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Spin backflow: A non-Markovian effect on spin pumping
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The miniaturization of spintronic devices, specifically, nanoscale devices employing spintronics, has attracted
intensive attention from a scientific as well as engineering perspective. In this paper, we study a non-Markovian
effect on spin pumping to describe spin current generation driven by the magnetization of arbitrary precession
frequency in a quantum dot attached to an electron lead. Although the Markovian approximation can be used
when driving is sufficiently slow compared with relaxation times in electron tunneling, recent developments in
nanospintronic devices show that we need to include non-Markovian effects. In contrast to the one-way-only
nature of the spin current generation under Markovian dynamics, we find that non-Markovian dynamics exhibit
a temporal backflow of spin, called spin backflow for brevity. We capture the phenomenon by introducing its
quantifier, and show that the backflow reduces the amount of spin current significantly when the frequency
exceeds the relaxation rate. This prevents an unphysical divergence of the spin current in the high-frequency
limit that occurs under the Markovian approximation. We believe our analysis provides an understanding of the
spin pumping particularly in regard to producing a more efficient spin current generation over shorter time scales
by going beyond the conventional Markovian approximation.
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I. INTRODUCTION

Controlling the electron transport in nanosystems repre-
sents a promising advance for future electronics. Its major
application is the single-electron transistor [1], which would
enable extreme downsizing and ultra-low-power consumption
of computing devices. An ambitious research field with this
direction in mind seeks to incorporate magnetic components
into nanoelectronic devices [2,3]. It aims to boost conven-
tional nanoelectronics devices by exploiting the spin degrees
of freedom in addition to the electronic charge [4–6].

The generation of spin current is the important aspect in
nanospintronics. To date, numerous efforts have been made to
realize spin pumping in nanosystems [7–22]. A typical pro-
tocol uses magnetization precession [23,24], which has been
implemented in bulk systems, and consists of a ferromagnet
attached to a normal metal [25] as well as superconducting
materials [26,27]. Because of its wide range of application,
it keeps attracting growing interests from both theoretical
and experimental points of view. In contributing to these
attempts, we have focused on a minimum model describing
spin pumping in a nanosystem consisting of an electron lead
attached to a two-level system (quantum dot) subjected to a
rotating magnetic field [8,13,15,22].

In conventional studies on the minimum model, spin pump-
ing has been formulated using the adiabatic approximation,
which requires the rotation frequency of the magnetic field �

to be small compared with the characteristic energy scale δE
over which the stationary scattering property of an electron
by the quantum dot changes significantly, i.e., � � δE/h̄
[28]. Underlying this condition is an implicit assumption,
specifically, the relaxation time τr of the electron distribution

in the dot by tunneling to the lead is infinitely slow compared
with the rotation, τ−1

r � �. Because setting the relaxation
time to infinity is impossible, we studied the effect of its
finiteness in [29] by evaluating the nonadiabatic effect up
to � � τ−1

r formulated subject to the Born-Markov approx-
imation (see, for example, [30]). In consequence, we showed
that spin pumping is an entirely nonadiabatic effect. We also
found that the nonadiabatic spin current depends linearly on
� in a low-frequency regime [31] and exhibits an oscillatory
dependence on �, indicating an enhancement of the spin
current.

Despite the treatment in [29] describing spin pumping with
finite precession frequency, its range of applicability is limited
to a relatively slow precession because of the Markovian
approximation. The approximation is only valid when the time
scale of the relevant dynamics is sufficiently longer than the
relaxation time of the dot as well as the correlation time of the
lead [30]. Therefore, breakdown occurs for a rapid precession
when the relaxation time is exceeded, which often occurs
for nanospintronics systems. Indeed, in a single molecule
magnet system, the rotation frequency of its magnetic core
(ν ≈ 10 GHz) exceeds the relaxation rate (γr ≈ 1–10 s−1)
[34]. In the present paper, we examine the non-Markovian
effect on spin pumping by removing the Markovian approx-
imation from its formulation.

Among several non-Markovian effects [36–47], we focus
on those revealed as backflow [46,47]. Backflow reflects a
partially reversible dynamics of an open system within a time
interval in which the memory of the initial condition remains
and the dynamics is coherent. It allows a back-and-forth
transfer of physical quantities such as information [46] and en-
ergy [47] unlike the one-way-only transfer under Markovian
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FIG. 1. Schematic drawing of the minimum model. The model
consists of a ferromagnetic quantum dot attached to an electron lead.
The dot has a dynamic magnetization M(t ) that rotates around the
z axis with a period T . The number of transferred electrons with
spin magnetic moment ↑ (↓) is captured by the counting field (see
Formalism).

dynamics. Although conventional studies on the backflow
treat undriven systems, it may significantly affect elec-
tron transport in a constantly driven system because non-
Markovian effects dominate the initial stage of the relaxation
process following a given external disturbance. Now the ques-
tion arises: what is the role of backflow in a constantly driven
system such as in spin pumping? To answer this question,
we formulate the spin pumping by using the full count-
ing statistics, which enables us to describe electron transfer
dynamics during the time interval between two successive
measurements of electron number [47–49]. By including the
non-Markovian effect to the dynamics, we obtain a short-
time behavior description of partial reversibility allowing spin
transfer back from lead to dot, which we call spin backflow.
We find that the non-Markovian dynamics enables a physi-
cally reasonable description of spin pumping over the whole
frequency range.

II. MODEL

We consider a minimum model of spin pumping (Fig. 1)
that describes a quantum dot with a dynamic magnetization
attached to an electron lead [22,29]. In the quantum dot,
the electron is spin polarized because of the s-d exchange
interaction with the magnetization and is represented by two-
component creation and annihilation operators d† = (d†

↑, d†
↓)

and d, where ↑ or ↓ represents the direction of the spin
magnetic moment of the electron parallel or antiparallel to the
z axis.

The Hamiltonian H (t ) = Hd(t ) + Hl + Ht contains three
terms. Hd(t ), describing the dot, is defined by Hd(t ) =
d†[εd − M(t ) · σ]d, where εd is the unpolarized energy of
a dot electron, M(t ) ≡ M(sin θ cos φ(t ), sin θ sin φ(t ), cos θ ),
and σ = (σx, σy, σz ) is the vector of Pauli matrices. The elec-
tron lead is described by the term Hl = ∑

σ=↑,↓
∑

k εkc†
σ,kcσ,k ,

where c†
σ,k and cσ,k with σ =↑ or ↓ denote the creation and

annihilation operators of a lead electron with energy εk . The
dot-lead interaction is assumed to be spin conserving with
Ht = ∑

σ

∑
k h̄vk (d†

σ cσ,k + c†
σ,kdσ ), where h̄vk is the coupling

strength, which we assume to be weak. In the following,
we apply full counting statistics (FCS) [48] to evaluate the
number of transferred electrons with spin σ through projective
measurements of the electron number in the lead represented
by Nσ ≡ ∑

k c†
σ,kcσ,k . Defining an outcome of the projective

measurement at time t as nσ,t , we discuss electron dynamics
under the spin pumping.

III. FORMALISM

Let us briefly summarize how we apply the FCS to formu-
late spin pumping [50]. The FCS is based on the joint proba-
bility of outcomes of two successive projective measurements.
It provides the statistical average of the number of transferred
electrons through the unitary time evolution under the dot-lead
interaction between measurements over the initial states of the
total system. Using the joint probability, we obtain the prob-
ability density of the difference between the two outcomes at
time ti and a later time ti+1(= ti + δt ), which we define as
P(�nσ,i ) for the difference �nσ,i(≡ nσ,ti+1 − nσ,ti ). The sign
of �nσ,i is chosen to be positive when electrons are transferred
from dot to lead. To obtain cumulants of �nσ,i, it is conve-
nient to use the generating function, the Fourier transform of
P(�nσ,i ), i.e., G(λσ ) ≡ ∫ ∞

−∞ P(�nσ,i )eiλσ,i�nσ,i d�nσ,i, where
the parameter λσ is called the counting field. It gives the first
cumulant (mean value) as 〈�nσ,i〉 = ∂G(λσ )/∂ (iλσ )|λσ

= 0.
Our next task is to describe the time evolution of G(λσ ).

Assuming that the initial state associated with the joint prob-
ability is factorized between dot and lead, and the lead is in a
diagonal state with choosing a Gibbs ensemble, we can rewrite
G(λσ ) with a traced quantity over the total system where the
unitary time evolution operator is modified to include λσ [51].
Taking the trace procedure in the joint probability for the
lead first, we cast the reduced operator for the dot system
in the form of a generalized master equation. In this paper,
we take the time-convolutionless quantum master equation
[52,53] to obtain ∂ρ (λσ )(t )/∂t = ξ (λσ )(t )ρ (λσ )(t ) [49,54]. The
superoperator ξ (λσ )(t ) is expanded as a sum of “ordered
cumulants” of the interaction Hamiltonian Ht up to infinite
order. Taking leading terms up to second order, we have
ξ (λσ )(t )ρ = −ih̄−1[Hd, ρ] + K (λσ )

2 (t )ρ, where K (λσ )
2 (t )ρ =

−h̄−2
∫ t

0 dτTrl[Ht, [Ht (−τ ), ρ ⊗ ρ
eq
l ]λσ

]λσ
is the memory

kernel with definitions Ht (t ) ≡ ei(Hd+Hl )t/h̄Hte−i(Hd+Hl )t/h̄,
[A, B]λσ

≡ A(λσ )B − BA(−λσ ), and A(λσ ) ≡ eiλσ Nσ /2Ae−iλσ Nσ /2.
The time dependence of the memory kernel reflects the
finiteness of the correlation time of the dot-lead interac-
tion, which allows us to describe the non-Markovian dy-
namics. Using the generalized master equation, we obtain
〈�nσ,i〉 = ∫ ti+1

ti
Jσ (s)ds with the inertial flow of electrons,

Jσ (t ) ≡ Trd[∂ξ (λσ )(t )∂ (iλσ )|λσ =0ρ
(0)(t )], where Trd denotes

the trace operation over the states of the dot.
To formulate spin pumping based on the above framework,

we consider a steplike change in the direction of M(t ) around
the z axis; specifically, dividing the period T into N intervals,
ti � t � ti+1 (i = 1, 2, . . . , N) with t1 = 0 and tN+1 = T , fix-
ing the direction of M(t ) during each interval, and chang-
ing φ at each ti discretely with substitution φi = φi−1 + δφ

with φ0 = 0, φN = 2π , and δφ ≡ 2π/N . Given that the total
density matrix is factorized at each ti, we obtain the mean
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number 〈�nσ,i〉. In the following, we use the instantaneous
spin current defined by

Jspin(t ) = J↑(t ) − J↓(t ). (1)

Its time integration over one period provides a temporal
average of spin current:

Ispin ≡ 1

T

∫ T

0
Jspin(t )dt . (2)

IV. SPIN BACKFLOW

We introduce the concept of spin backflow, which is dif-
ferent from the spin-current backflow introduced in [24] (see
Discussions). As shown above, the memory kernel, K (λσ )

2 (t ),
in our formalism includes the finite correlation time of the dot-
lead interaction. The time dependence enables us to describe
the time interval in which the memory of the initial condition
remains and the electron dynamics is coherent, called partial
reversibility in non-Markovian dynamics. Partial reversibility,
allowing the back-and-forth transfer of an electron, is revealed
with the sign reversal of K (λσ )

2 (t ), which turns out to be the
dynamical change in the direction of the instantaneous spin
current Jspin(t ). We call this return of the electron spin from
the lead a spin backflow. The time-reversible spin exchange
has been neglected in the conventional treatment with the
Markovian approximation, for which the time dependence
is removed by taking the long-time limit of the memory
kernel, specifically, limt→∞ K (λσ )

2 (t ). As the approximated
memory kernel is time independent, Markovian dynamics
is characterized by the one-way-only transfer of electron
spin.

The spin backflow is captured by monitoring the temporal
sign change of the instantaneous spin current Jspin(t ), Eq. (1)
[47]. When Jspin(t ) is positive, spin is transferred from dot to
lead; conversely, when Jspin(t ) is negative, spin is transferred
from lead to dot. In contrast, under the Markovian approxima-
tion, we expect that the sign of the Jspin(t ) remains the same
during its time evolution.

V. NUMERICAL RESULTS

Let us now analyze spin backflow by numerically eval-
uating the instantaneous spin current Jspin(t ) as well as the
temporal average of spin current Ispin, Eq. (2). In each in-
stance, we also present numerical results obtained subject to
the Markovian approximation as a reference for comparison
with the non-Markovian analysis.

To describe the dot-lead coupling, we use the Ohmic spec-
tral density with an exponential cutoff v(ω) ≡ ∑

k v2
k δ(ω −

ωk ) = λω exp[−ω/ωc], where λ is the coupling strength and
ωc is the cutoff frequency. For the numerical calculation, we
chose 2M, the energy difference between the spin-↑ and -↓
states in the dot, as an energy unit. We distinguish parameters
normalized by their units with an overbar (see [55]). Specific
values of the normalized parameters are given in the figure
captions. As we are focusing on the spin transfer driven by
the rotating magnetization, the dot is set in a steady state [56]
at t̄ = 0 to exclude any transient spin transfer caused by the

t̄

J
sp

in
(t

)/
ω

u

J
sp

in
(t

)/
ω

u

t̄

FIG. 2. Instantaneous spin current in a single interval under
non-Markovian (a) and Markovian (b) dynamics; the insets are
magnifications of the time interval 0 � t̄ � 5. In each panel, φ is
suddenly changed at t̄ = 0 from zero to δφ, then φ = δφ is held
fixed during the time interval. Before the sudden change at t̄ = 0,
the dot is in the steady state. (a) The non-Markovian result with
Jspin(0) = 0 at t̄ = 0 and the frequent reversals of sign of Jspin(t̄ )
marked as gray areas. The sign changes indicate backflow. (b) The
Markovian result with Jspin(0) �= 0 at t̄ = 0 and Jspin(t̄ ) > 0 for t̄ > 0,
indicating a monotonic transfer of spin. The parameters are set to
ε̄d = 10, μ̄ = 10, β̄ = 100, λ = 0.01, ω̄c = 4, θ = 3π/4, and δφ =
π/10 [61]. Dependence on the parameter choice is summarized in
[57]. The time evolution is independent of φ because the system has
rotational symmetry about the z axis.

dot-lead contact. Under this initial condition, the net charge
transfer 〈�n↑〉 + 〈�n↓〉 is zero because the charge is con-
served in the lead. Nevertheless, a spin current Ispin is gener-
ated because equal amounts of spin-↑ and spin-↓ electrons are
transferred in opposite directions, i.e., 〈�n↑〉 = −〈�n↓〉 be-
cause spin flips in the dot are driven by the rotating magnetiza-
tion Let us first examine the instantaneous spin current Jspin(t ),
Eq. (1). We plot its time evolution under the non-Markovian
analysis [Fig. 2(a)] as well as the corresponding Markovian
analysis [Fig. 2(b)]. Both time evolutions are given for a single
time interval for a steplike rotation of the magnetization (see
the figure caption). We set the interval to be larger than the
relaxation time (specifically, τ̄r ∼ 20 and δt̄ = 40). As the dot
is initially in the steady state, the time evolution of Jspin(t ) is
driven by the sudden change of φ at t̄ = 0.

Figure 2(a) exhibits two different oscillations; the larger
oscillation with the longer period reflects the back-and-forth
transfer of spin between dot and lead caused by the non-
Markovian dynamics arising from the dot-lead coupling,
whereas the smaller oscillation with the shorter period reflects
the periodic transition between the spin-↑ and -↓ states in the
dot with Larmor frequency 2M/h̄. In contrast, Fig. 2(b) only
exhibits the Larmor precession.

Figure 2(a) also shows that Jspin(t ) under non-Markovian
dynamics starts from zero at t̄ = 0, which properly reflects
the moment when the dynamics starts from the steady state.
The gray-colored region identifies negative spin current,
Jspin(t ) < 0, which we call spin backflow, where the spin
current flows back from the lead. In contrast, regarding the
Markovian dynamics [Fig. 2(b)], we find that the spin starts
flowing with a finite impetus at t̄ = 0, always taking positive
values during its time evolution, which indicates that the
spin is always transferred from dot to lead without backflow.
Focusing on the initial short-time behavior, the direction of
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FIG. 3. Frequency dependences of the temporal average of spin
current Ispin. With fixed δφ = π/10, the frequency is changed by
changing δt . The red and blue dashed lines mark the non-Markovian
and Markovian results, respectively. Panel (i) presents frequency
range 0 � �̄ � 0.05; panel (ii) presents a magnification of the range
0 � �̄ � 0.005; panel (iii) presents the dependence up to �̄ = 0.5.
Both results exhibit oscillations that depend on �̄ for �̄ � 0.002
and are a consequence of Rabi oscillations in the dot. The results
coincide in the linear regime (�̄ � 0.002) whereas they deviate
in the oscillating regime. The parameter values are the same as
in Fig. 2.

the instantaneous spin current in the non-Markovian dynamics
(Jspin < 0) is opposite to that in the Markovian dynamics
(Jspin > 0) [58]. Let us now examine how the difference
in the temporal behavior of Jspin(t ) is reflected in the total
spin current generation. For the purpose, we evaluated the
frequency dependence of the temporal average of spin current
Ispin, Eq. (2), under non-Markovian and Markovian dynamics
(Fig. 3).

For both dynamics, we find a common feature, i.e., the
linear dependence on �̄ gradually changes to an oscillatory
dependence for higher frequencies (around �̄ � 0.002 in
Fig. 3), which is explained by comparing the time interval
δt̄ and the relaxation time τ̄r . For lower frequencies, for
which δt̄ � τ̄r , the numerator of Eq. (2) becomes constant
because the instantaneous spin current Jspin(t ) has already
vanished at a certain t̄ < δt̄ (see Fig. 2), which results in the
linear dependence of I↑ on �̄. As �̄ becomes larger and the
time interval satisfies δt̄ � τ̄r , the angle φ changes during
relaxation. In this situation, we have two extreme features;
when δt̄ is an integer multiple of the period of a spin flip
h̄/2M, we have resonance enhancement of the spin flip by
changing φ to exhibit a maximum, whereas it is antiresonantly

suppressed to display a minimum when δt̄ is a half-integer
multiple of the period [59].

Comparing both analyses, we find a coincidence in the
lower frequency (linear) regime [see panel (ii)], whereas they
deviate over the higher-frequency regime. The coincidence is
caused by the electron dynamics being well described with
the Markovian approximation because, in the linear regime,
the time interval δt is sufficiently larger than the relaxation
time as the long-time (Markovian) limit on the memory kernel
is valid. In contrast, in the higher-frequency regime where
δt is small, the Markovian approximation breaks down, and
the non-Markovian effect, specifically backflow, reduces the
amount of Ispin. The deviation is quite significant in panel (iii);
the Markovian analysis diverges with respect to �, whereas
the non-Markovian analysis is totally suppressed. The diver-
gence is unphysical as it is caused by the accumulation of the
nonzero impetus of Jspin(t ) just after the sudden change in φ

under the Markovian analysis, which is an error caused by the
Markovian approximation (see Fig. 2).

VI. DISCUSSIONS

In the context of spin pumping in bulk systems, some
researchers have studied the “backflow (or backscatter) of
the spin current” because of the finite size of the electron
reservoir and the slow modulation of the system to follow the
precession sufficiently [20,24]. They have argued that, when
the pumped angular momentum does not quickly dissipate
to the lead, a nonvanishing spin accumulation may build up
in the lead. For a sufficiently slow precession, the spin imbal-
ance through spin accumulation may flow back into the fer-
romagnet, canceling the generated spin current as the system
is always in a steady state. The behavior of this backflow in
spin current is different from the spin backflow studied in this
paper in regard to two points: (i) the latter occurs even for an
ideal reservoir in which the pumped spin is absorbed entirely,
whereas the former is caused by the accumulation of spin
angular momentum in the finite reservoir, and (ii) the latter
becomes significant for rapid precession, whereas the former
requires a sufficiently slow precession. Therefore, the spin
backflow studied in this paper is a completely independent
concept from the conventional backflow of spin current. When
one considers a nonideal reservoir of finite size and a moder-
ately rapid precession, both backflow processes may coexist.
A study of the situation is left for a future investigation.

Although we have focused on the spin backflow in this
paper, the concept of backflow itself is a universal feature
of quantum transport in non-Markovian dynamics. Indeed,
some researchers have studied the backflow of information
[46] and energy [47] in undriven systems. We conjecture that
our main result, the reduction of the pumped quantity because
of backflow, holds for a wide range of driven systems. We
shall discuss the universality of our results elsewhere.

The steplike rotation reduces to a continuous rotation in
a limit δt → 0, δφ → 0 with T = const. With a nonzero
Markovian flow at t = 0, the limit leads to a divergence of the
spin current under the Markovian approximation (Fig. 3). To
avoid this divergence, we need to include the non-Markovian
effect.
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VII. CONCLUSIONS

Focusing on spin backflow, we have examined the role
of the non-Markovian effect on the spin pumping under a
precessing magnetization. In evaluating the frequency depen-
dence of the pumped spin current, we compared the results
obtained from our non-Markovian analysis with those under
a corresponding Markovian analysis. Our numerical result
shows that spin backflow does not contribute to the net amount
of spin current in the low-frequency regime where δt � τr ,
whereas it significantly reduces the spin current in the high-
frequency regime where δt � τr . This provides a physically

reasonable description of spin pumping over all frequencies,
which a conventional Markovian approximation is unable to
achieve.
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