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Si2BN has been recently predicted theoretically as a new entirely planar two-dimensional material with a
honeycomblike structure (like graphene), which is stable even at T > 1000 K. In the present paper, we study
the structural deformations and mechanical properties of Si2BN and graphene under both uniaxial (along the
direction of the arm chair and zigzag chains) and uniform biaxial tensile strain till the fracture limit and we
compare those properties of the two structures with each other. According to our findings, in the Si2BN structure,
Si–Si and Si–B bonds are weaker than B–N and Si–N bonds, respectively, contrary to graphene bonds, which
all have the same strength. In particular, B–N bond lengths of Si2BN remain almost unchanged under the strain
conditions we studied, not exceeding ≈6% of their initial length. Si2BN was found to be anisotropic, exhibiting
large Young’s and biaxial modulus values of the order of 1/3 and 2/5 of that of graphene, respectively. The
different bond strengths in Si2BN explains its anisotropy and makes it behave very differently under strain when
compared to graphene.

DOI: 10.1103/PhysRevB.99.205302

I. INTRODUCTION

The last decade has seen a tremendous surge of interest
in two-dimensional (2D) materials due to their unique prop-
erties, which can be significantly different from those of their
three-dimensional (3D) counterparts [1]. Many such materials
have been theoretically predicted (see, for instance, Refs.
[2–17]), however, only a few of them have been observed or
synthesized experimentally [18–21]. Among the 2D materials
there exists a very interesting sub-category of structures that
are one atom thick and also entirely flat. Graphene [18] and
boron nitride [16,22] (BN) are representative structures for
this category that have been observed experimentally [19].
However, both have notable disadvantages for nanoelectronics
applications; graphene has no gap while BN has a very large
gap.

On the other hand, silicene [3], which is the Si counterpart
of graphene, was found to be a buckled structure—a feature
also shared by most of the 2D Si containing honeycomblike
structures [7–11]. Furthermore, very few among these struc-
tures were found to be planar[11,12].

Recently, the existence of a stable new 2D material
(Si2BN) has been theoretically predicted [23]. It constitutes
parallelly arranged Si dimers in a hexagonal lattice which are
interconnected through B–N dimers as shown in Fig. 1. It
can be seen as an extensively doped silicene structure, which
has the advantage that it is entirely flat without any dangling
bonds and extremely stable kinetically [23], contrary to the
original silicene, which (as stated) is buckled and kinetically
unstable, with dangling bonds which make it highly reactive
[3]. The Si2BN planarity gives rise to the unusual sp2-like
hybridization for the Si atoms. Interestingly, the pz orbitals on
Si, normal to the structure plane, interact with the neighboring
Si − pz orbitals, thus leading to the creation of Si–Si double

bonds. This has the effect of eliminating the dangling bonds
which would otherwise make it energetically and kinetically
unstable. The Si2BN can, therefore, considered to be the latest
addition to a very rare class of Si-based 2D honeycomblike
structures that are entirely planar.

Recent studies suggest that the proposed Si2BN monolayer
is efficient for hydrogen storage [24] and has a wider absorp-
tion range than graphene, thus making Si2BN a promising
candidate for euryphotic photosensitive detector applications
[25]. Furthermore, it is proposed to be a high capacity anode
material for Li and Na ion batteries [26], surpassing the
capacity of many other 2D materials including graphene and
phosphorene. Moreover, its structure has inspired the design
and study of other similar materials like the family of Pb2XY
2D topological insulators, with X = Ga/In and Y = Sb/Bi
[27], the family of Gex(BN)y structures [28] and the IV-V-VI
compounds [29]. Other similar Si2BN structures have also
been studied recently [30]. These studies show the Si2BN
to be a very interesting material with potential for useful
nanotechnology applications.

So far, the mechanical properties of Si2BN have not been
studied. In the present paper, we cover this gap by studying
the response of Si2BN to uniaxial and uniform biaxial strain
up to the fracture limit and we compare them with graphene.
For our study on the response of Si2BN to uniaxial strain, we
focus on two high-symmetry strain directions: (i) along the
Si–Si bonds (indicated as eac) and (ii) along the perpendicular
direction (indicated as ezz), which correspond to the arm chair
and zigzag directions of graphene, respectively, and are shown
in Fig. 1. For graphene, we similarly focus on the arm chair
and zigzag chain directions, also indicated as eac and ezz,
respectively. The results obtained for the mechanical behavior
of Si2BN under strain for these high-symmetry directions can
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FIG. 1. Figure showing the 32-atom rectangular unit cell of the
Si2BN structure used in the present paper along with the strain
directions, ezz and eac. Vectors a and b are the unit cell vectors.
Light blue, red, and green spheres represent Si, B, and N atoms,
respectively.

also be used to obtain results for other strain directions using
the method described in Ref. [31], which reported the study of
mechanical behavior of graphene under strain for any arbitrary
strain directions. For the study of Si2BN under uniform biaxial
strain conditions, equal strain is applied simultaneously in
both eac and ezz directions.

For all these cases, we plot the stress-strain and the energy-
strain curves, which we use to calculate the Young’s and the
biaxial moduli, as well as the Poisson’s ratio, the speed of
sound and the ultimate tensile strain (UTS), the corresponding
stress values, and the fracture limits. Contrary to graphene, the
presence of different atom species results in different bond
strengths in Si2BN. Specifically, Si–Si and Si–B bonds were
found to be weaker than B–N and Si–N bonds, respectively.
B–N bond lengths remain almost unchanged under the strain
conditions we studied, not exceeding ≈6% of their initial
length, even under the extreme strain conditions. These result
in the anisotropic mechanical properties for the Si2BN, while
also exhibiting high Young’s and biaxial moduli, which are of
the order of 1/3 and 2/5 of those of graphene, respectively, as
well as high UTS values, thus providing further support to the
high stability of the material found using other methods in an
earlier work [23].

II. THE METHOD

For the calculations of the present paper, we use the
density-functional theory (DFT) method as implemented in
the SIESTA code [32]. For the exchange and correlation
functional, we utilize the generalized gradient approximation
(GGA) and the Perdue-Burke-Ernzerhof (PBE) functional
[33]. For the pseudopotentials of Si, B, N, and C, which
are used in our calculations, we utilize the norm-conserving
Troullier-Martins pseudopotentials [34] in the Kleinman-
Bylander factorized form [35], which can be found in the
GGA pseudopotential database of SIESTA [36]. The basis for
the wave-function expansion in real space is an atomiclike
double-zeta basis with polarization orbitals for each atom.
Calculations are performed in reciprocal space, using a 10 ×
10 × 1 Monkhorst-Pack [37] k-point grid for both Si2BN and
graphene. The mesh cutoff energy for the determination of

charge densities and potentials used in the calculations for
Si2BN and graphene is 500 and 300 Ry, respectively. For these
mesh cutoff values and k-grid points, the total energy per atom
converges to a certain value with an error which is less than
0.1 meV.

For the calculations of both Si2BN and graphene, we adopt
a 32-atom unit cell in a rectangular lattice, with lattice vectors
a = (a, 0) and b = (0, b), as shown in Fig. 1. 20 Å of vacuum,
separating layers of Si2BN, is used in the calculations to
simulate an isolated Si2BN layer. The same vacuum space
is also used for graphene. Optimizations are performed for
fixed lattice vectors using the conjugate gradient method. The
unstrained structure is assumed to be fully optimized if the
maximum atomic force and the maximum stress component
become smaller than 0.001 eV/Å and 0.01 GPa, respectively.
The same criteria apply for the optimized structure under uni-
axial strain, excluding the strain component along the strain
direction, which obviously takes a nonzero value, while for
uniform biaxial strain only the criterion for the forces apply,
since the strained structure under uniform biaxial strain has
fixed lattice vectors. For the stress calculation along the plane
of the Si2BN and graphene sheets, we assume a structural
thickness of 3.34 Å as in graphite. This consideration is also
used in the above optimization criterion for maximum stress
since it allows direct comparisons of the mechanical prop-
erties of 2D structures with graphite [2]. For the derivation
of the optimized structure (i.e., for strain ε = 0), the lattice
vectors are varied since the above optimization criteria are
achieved. For the study of Si2BN under uniaxial strain along
the ezz and eac directions, the length of the unit-cell vector
in the strain direction (i.e., the length a for strain along ezz

and b for strain along eac) is kept fixed at a specific value,
corresponding to a chosen strain value, while the length of the
unit-cell vector perpendicular to it is allowed to vary till the
optimization criteria for the strained structures are reached,
as stated above. For the study of Si2BN under uniform biaxial
strain, the lengths of both unit-cell vectors a and b are strained
simultaneously under the same strain value.

Optimizations under strain ε are performed for increasing
strain values starting from 0 up to the fracture limit with an
increment of 0.01. The initial atomic positions of a structure
under optimization for strain ε = ε0 have the same fractional
coordinates with those of the optimized structure under strain
ε = ε0 − 0.01.

III. RESULTS AND DISCUSSION

A. Equilibrium Si2BN and graphene structure at ε = 0

According to our findings, the fully optimized 32-atom unit
cell of Si2BN (shown in Fig. 1) consists of a rectangle with the
unit-cell vectors a and b with lengths a = 12.841 Å and b =
11.293 Å, respectively. For the analogous 32-atom graphene
unit cell, which is also a rectangle, the corresponding unit-
cell vectors were found to be a = 4

√
3a0 = 9.9572 Å and b =

6a0 = 8.6232 Å, where a0 = 1.4372 Å is the bond length of
graphene. Interestingly, for these a and b values the area mass
density, ρS , of graphene and Si2BN are almost equal to each
other, taking the values ρS = 0.743 mgr/m2 for graphene and
ρS = 0.742 mgr/m2 for Si2BN.
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Bond lengths in Å Strain along zig-zag direction (ezz) Strain along arm chair direction (eac)
for strain ε along ezz (i.e. normal to Si-Si bonds for Si2BN) (i.e. along Si-Si bonds for Si2BN)

and eac directions Si2BN graphene Si2BN graphene

ε = 0.00
bond ezz eac

Si-Si 2.262 2.262
Si-B 1.970 1.970
Si-N 1.776 1.776
B-N 1.465 1.465
C-C(1) 1.437 1.437
C-C(2) 1.437 1.437

ezz

zze

C−C(2) C−C(1)

eac
eac

ε = 0.05
bond ezz eac

Si-Si 2.244 2.382
Si-B 2.040 1.985
Si-N 1.815 1.790
B-N 1.458 1.497
C-C(1) 1.436 1.502
C-C(2) 1.484 1.451

ε = 0.10
bond ezz eac

Si-Si 2.226 2.546
Si-B 2.112 1.994
Si-N 1.858 1.801
B-N 1.445 1.529
C-C(1) 1.430 1.578
C-C(2) 1.534 1.463

ε = 0.15
bond ezz eac

Si-Si 2.230 2.801
Si-B 2.164 1.992
Si-N 1.890 1.802
B-N 1.439 1.536
C-C(1) 1.421 1.673
C-C(2) 1.589 1.467

ε = 0.20
bond ezz eac

Si-Si 2.258 3.092
Si-B 2.219 2.006
Si-N 1.905 1.803
B-N 1.439 1.501
C-C(1) 1.408 1.790
C-C(2) 1.648 1.461

ε = 0.25
bond ezz eac

Si-Si 2.280 3.362
Si-B 2.303 2.027
Si-N 1.898 1.808
B-N 1.428 1.470
C-C(1) 1.391 1.935
C-C(2) 1.710 1.445

ε = 0.30
bond ezz eac

Si-Si — —
Si-B — —
Si-N — —
B-N — —
C-C(1) 1.381 2.455
C-C(2) 1.768 1.329

FIG. 2. Structural deformations of Si2BN and graphene for tensile strain along ezz and eac directions. Same colors are used for atoms as in
Fig. 1. The strain values ε, as well as the length of the bonds for each case, are shown in the first column. Strain is increased from 0.00 to 0.30
in 0.05 steps.

B. Structure deformations and bond-length
changes under uniaxial strain

The structural deformations obtained from stretching
Si2BN and graphene uniaxially along ezz and eac directions

are shown in Fig. 2 for increasing strain values in 0.05 strain
steps. The figures for Si2BN and graphene are placed side by
side for ease of comparison. The first column of the figure
lists the nearest-neighbor bond lengths for both structures. As
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FIG. 3. Shift of Si–Si and B–N bonds for uniaxial strain along
ezz and eac direction, as well as, uniform biaxial strain. (See text for
details.)

seen in this column, the C–C(1) bonds of graphene correspond
to the bonds along the eac direction, while the C–C(2) bonds
correspond to the bonds of the zigzag chains along the ezz

direction. For the illustration purposes of Fig. 2, we consider
that a C–C, Si–Si, and Si-B bond breaking occurs if its length
exceeds the equilibrium length by 15%, 20.5%, and 12%,
respectively, or 1.65 Å, 2.73 Å, and 2.21 Å, respectively. The
justification for this choice of values will be provided later.

A general feature of both graphene and Si2BN, under
uniaxial strain for the two strain directions ezz and eac, is that
bonds which are oriented along the eac direction (i.e., Si–Si
and B–N bonds for Si2BN and C–C(1) bonds for graphene)
remain parallel to each other, preserving the initial bond
direction for ε = 0. In particular, B–N bonds of Si2BN are
located along parallel straight lines oriented along the eac

direction, while alternating B–N and N–B bonds, which are
normal to the same straight line, are shifted with each other
along eac direction. The opposite happens for the Si–Si bonds,
however. Si atoms of the Si–Si bonds which are normal to
the same straight line are located along parallel straight lines
and, consequently, no shift of the Si–Si bonds along the eac

direction is seen, as happens with B–N bonds. However, Si–Si
bonds along a line in the eac direction exhibit an alternating
shift with each other with respect to the normal to that line
(i.e., along ezz direction). These shifts can be clearly seen in
Fig. 2 and they are caused by the difference in the length
of the Si–N and Si–B bonds (as well as the different Si-NSi
and Si-B-Si angles), which break the symmetry of the perfect
honeycomb lattice.

In Fig. 3, we plot these shifts as a function of strain, where
we can see that for ε = 0 those shifts are both positive. As
strain increases, the shifts of Si-Si bonds for strain along the
ezz direction also increase, while the shifts of B–N bonds
decrease. For strain along the eac direction, however, the shifts
of B–N bonds increase as a function of strain, while the shifts
of Si-Si bonds decrease. The shifts of Si-Si bonds become zero
at ε ≈ 0.10 and become negative upon a further increase in the
strain value. These negative values correspond to an increase
in the shift of their absolute value, with the alternatingly
shifted Si–Si bonds crossing the imaginary line between them

along the eac direction. Thus, an increase in strain along the ezz

direction results in a larger Si–Si bond length in the hexagon
containing two B atoms than the Si–Si bond length in the
hexagon containing two N atoms. For increasing strain along
the eac direction, the former is larger than the latter up to a
strain value ε ≈ 0.10 at which they become equal to each
other and for ε � 0.10 the former becomes smaller than the
latter. It is also worth noting that the shift in B–N bonds for
strain along the ezz direction reaches a local minimum for
ε ≈ 0.10 and a local maximum for ε ≈ 0.20, although the
difference between those maximum and minimum values is
approximately 0.02 Å, indicating that the shift in B–N bonds
remains practically constant for a large strain range between
approximately 0.06 and 0.25. As for graphene, due to the high
symmetry of the structure, there is no reason for such shifts of
bonds to occur.

As seen in Fig. 2, as the strain along the eac direction is
increased, the C–C(1) bonds eventually break and graphene
dissociates into disconnected zigzag chains. For ε � 0.3,
these zigzag chains tend to deform into linear carbon chains,
as shown in the last row of Fig. 2. Similarly, when the strain
along the ezz direction is increased, C–C(2) bonds eventually
break and graphene dissociates into disconnected C–C dimers,
as shown in the same row of Fig. 2. It is worth noting,
however, that the formation of graphene strips or ribbons
is also possible from the breaking of C–C graphene bonds,
which is not described in Fig. 2. These results agree with other
theoretical results presented in the literature for graphene [2].

Unlike graphene, however, the Si2BN structure contains
four different types of bonds with different bond strengths.
Consequently, the dissociation here follows a different se-
quence as shown in Fig. 2. As the tensile strain along the eac

direction is increased, the Si–Si bonds are the first to break
(ε � 0.15). Similarly, as the strain along the ezz direction is
increased, the Si–B bonds can be seen to break first (ε �
0.20). Bearing in mind that (i) the Si–Si and B–N bonds are
oriented along the eac strain direction and (ii) the Si–N and
Si–B bonds have almost the same tilting angle with the ezz

strain direction, we conclude that the Si–Si bonds are weaker
than the B–N bonds. Similarly, it can be surmised that the
Si–B bonds are weaker than the Si–N bonds.

The breaking of the Si–Si bonds under the strain along the
eac direction leads to the dissociation of the Si2BN structure
into disconnected narrow Si2BN strips, while the Si–B bond
breaking under the strain along the ezz direction causes the
dissociation of the Si2BN structure into (Si2BN)2 flakes, as
both are shown in Fig. 2. As the strain is increased further
(ε > 0.27) in both ezz and eac directions, the Si2BN structure
further deforms into two rather irregular structures, losing its
planarity. The deformed irregular structures found for ε = 0.3
are shown in the last row of Fig. 2. Overall, as our strain
studies suggest, the Si2BN structure is extremely robust, even
at high strain values, and almost comparable to graphene.

In Figs. 4(a) and 4(b), we plot the relative bond-length
differences [defined as (d − d0)/d0, where d0 is the equi-
librium bond length (corresponding to ε = 0) and d is the
bond length for ε �= 0] for the bonds of Si2BN and graphene,
respectively, as a function of strain. As can be seen in
Fig. 4(a), for strain 0 � ε � 0.12 along the eac direction,
there is a monotonic increase in both the Si–Si and B–N
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FIG. 4. Bond and angle deformations under tensile strain along
ezz (solid lines) and eac (dashed lines) directions. (a), (b) Relative
bond-length differences (d − d0 )/d , (where d and d0 are the bond
lengths at ε �= 0 and ε = 0, respectively), for the bonds of Si2BN and
graphene, respectively. (c) Angle deformations for the Si–B–Si, B–
Si–N, and Si–N–Si angles of Si2BN, and C–C–C angles of graphene
formed along zigzag chains in the ezz direction. Dotted lines in (a) are
presented as a guide to the eye, to indicate different slopes.

bond lengths, which are parallelly oriented along the strain
direction. In the range 0.12 � ε � 0.15, however, the slope of
the Si–Si relative bond-length difference changes as shown
by the corresponding dotted lines of Fig. 4(a), while the
B–N relative bond-length difference reaches its maximum at
ε = 0.14 and is then followed by a decrease. This behavior
can be explained as follows: For applied strain ε < 0.14, both
Si–Si and B–N bond lengths increase with an increase in the
strain value. At ε = 0.14, the Si–Si bond starts breaking and
the Si2BN structure dissociates into Si2BN zigzag strips. As
ε is increased further: (i) the already weak Si–Si interactions
become even weaker, causing the dissociation of the Si2BN
structure into weakly interacting disconnected Si2BN strips

and (ii) the interactions between the dissociated Si2BN strips
become even weaker, causing the shrinkage of the initially
stretched B–N bonds. It is reasonable, therefore, to conclude
that the Si–Si bonds start breaking when the slope of the
Si–Si curve of Fig. 4(a) changes, or the maximum of the B–N
curve is reached; i.e., for ε = 0.14. For this strain value, the
Si–Si bond length is 2.73 Å, or 20.5% larger than its value at
equilibrium. This explains the reason for assigning this value
for the Si–Si bond breaking limit. For strain along the eac

direction in the range 0 � ε � 0.3, the maximum increase in
the B–N bond length is only 5.6%, while for the Si–N and
Si–B bonds it is even less—only 3%, having almost the same
behavior as a function of ε. Therefore, a bond breaking of
B–N, Si–N, and Si–B bonds cannot be achieved.

The graphene counterparts of both Si–Si and B–N bonds of
Si2BN are the C–C(1) bonds of graphene, while the counter-
parts of both Si–B and Si–N bonds are the C–C(2) bonds. As
shown in Fig. 4(b), for applied stress along the eac direction,
there is an increase in the C–C(1) bonds as a function of strain,
eventually leading to the dissociation of the structure into
zigzag strips. The C–C(2) bonds, on the other hand, remain
mostly unchanged, increasing slightly in the range 0 � ε �
0.15 and then decreasing for ε > 0.15, attaining maximum
value (2.1% increase) at ε = 0.15. Using this observation,
and using similar reasoning as used in the case for Si2BN,
it is reasonable to assume that the C–C(1) bond breaking
starts when the C–C(2) bond length start decreasing, i.e., at
ε = 0.15, for which the C–C(1) bond length is 1.65 Å, or 15%
longer than its length at equilibrium.

As shown in Fig. 4(a), as the strain value is increased
along the ezz direction, the increase in the Si–B bond length is
more than that for the Si–N bond, and consequently the Si–B
bonds can be expected to break first. For strain in the range
0.18 � ε � 0.20, the slope of the Si–B curve of Fig. 4(a)
increases, indicating a weakening of the Si–B bonds, while
the Si–N bond lengths continue to increase up to ε = 0.22 and
are then followed by a decrease. Based on this observation,
one may assume that the Si–B bond breaking starts for strain
in the range 0.18 � ε � 0.22, for which the Si–B bond length
takes values between 2.19–2.25 Å, or 11.4–14.3% longer than
the Si–B bond length at equilibrium. The maximum Si–N
bond length, which is obtained at ε = 0.22, is 1.91 Å, corre-
sponding to an increase of the equilibrium bond-length value
by 7.38%. The Si–Si and B–N bonds, which for strain along
the ezz direction are oriented normal to the strain direction,
remain practically unchanged with a maximum change in the
absolute value of 3% for strain in the range 0 � ε � 0.3. As a
result, only the Si–B bonds are stretched enough to break, thus
forming the (Si2BN)2 flakes shown in Fig. 2. Interestingly, if
all the Si–B bonds do not break simultaneously (i.e., due to
the lattice vibrations, which could compress some Si–B bonds
and stretch others), then a variety of arm-chair-type ribbons or
irregular shape arm-chair-type flakes may be produced, which
are expected to have B and Si atoms at the edges.

In stark contrast to the differing responses of the Si–B
and Si–N bonds of the Si2BN structure under applied strain,
their graphene counterparts [the C–C(2) bonds] have the same
response under strain. This is expected since all bonds connect
the same species of atoms. Under these conditions, if all such
bonds break simultaneously, this will lead to the disconnected
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(f)(a) (b) (c) (d) (e)

FIG. 5. Structural deformations of Si2BN and graphene under uniform biaxial strain. Same colors are used for atoms as in Fig. 1.
(a) Graphene for ε = 0.18, (b) graphene for ε = 0.21, (c) Si2BN for ε = 0.05, (d) Si2BN for ε = 0.10, (e) Si2BN for ε = 0.13, and
(f) Si2BN for ε = 0.15.

C–C dimers shown in Fig. 2. If, on the other hand, they do
not break simultaneously [i.e., due to lattice vibrations, which
could stretch or compress the C–C(2) bonds], it will lead to
the dissociation of the graphene structure into arm-chair-type
ribbons or irregularly shaped nanoflakes.

In Fig. 4(c), we show the deformation as a function of
strain for the Si–B–Si, B–Si–N, and Si–N–Si angles of the
Si2BN, and C–C–C angles of graphene, which are formed
along the zigzag chains in the ezz direction. Due to symmetry
reasons, the sum of Si–B–Si and Si–N–Si angles equals
twice that of the B–Si–N angle and, therefore, the B–Si–
N angle can be considered as an average of the Si–B–Si
and Si–N–Si angles. The values of those angles at ε =
0 are (Si − B − Si) = 112.58o, (B − Si − N) = 118.53o and
(Si − N − Si) = 124.49o, while (C − C − C) = 120o. As ex-
pected, for strain along the ezz direction those angles increase,
while for strain along the eac direction, they decrease. This
trend should continue at least up to a certain strain value, while
beyond that they may have a different behavior depending
on the structural deformations that take place and, in partic-
ular, may lead to bond weakening or breaking. As shown in
Fig. 4(c), this trend is followed by Si–B–Si and B–Si–N angles
up to the fracture limit, but Si–N-Si angle of Si2BN and the
C–C–C angle of graphene for strain along the eac direction
follow it only up to their minimum value, which for Si–N–Si
is 120.16◦ at ε = 0.11 and for C–C–C is 113.30◦ at ε = 0.16.
This behavior is due to the competition between the Si2BN
and graphene structures at ε = 0, with their corresponding
dissociated structures resulting from the breaking of the Si–Si
and C–C(1) bonds, respectively, when the strain value along
eac direction exceeds the critical value for the breaking of
those bonds. Thus, for increasing strain along the eac direc-
tion, those angles will initially decrease and then, depending
on the competition between those two structures, they may
either continue to decrease or they may increase until reaching
the angles of their corresponding dissociated strip structures.
In our case, they both increase, while Si–B–Si and B–Si–N
further decrease. This competition is affected by the weak-
ening (as strain increases) of the Si–Si and C–C(1) bonds of
Si2BN and graphene, respectively. Note that, for strain along
the eac direction, both of these bonds undergo the maximum
possible elongation of a bond of the structure for a certain
strain value, since they are oriented along the strain direction.

C. Structure deformations and bond-length
changes under uniform biaxial strain

As expected (due to the isotropy of graphene) graphene
bonds increase linearly with the increasing strain up to the

fracture limit and they all have the same length for a specific
strain value. This is clearly shown in Fig. 6, where the
relative bond-length differences (d − d0)/d0 of the Si2BN
and graphene bonds under uniform biaxial strain conditions
are presented. Under these conditions, all graphene bonds
would break simultaneously if strain exceeded a critical value,
fracturing the structure to single atoms. This possibility, how-
ever, is rather unlikely given that the symmetry breaking
resulting from lattice vibrations can allow some bonds to
break before reaching the critical value. Another possibility
is a phase transformation (possibly assisted by the lattice
vibrations) that would lower the symmetry and the energy
of the structure, thus leading to a more stable structure. In
the case of graphene, we find that for strain ε > 0.17, the
strained graphene structure becomes unstable and a phase
transformation takes place, transforming the unstable high-
symmetric strained graphene structure to a less symmetric but
stable snakelike chain shown in Fig. 5(a). Further increase in
the strain leads to the formation of other structures that include
graphene flakes, which may or may not be connected with
each other with a few bonds, as shown in Fig. 5(b).

On the other hand, due to its anisotropy, Si2BN will
behave differently under uniform biaxial strain conditions.
Figures 5(c)–5(f) show some snapshots of the structural defor-
mations of Si2BN under uniform biaxial strain for increasing
strain values, in accordance with Fig. 2. According to our
findings, for strain ε � 0.13 the strained Si2BN becomes
unstable (see details in the Supplemental Material (SM) [38]),
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leading to the structure shown in Fig. 5(e), where one can see
that the Si–Si bonds at the bottom of the figure have been
broken. It is worth noting that although the relative elongation
of Si–B bonds is slightly larger than that of the Si–Si bonds
(as shown in Fig. 6), the Si–Si bonds breaking occurs first as
strain increases, leading to the formation of the ribbons, which
are shown in Fig. 5(e). However, any further increase in strain
results in the breaking of the Si–B bonds, which is followed by
a rearrangement of the atoms and, finally, the structure trans-
forms to a nonplanar amorphous cluster as shown in Fig. 5(f).

As in the case of graphene, the strain value for fracturing
Si2BN under uniform biaxial strain is smaller than the corre-
sponding values for uniaxial strain, which is reasonable when
one considers that the biaxial strain combines simultaneously
the action of both εzz and εac, which in this case act synergis-
tically for the fracture of the structure.

Moreover, as one can see in Fig. 6, B–N bonds do not
increase by more than ≈2.5% (a value which is achieved at
ε = 8.5%), indicating that those bonds will not break under
uniform biaxial strain conditions, in accordance with the re-
sults found for uniaxial strain along the eac direction. Further-
more, the decrease in the B–N bonds elongation for increasing
strain for ε > 8.5% points to a significant weakening of the
Si–Si bonds for these values and could be considered as the
starting point for bond breaking under these strain conditions.

As for the shifts of Si–Si and B–N bonds, which were
discussed in the case of uniaxial strain, they also occur in the

case of uniform biaxial strain. In Fig. 3, we show those shifts
as a function of strain. As one can see, the corresponding
shift for Si–Si bonds, which were discussed in the previous
subsection, follows a curve very similar to that obtained for
uniaxial strain along the ezz, while the shift of B–N bonds
follows a curve that looks like an average of the corresponding
shifts for strain along the eac and ezz directions, exhibiting a
minimum at ε ≈ 0.05.

D. Mechanical properties of Si2BN under
uniaxial strain. Comparison with graphene

In Figs. 7(a)–7(d), we present the strain energy per atom,
�U , the stress, σ (stress-strain curve), the Poisson’s ratio,
ν, and the Young’s modulus, E , as a function of strain ε

along both the ezz and eac directions for both Si2BN and
graphene in the strain range −0.05 � ε � 0.3. Energy and
stress calculations have been performed for increasing strain
values in this range, with a 0.01 strain step. By strain energy
per atom �U , we mean the difference �U = U − U0, where
U and U0 are the values of the total energy per atom for
the strained structure along a specific strain direction and at
ε = 0, respectively.

Since Si2BN as well as graphene are 2D structures, it is
more appropriate to define stress as force per unit length
instead of force per unit area as in 3D materials. How-
ever, we may add a width of 3.34 Å to each of the planar
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TABLE I. Mechanical properties (Young’s modulus, E , Poisson’s ratio, ν, area density, ρs, speed of sound, vs, ultimate tensile stress, σu,
and the corresponding strain εu) of Si2BN in comparison with graphene, silicene, and boronitrene for tensile strain along the strain directions
ezz and eac. Q.E. stands for QUANTUM ESPRESSO. CA stands for Ceperley and Adler functional. Values in parenthesis are either not provided by
the corresponding paper and have been evaluated by us, or they have been re-evaluated by us assuming the 3.34 Å width whenever necessary.

Structure Study Direction E (GPa) E (Nt/m) ν ρS (mgr/m2) vs (km/sec) εu σu (GPa) σu (Nt/m)

Si2BN Present paper ezz 330 110 0.303 0.742 12.2 0.16 27.68 9.245
Si2BN Present paper eac 376 125 0.345 0.742 13.0 0.14 33.26 11.11
Graphene Present paper ezz 964 322 0.190 0.743 20.8 0.25 114.0 38.08
Graphene Present paper eac 964 322 0.189 0.743 20.8 0.20 103.8 34.66
Graphene LDA/CA—VASP [7] (1003) 335 0.16
Graphene GGA/PBE—GAUSSIAN [16] (1150) 345 0.149 0.749 (21.5)
Graphene GGA/PBE—SIESTA [39] ezz (967) 323 0.179
Graphene GGA/PBE—Q.E. [2] eac 1024 342 0.177 0.686 21.14 0.185 103 34.4
Graphene GGA/PBE—Q.E. [2] ezz 1020 341 0.173 0.686 21.10 0.225 114 38.1
Graphene Exp. [40] 1020 ± 150 341 ± 50 0.25 126 ± 12 42 ± 4
Silicene LDA–DMol3 [41,42] ezz (188.6) 63.0 0.31 0.15
Silicene LDA–DMol3 [41,42] eac (188.6) 63.0 0.31 0.17
Silicene LDA/CA–VASP [7] (186) 62 0.30
Silicene GGA/PBE—SIESTA [43] ezz (186.8) (62.4)
Silicene GGA/PBE—SIESTA [43] eac (176.9) (59.1)
Silicene GGA/PBE—VASP [44] ezz (179.8) 60.06 0.41 0.14 5.66
Silicene GGA/PBE—VASP [44] eac (190.1) 63.51 0.37 0.18 7.07
Boronitrene LDA/CA—VASP [7] (799) 267 0.21
Boronitrene GGA/PBE—GAUSSIAN [16] (905) 271 0.211 0.736 (19.2)

structures which would correspond to the interlayer separation
of graphite to allow for direct comparisons [2] between the
two 2D materials (Si2BN and graphene) and graphite. In the
present paper, we adopt both considerations in Figs. 7(b)
and 7(d), where strain units are used. In the left y axis of
these figures, normal stress units are used (adopting the 3.34
Å plane width), while in the right y axis the force per unit
length units (Nt/m) is used. For the calculation of the Young’s
modulus, E , we use the relation E = σ/ε, for the Poisson’s
ratio, ν, the relation, ν = −ε⊥/ε, where ε⊥ is the transverse
contraction strain caused as a result of the normal strain ε and
for the speed of sound, vs, the relation vs = √

E/ρs, where E
is the Young’s modulus in force per length units and ρs the
area density.

Although a negative strain (which corresponds to compres-
sion) would just cause structural bending, computationally it
is possible to simulate the response of the nonbended planar
structure to negative strain [2]. This allows for a more reliable
estimation of the Young’s modulus and Poisson’s ratio [2]
without the need for the extrapolation of the corresponding
curves of Fig. 7 to zero strain.

Our calculated results for graphene are in relatively good
agreement with the other ab initio methods, as well as results
obtained using the same method and the SIESTA suite [39].

Using the least-squares-fitting method to fit the stress,
σ , the Young’s modulus, E , and the Poisson’s ratio, ν, to
quadratic and linear functions of strain, ε, we can have a
good estimation of E and ν for strain along the ezz and
eac directions. Details of the fits are shown in the SM [38],
while the values of Young’s modulus, E , the Poisson’s ratio,
ν, the speed of sound, vs, as well as the ultimate tensile
stress, σU , and the corresponding strain, εU , are shown in
Table I.

As can be seen from both Fig. 7 and Table I, in terms of E
and ν, Si2BN is anisotropic (in contrast to graphene), exhibit-
ing rather large E values, which are as high as ≈0.34−0.39
times the value of E for graphene. The Poisson’s ratio values
are higher than the corresponding ν value of graphene by
1.6–1.8. The speed of sound, vs, which is calculated using
the relation vs = √

E/ρS , is also high; it is larger than 1/2 of
the corresponding vs of graphene. The ultimate tensile stress
σu, although not as high as in graphene, is still high enough,
corresponding approximately to 1/4–1/3 of the σu value for
graphene, appearing at a lower strain values (0.14–0.16 for
Si2BN; 0.20–0.25 for graphene).

When compared to silicene, however, the Si2BN appears to
be very robust [7,41–44]. Picturing Si2BN as a highly doped
silicene structure, we can say that the presence of B and N
atoms have the effect of enhancing its mechanical properties
since the Si–Si bond is less strong when compared to the
Si–B, Si–N, and B–N bonds. Moreover, the rippling features
of silicine have been completely eliminated and the Si2BN
structure is entirely planar.

An interesting point worth discussion is the very different
behavior between the Poisson’s ratio of Si2BN as a function
of strain, for strain along the eac and ezz directions. For
strain along eac, the Poisson’s ratio appears to exhibit an
almost linear behavior as a function of strain and the same
behavior is also observed for graphene for both the eac and ezz

directions. On the other hand, for strain along the ezz direction
the Poisson’s ratio shows an initial decrease followed by an
increase. As explained in the SM [38], the reason for this
different behavior is the different deformation of the Si–B–Si
and Si–N–Si angles as a function of the strain. For strain
along the ezz and eac directions, these deformations are more
significantly normal to the strain direction and offer the most
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important contributions to the Poisson’s ratio. For strain along
the eac direction, these two contributions show a decrease
and appear to have an almost linear dependence on strain.
As a result, the Poisson’s ratio also decreases and shows
a similar linear dependence on strain. On the other hand,
for strain along the ezz direction, the contribution coming
from the Si–B–Si angle deformation initially decreases (up to
approximately 0.12 strain) and then shows an increase, while
the contribution coming from the Si–N–Si angle deformation
increases, although not linearly as a function of strain. It
is thus fair to conclude that the competition between these
behaviors is responsible for the behavior of the Poison’s ratio
as a function of strain in this case. It becomes evident that the
different behavior can be attributed to the anisotropic behavior
of the material due to the different bond strengths and the
angles, unlike in graphene where the counterparts of the the
Si–N–Si and Si–B–Si angles are the same.

E. Mechanical properties of Si2BN under uniform
biaxial strain. Comparison with graphene

Following the same analysis as in the previous subsection,
we present in Figs. 8(a)–8(c) the strain energy per atom, �U ,
the stresses, σzz = σxx and σac = σyy (stress-strain curves), and
the biaxial moduli, Mx = σxx/ε and My = σyy/ε, as a function
of uniform biaxial strain ε for both Si2BN and graphene for
strains between −0.05 and their fracture limit.

Using the same methods as those described in the previous
subsection, we calculate the biaxial moduli Mx and My. The
values found from the least-squares-fitting method are, for
graphene, Mx = My = 1188 GPa (or Mx = My = 397 Nt/m)
and for Si2BN, Mx = 502 GPa and My = 558 GPa (or Mx =
168 Nt/m and My = 186 Nt/m), which are of the order of 2/5
of the M value for graphene. Details of the fits can be found
in the SM [38].

As expected, those results are consistent with the results
obtained from the uniaxial strain study. According to the
elasticity theory, the Mx and My moduli could be obtained
from the Young’s moduli Ex and Ey, and the Poisson’s ratios
νxy and νyx values, for strain along the x (or zigzag) and y (or
arm chair) directions, respectively. With the notation νab, we
denote the Poisson’s ratio for strain along a direction, with
respect to the perpendicular in-plane direction b, i.e., νab =
−εb/εa, where εa is the strain along the strain direction a and
εb is the induced strain in the perpendicular in-plane direction
b. The formulas derived from the elasticity theory are Mx =
Ex(1 + νyx )/(1 − νyxνxy) and My = Ey(1 + νxy)/(1 − νyxνxy),
which for the case of the isotropic graphene become Mx =
My = E/(1 − ν). Although the derivation of those relations is
rather trivial, we present it in the SM [38] for completeness.
Using those formulas, the values of Mx and My derived for
graphene are Mx = My = 1190 GPa, and for Si2BN, Mx =
480 GPa and My = 565 GPa, differing by ≈4% and ≈1% for
Mx and My of Si2BN, respectively, and ≈0.2% for graphene.

IV. CONCLUSION

In the present paper, we have studied the response of
Si2BN material [23], an entirely planar and kinetically stable
(at least up to 1000 K) structure, to tensile uniaxial and
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FIG. 8. Mechanical response of Si2BN under uniform biaxial
strain and comparison with graphene. (a) Strain energy per atom
�U = (U − U0 )/N , (b) stress-strain plot, (c) biaxial moduli Mx =
σac/ε and My = σzz/ε, where σac is the stress along the eac direction
and σzz the stress along ezz direction.

uniform biaxial strain up to fracture. In particular, we studied
its structural deformations and its mechanical properties as
a function of strain. For our paper, on the response of the
structure to uniaxial strain, we selected two high-symmetry
strain directions, namely the ezz and eac directions, which
are normal and parallel to the Si–Si bonds of the Si2BN
structure, respectively, and used ab initio DFT methods at
the GGA/PBE level, as implemented in the SIESTA suite [32].
For our paper, on the response of the structure to uniform
biaxial strain, the structure is strained simultaneously along
both directions. For comparison, we repeated the calculations
for graphene using the same method.

According to our findings, Si2BN has anisotropic me-
chanical properties, exhibiting high Young’s moduli, biaxial
elastic modulus, and speed of sound values which are of the
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order of 1/3, 2/5, and 3/5, respectively, of the corresponding
values for graphene. The Poisson’s ratio values for Si2BN
are higher by approximately 2/3 of that of graphene. Under
the application of high uniaxial strain values along the ezz

direction, the Si–B bonds undergo bond breaking and the
Si2BN dissociates into (Si2BN)2 flake units as shown in
Fig. 2, while high uniaxial strain along the eac direction causes
the Si–Si bond breaking, resulting in the dissociation of the
Si2BN structure into the Si2BN strips as shown in the same
figure. For ε > 0.27, either for strain along the ezz or the eac

directions, the Si2BN structure is deformed into the irregularly
shaped structures as shown in Fig. 2 for ε = 0.3 and it loses
its planarity. For biaxial strain, graphene breaks initially at
ε = 0.18 into a snakelike chain, [as shown in Fig. 5(a)], but
further increase of strain dissociates the structure into flakes
[as shown in Fig. 5(b)]. On the other hand, Si2BN dissociates

initially at ε = 0.13 into Si2BN ribbons through the breaking
of the Si–Si bonds in similar fashion to the fracture process
into ribbons seen for uniaxial strain along the arm-chair direc-
tion. Further increase in the strain transforms the structure into
amorphous nonplanar cluster structures, as shown in Fig. 5(f).
Overall, the fracture and mechanical properties of Si2BN are
highly affected by the contrasting Si–Si and B–N bonds which
are the weakest and strongest, respectively. It is worth noting
that the B–N bonds do not change by more than 6% under all
the studied strain conditions.
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