2 〉. The average
number of photons scattered due to SFRS is given by

ns = σR,pure

πw2
0

n0. (19)

The (perfect) polarizer makes an angle θ with respect to the
linear polarization of the in-coming photons. The average
number of transmitted photons across the polarizer depends
on the spin state and is given by 〈n±〉 = n0 cos2(θ ± θF),
where θF = σF/2πw2

0. The measurement sensitivity is limited
by the photon shot noise only, because the intrinsic quantum
noise vanishes for pure spin states [28]. In order to determine
the spin state, the difference between 〈n+〉 and 〈n−〉 must be
large enough compared to the statistical fluctuations in the
detected photon numbers. In such an experiment the spin state
can be detected with some fidelity F .

For definiteness we take 〈n+〉 > 〈n−〉, and we define the
fidelity as the probability that the number of detected photons
be larger (resp. less) than n = (〈n+〉 + 〈n−〉)/2 if the spin is
in the |+ 1

2 〉 (resp. |− 1
2 〉) state. Thus the fidelity is

F (θ ) = 1√
2π〈n+〉

∫ +∞

n
exp

(
− (n − 〈n+〉)2

2〈n+〉
)

dn, (20)

for a Poissonian photon distribution. Taking into account
that θF � 1 we find F (θ ) = 1

2 (1 + erf(θF sin(θ )
√

2n0)). The
highest fidelity F is obtained for θ → π/2, i.e., when the
polarizer axis is almost perpendicular to the in-coming light
polarization.

The minimum number of probe photons necessary to reach
a given fidelity is obtained by inverting the above expression,
which gives n0 = ζ 2/2θ2

F , where ζ = erf−1(2F − 1). Insert-
ing this value into Eq. (19) and using Eqs. (12) and (15) we
obtain

ns >
4ζ 2η

3

(
nπw0

λ

)2

. (21)

Diffraction imposes nπw0 � λ. Hence, the condition that
much less than one spin flip should occur during the measure-
ment sets an upper limit to η

η � 3

4ζ 2
. (22)

Thus the condition depends on the desired fidelity of the
measurement. It coincides with the condition given by
Eq. (25) for ζ = √

2 (see Sec. III B), which corresponds to
F = 0.977.

B. Nondestructive measurement with a single photon

We now consider the single-photon Faraday effect. The
photon-spin interaction leads to a spin-photon entangled state
such as

|�〉 = 1√
2

(
|−θF〉

∣∣∣∣+1

2

〉
+ |θF〉

∣∣∣∣−1

2

〉)
, (23)
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FIG. 2. Principle of a single-shot measurement of a single spin
via the Faraday effect using a pair of undistinguishable photons
and two-photons detectors D1 and D2. One probe photon is sent
through the sample and interacts with the spin. The experiment is
repeated until a probe photon is transmitted through the polarizer and
interferes with a reference photon. A first click on D1 or D2 prepares
the spin either in the spin-up or spin-down state. Subsequent clicks
at the same detector validate the nondestructive measurement.

where |±θF〉 = cos(θF)|x〉 ± sin(θF)|y〉 is the photon state.
Hence, a phase-sensitive detection of the y component of
the photon polarization state projects the spin in a pure state
|± 1

2 〉. If the spin relaxation time is long enough, and if
nondestructive measurement is achieved, the outcome of sub-
sequent measurements should always be the same. Figure 2
illustrates a possible phase-sensitive detection setup, using
pairs of undistinguishable photons. One photon from each pair
(probe photon) is sent though the sample and interacts with
the spin, while the other photon (reference photon), which
is phase stabilized with respect to the first one is sent on
the reference path. After interaction the probe photon state is
projected on the y polarization state by the polarizing filter. y-
polarized probe photons then interfere with reference photons
at the 50:50 beam splitter (BS). A click, corresponding to a
two-photons detection [29], will occur either at detector D1

or at detector D2 [30]. This prepares the spin in a known
pure state. As long as the spin state is conserved, following
clicks will always occur at the same detector. At least one
click is necessary to detect the spin state. The average number
of clicks for n0 photons incident on the sample is (assuming
no loss) nclick = n0|〈y|�〉|2 � n0θ

2
F for small rotation angles.

Besides, the number of spin flips due to SFRS in the same time
interval is nsf = n0σR,pol/πw2

0. A nondestructive measurement
requires both nsf � 1 and nclick � 1. Using Eqs. (15) and (12)
we get

8η

3

(
nπw0

λ

)2

� 1. (24)

Taking into account that diffraction imposes πw0 � λ/n, we
finally obtain the following condition for a nondestructive
measurement

η � 3
8 , (25)

which can be satisfied only in anisotropic media. This is
consistent with the fact that for isotropic media SFRS occurs
with the same probability as spin-Rayleigh scattering [see
Eq. (18)].

IV. RELATION BETWEEN η AND THE SPIN-FLIP
RAMAN TENSOR

In order to calculate η we evaluate the spin-dependent
Raman dipole given by Eq. (5) in the limit of a single
spin. Hence, in Eq. (5) we substitute Ji(r, t )v by the spin
operator h̄

2 σ̂i, where the σ̂i are the Pauli matrices. The spin-flip
Raman dipole only couples states having the same orbital.
Hence we calculate the dipole between two states |a〉 and |b〉
having the same orbital and either time-reversed spin states
for Raman scattering (calculation of G1) or the same spin
state for spin-Rayleigh scattering (calculation of G2). As we
considered an incident field polarized along x, the Raman
dipole 〈a|py(r, t )|b〉 [resp. 〈a|pz(r, t )|b〉] is proportional to the
element αyx(a, b) [resp. αzx(a, b))] of the SFRS Raman tensor
α. From this we deduce

G1 ∝ αzx(a, b)

i〈a|σy|b〉 (26)

G2 ∝ αyx(a′, b′)
−i〈a′|σz|b′〉 , (27)

where σy and σz are Pauli matrices, and in each case the pair
of states must be chosen to have nonzero denominators. The
Raman tensor is given by

αi j (a, b) ∝
∑

n

〈b|ri|n〉〈n|r j |a〉/(En − Ea − hν), (28)

where the sum runs over all intermediate states |n〉 (we assume
En − Ea � En − Eb), the ri are the cartesian components of
the position operator, and hν is the incident photon energy
(for incoming resonance).

For the calculation of G1 it is convenient to take |a〉 = |↑〉
and |b〉 = |↓〉, where the spin states are quantized in the z
direction, while for the calculation of G2 one can take |a′〉 =
|b′〉 = |↑〉. With this choice of states the anisotropy parameter
η takes the form

η =
(

G1

G2

)2

=
(

i
αzx(↑,↓)

αyx(↑,↑)

)2

. (29)

A. Application to cubic semiconductors

We now estimate η for cubic semiconductors of zinc-blend
structure such as GaAs. The relevant localized electron states
can be associated with shallow donor levels, or negatively
charged QDs. We assume that the optical response is domi-
nated by the lowest optically active transitions between these
localized states and the negatively charged or donor-bound
excitons.

Using the matrix elements for the Raman active transitions
(Fig. 3) we obtain

αzx(↑,↓) ∝ −1

3

1

E� − hν
(30)

αyx(↑,↑) ∝ −i

2

1

Eh − hν
+ i

6

1

E� − hν
, (31)
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FIG. 3. Left panel: Raman active transitions for spin-flip scat-
tering between two time-reversed spin states deduced from the
interband optical matrix elements given in Table I and relevant for
the calculation of G1. The relative amplitudes of the optical matrix
elements and the corresponding polarization are given for each active
transition. Right panel: Optical transitions relevant to the calculation
of G2.

where E� and Eh are the energies of the light-hole and heavy-
hole transitions, respectively. We deduce

η = 4[
3 E�−Eh

Eh−hν
+ 2

]2 . (32)

As expected η = 1 for cubic symmetry (heavy and light-
hole states degenerate), and η < 1 if a uniaxial stress or
a confining potential (QDs with cylindrical symmetry) split
the heavy-hole and light-hole states. The condition given by
Eq. (25) can be fulfilled for large enough splitting between
light hole and heavy hole as compared to the detuning from
the heavy-hole excitonic resonance, which can be realized in
quantum dots.

B. Application to transition metal dichalcogenides (TMDs)

Monolayers of TMDs are direct band gap semiconductors
in which spin-valley physics is currently intensively explored
[31]. The strong optical anisotropy associated with their
2D structure make them a priori good candidates for the
nondestructive measurement of the single spin of a resident
carrier eventually localized on a shallow donor. Recent DFT
calculations show that shallow donors could be obtained by
doping in these materials [32,33]. Interestingly, long-lived
electron spin dynamics has been demonstrated experimentally
in n-type MoS2 and WS2 by time-resolved Kerr rotation and
ellipticity [34,35].

Figure 4 shows the four lower conduction band states, and
the two upper valence band states considered here, as well

TABLE I. Table of optical matrix elements for direct band gap
cubic semiconductors. The matrix elements are given for the three
components x, y, z of the polarization vector, between the two con-
duction band spin states (first column) and the four valence band spin
states (first raw).

|+3/2〉 |+1/2〉 |−1/2〉 |−3/2〉
x y z x y z x y z x y z

|↑〉 1√
2

i√
2

0 0 0 −
√

2√
3

1√
6

−i√
6

0 0 0 0

|↓〉 0 0 0 1√
6

i√
6

0 0 0
√

2√
3

1√
2

−i√
2

0

FIG. 4. The left panel shows the one electron states considered
in the text, three for each K valley (we adopted the group theory
notations of Ref. [37] for the labels of the one electron states). The
two lower states are from the top of the valence band; the four upper
states are from the bottom of the conduction band. The right panel
shows the four allowed trion states involved as intermediate states in
the Raman processes. In the labeling of the trion states subscript 1
(resp. 2) refers to intravalley (resp. intervalley) trions.

as the four active negative trion states, which constitute the
intermediate states of the Raman processes. We are interested
in the detection of a single electron spin in one of the two
lower conduction band states (�10↑ or �9↓), which can be
prepared by recombination of a trion. For definiteness let us
consider the �10↑ state from the K− valley.

Table II gives the optical matrix elements for interband
transitions. Only spin-conserving transitions are allowed for
x-polarized and y-polarized light [36,37], while a non-spin-
conserving transition is optically active for the z-polarized
light due to spin-orbit mixing [37,38]. The relative amplitude
of the non-spin-conserving optical transition is given by β,
which represents the fraction of opposite spin admixture in
the hole state due to spin-orbit interaction. Due to this mixing
Raman spin-flip scattering between �10↑ and �12↓ becomes
allowed. From Table II one can easily deduce the active
transitions involved in the calculation of G1 and G2 (Fig. 5).
The calculation of the Raman tensor is straightforward. We
find

αzx(↑,↓) ∝ β

EX −
1

− hν
(33)

αyx(↑,↑) ∝ −i

EX −
1

− hν
+ i

EX −
1

+ δ − hν
, (34)

where EX −
1

is the energy of the optically allowed transition
between X −

1 ↑ and �10↑, and δ is the exchange splitting

TABLE II. Table of optical matrix elements for TMDs monolay-
ers. The matrix elements are given for the three components x, y, z
of the polarization vector, between the four conduction band states
(first column) and the two valence band states (first raw).

�8↓ �7↑
x y z x y z

�10↑ 0 0 β 0 0 0
�12↓ 1 −i 0 0 0 0
�9↓ 0 0 0 0 0 β

�11↑ 0 0 0 1 i 0
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FIG. 5. Left: Raman active spin-flip transition for TMDs illus-
trated for the K− valley between two states involved in the calculation
of G1. The relative amplitudes of the optical matrix elements and
the corresponding polarization are indicated for each active transi-
tion. The intermediate state is an intravalley negative trion. Right:
Transitions involved in the calculation of G2. Both intravalley and
intervalley trions split by the exchange interaction contribute to G2.

between intra- and intervalley trions. Note that the elements of
the Raman tensors do not depend on the splitting � between
�10↑ and �12↓ as long as incoming photon resonance is
considered. We thus obtain

η = β2

(EX −
2

− hν

δ

)2

. (35)

β ∼ 0.03 in WSe2 and WS2 [37,38], and δ = 6 meV in
WSe2 [39]. Hence for a detuning from optical resonance of

few meV η can be as small as 0.001. This very small value
makes these materials quite promising for nondestructive
detection in near-resonant conditions.

V. CONCLUSION

In conclusion we have derived a general relation which
connects the SFRS and SFR cross sections, valid in con-
ditions of weak absorption. Using this relation, criteria for
nondestructive measurement of a single spin state by Faraday
rotation are deduced. These criteria show that nondestructive
measurements require a high enough optical anisotropy char-
acterized by the parameter η. The novel 2D materials like
TMDs appear to be very promising candidates in this quest.
It should be noted that, although a planar cavity amplifies
the Faraday rotation, it is useless for nondestructive detection
because Raman spin-flip scattering is amplified in such a way
that the relation between cross sections remains valid inside
the cavity. Finally, the above criteria can be easily adapted
for real experiments in order to take into account losses due to
light scattering in the substrate and limited quantum efficiency
of the detector for example.
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