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A recent observation of the thermal Hall effect of magnetic origin in underdoped cuprates calls for critical
reexamination of low-energy magnetic dynamics in an undoped antiferromagnetic compound on square lattice,
where traditional, renormalized spin-wave theory was believed to work well. Using the Holstein-Primakoff boson
formalism, we find that magnon-based theories can lead to finite Berry curvature in the magnon band once the
Dzyaloshinskii-Moriya spin interaction is taken into account explicitly, but fail to produce nonzero thermal
Hall conductivity. Assuming accidental doping by impurities and magnon scattering off of such impurity sites
fails to predict skew scattering at the level of the Born approximation. Local formation of skyrmion defects
is also found incapable of generating the magnon thermal Hall effect. Turning to a spinon-based scenario,
we write down a simple model by adding spin-dependent diagonal hopping to the well-known π -flux model
of spinons. The resulting two-band model has a Chern number in the band structure, and generates thermal
Hall conductivity whose magnetic field and temperature dependencies mimic closely the observed thermal Hall
signals. In disclaimer, there is no firm microscopic basis of this model and we do not claim to have found an
explanation of the data, but given the unexpected nature of the experimental observation, it is hoped this work
could serve as a step towards reaching some level of understanding.
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I. INTRODUCTION

Traditional views on the Hall effect have undergone dra-
matic changes over the past several decades, most prominently
thanks to the observation of the quantized Hall effect in two-
dimensional electronic systems and the subsequent realization
that it is the band topology, rather than the magnetic field
itself, that determines the Hall response of electronic systems
[1,2]. It has become manifest over the years, both theoretically
and experimentally, that even nonelectronic systems support
Hall-like transport of their elementary excitations such as pho-
tons [3], phonons [4,5], magnons [6–15], and triplons [16] due
to the topological character in their respective band structures
or the emergent magnetic field governing their dynamics.
More recently, there is growing experimental evidence of
Hall-like heat (thermal) transport in magnetic materials that
remain in paramagnetic, spin-liquid-like phases [17–21]. The
physical picture regarding the origin of Hall-like phenomena
for such correlated paramagnetic insulators remains poorly
understood, as the Berry curvature effect only pertains to
the band picture of weakly interacting quasiparticles. The
Schwinger-boson mean-field approximation was introduced
in Refs. [21,22] as a way to partly address the Hall effect in the
paramagnetic phase. Magnetic materials exhibiting the ther-
mal Hall effect are typically frustrated, with the pyrochlore
or the kagome lattice structure [7,8,17–21] responsible for
the geometric frustration, or possess a significant amount of
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Kitaev-type interaction leading to the emergence of novel
Majorana excitation [20].

With this background, the recent observation of significant
thermal Hall signal in the family of cuprate compounds comes
as a surprise [23]. A few salient features of the experiment
may be summed up. First, the undoped antiferromagnetically
ordered compound La2CuO4 exhibits large thermal Hall con-
ductivity κxy in the absence of electronic charge carriers. A
phonon-related origin of κxy is ruled out, on the grounds that
the spin-phonon scattering seems too weak to account for the
large κxx value in the cuprates and that the weak (strong) mag-
netic field dependence of the longitudinal (transverse) thermal
conductivity κxx (κxy) seems at odd with the phonon scenario.
Furthermore, κxy is reduced in magnitude as doping increases
and even undergoes a sign change at some finite temperature,
reflecting a mixed contribution of electronic and magnetic ori-
gins upon doping. For underdoped (and presumably undoped)
La2−xSrxCuO4, the Hall effect is almost linear in the applied
magnetic field B. Magnons, on the other hand, must have an
energy gap increasing with B and lead to the suppressed Hall
effect at a larger B field. A general picture thus emerging is
that the underdoped antiferromagnetic compound might have
some nontrivial magnetic correlations, which are presumably
gapless and revealed by the applied magnetic field through the
transverse heat conduction.

What are the quasiparticles responsible for the observed
transverse heat conductivity? First of all, the magnon in the
experimental system has a sizable gap [23]. Second, even
assuming this gap to be small, we expect the gap to grow
with a magnetic field, whereas the thermal Hall effect initially
increases with an applied field. There are other objections aris-
ing from purely theoretical consideration, such as the “no-go”
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theorem [6], disfavoring the formation of the topological Hall
effect in unfrustrated square-lattice magnets. A way round this
“theorem” was invented recently [24], by adopting a model
complicated enough to break spatial symmetries of the square
lattice; such models do not seem to apply readily to cuprates,
though. Despite these objections, we categorically look into
the magnon-based scenario and add various tweaks to it,
with the hope that one such model might capture the thermal
Hall phenomenology. In conclusion, as we report in Secs. II
and III, the answer is negative; hardly any magnon-based
scenario is likely to account for the thermal Hall effect in
the square-lattice antiferromagnet. In Sec. IV we outline a
completely different scenario based on the spinon picture
of magnetic excitation. Treating spin excitations in terms
of fractionalized fermions known as spinons is an old idea,
dating back to Anderson’s resonating valence bond proposal.
The task of applying the spinon idea to work out magnetic
excitations in the cuprates was taken up in the past, notably
in Refs. [25,26]. We show that a small modification of this
spinon model, built around the so-called π -flux phase and
its Dirac-like dispersion, can lead to finite thermal Hall con-
ductivity with temperature and magnetic field dependencies
similar to the those observed [23]. We emphasize that the
goal of our exercise is to find a model which is capable
of producing thermal Hall conductivity of the size seen by
experiment. One important requirement of such model would
be that the effect is linear in the applied magnetic field, as
seen in the data [23]; this is a feature quite naturally embodied
in our model. Nevertheless, we do not claim to understand
how this model can describe the cuprates. In particular we
do not know how it can coexist with Néel ordering in the
insulator. We feel, however, that the experimental results are
so unexpected that our modest goal can hopefully be the first
step towards an explanation.

Inspired by the same experiment, a recent preprint [27]
also discussed the thermal conductivity in a spinon model, but
they chose the bosonic spinon and as such their treatment is
complementary to our fermionic spinon model. A number of
their models explicitly break time-reversal symmetry and have
net spin chirality spontaneously generated. These models will
not have the thermal Hall effect that is linear in the magnetic
field and generally speaking hysteresis may be expected.

II. MAGNON THEORY OF THERMAL HALL EFFECT IN
SQUARE-LATTICE ANTIFERROMAGNETS

We begin by (re)visiting the well-known microscopic
S = 1/2 spin Hamiltonian of the cuprates:

H = J
∑
〈i j〉

Si · S j +
∑
〈i j〉

Di j · Si × S j − B ·
∑

i

Si.

(2.1)

In addition to the familiar spin exchange J , we allow the
Dzyaloshinskii-Moriya (DM) interaction, originating from
the small buckling of the oxygen atom out of the CuO2

plane [28,29], and the Zeeman interaction. Sites on the square
lattice are denoted simply by i and j, with 〈i j〉 indicating
the nearest-neighbor pair of sites. The DM vectors as dic-
tated by symmetry consideration were first worked out by

Coffey et al. [30]:

Di,i+x̂ =
√

2D(−1)i(cos θd , sin θd ),

Di,i+ŷ = −
√

2D(−1)i(sin θd , cos θd , 0). (2.2)

The factor (−1)i = (−1)ix+iy keeps track of the staggering
of the DM vector. The ordered spins are forced to lie in the
CuO2 plane due to the DM interaction, with a small out-
of-plane ferromagnetic component also dictated by the same
interaction. The mean-field ansatz can be chosen as

〈Si〉 = ni = n0ẑ − n1(−1)iâ. (2.3)

It proves convenient to work with a new pair of orthonormal
axes â = (1, 1)/

√
2 and b̂ = (−1, 1)/

√
2 instead of x̂ and ŷ

axes which extend along Cu-Cu directions. An orthonormal
triad is formed by â × b̂ = ẑ. The mean-field energy comes
out as

E = 2J
(
n2

0 − n2
1

) − 4D(cos θd − sin θd )n0n1 − Bn0. (2.4)

The Zeeman energy scale at B = 10 T is only a meV, whereas
the DM energy may be several meV in the cuprates. As a re-
sult, the canting angle θc defined as (n0, n1) = (sin θc, cos θc)
is dictated by the ratio D/J , and not so much by the Zeeman
field. Minimizing the energy E with respect to the canting
angle θc gives

tan 2θc = (D/J )(cos θd − sin θd ) (2.5)

at B = 0. The sign of the DM energy D and the angle θd are
chosen in such a way that the canting angle is positive, θc > 0.

Next we introduce a general formalism that allows one to
convert the spin Hamiltonian (2.1) to a magnon Hamiltonian,
defined around a mean-field ground state given in Eq. (2.3).
In doing so, we aim to see if the magnon theory or some of
its variants can account for the thermal Hall phenomena in the
undoped square-lattice antiferromagnet. The method is based
on parametrizing the spin operator Si as

Si = aini + ti, (2.6)

where ai refers to the amplitude reduction along the direction
of the classical ground-state spin ni, due to the transverse
fluctuation ti. The well-known Holstein-Primakoff (HP) sub-
stitution follows from the formula

ai = S − b†
i bi, ti = t θ

i θi + tφ
i φi, (2.7)

where

t θ
i =

√
S

2
(b†

i + bi ), tφ
i = i

√
S

2
(b†

i − bi ), (2.8)

and θi and φi are a pair of orthonormal vectors forming
the local triad θi × φi = ni. For this choice of triad we are
guaranteed the transversality condition ti · ni = 0.

Substituting Eq. (2.6) and the rest of the HP formulas into
the spin Hamiltonian gives the following magnon Hamilto-
nian:

H =
∑
〈i j〉

[Jθi · θ j + Di j ·θi×θ j]t
θ
i t θ

j

+
∑
〈i j〉

[Jφi · φ j + Di j ·φi×φ j]t
φ
i tφ

j

205157-2



CONSIDERATION OF THERMAL HALL EFFECT IN … PHYSICAL REVIEW B 99, 205157 (2019)

+
∑
〈i j〉

[Jθi · φ j + Di j ·θi×φ j]t
θ
i tφ

j

+
∑
〈i j〉

[Jφi · θ j + Di j ·φi×θ j]t
φ
i t θ

j −
∑

i

μib
†
i bi,

(2.9)

where μi =J
∑

j∈i ni · n j +
∑

j∈i Di j · ni × n j −B · ni. The
spin size S = 1/2 can be absorbed by various redefinitions
of the physical constants and are not shown from here on.
Our notation is such that 〈i j〉 refers to the nearest-neighbor
(NN) bond, and j ∈ i refers to the summation over the (four)
NN sites j that surround the site i. The mean-field spin
configuration has already been laid out in Eq. (2.3), and we
need to complete the orthonormal triad as

ni = −n1(−1)iâ + n0ẑ,

θi = n1(−1)i ẑ + n0â,

φi = b̂. (2.10)

This choice of parametrizing the triad is convenient because
several terms in the Hamiltonian (3.8) vanish automatically:
θi × θ j = 0, and θi · φ j = φi · θ j = 0. Remaining terms are
θi · θ j = −1, φi · φ j = cos 2θc = −ni · n j , Di j · φi × φ j =
J sin 2θc tan 2θc for both j = i + x̂ and j = i + ŷ,

and Di j · θi × φ j = Di j · φi × θ j = ±n1D(cos θd + sin θd ).
The ± signs refer to j = i + x̂ and j = i + ŷ, respectively.
The magnon Hamiltonian in real space becomes

H = (4J ′S + Bn0)
∑

i b†
i bi − J

∑
〈i j〉 t θ

i t θ
j + J ′ ∑

〈i j〉 tφ
i tφ

j

+D′ ∑
i

(
t θ
i tφ

i+x̂ + tφ
i t θ

i+x̂

) − D′ ∑
i

(
t θ
i tφ

i+ŷ + tφ
i t θ

i+ŷ

)
,

(2.11)

where J ′ = J/ cos 2θc and D′ = n1D(cos θd + sin θd ). The
magnon Hamiltonian in momentum space is

H = 1

2

∑
k

ψ
†
k H0

k ψk, (2.12)

where

ψk =
(

bk

b†
−k

)
, H0

k =
(

Ak Bk

B∗
k Ak

)
,

Ak = 4J ′ + Bn0 + (J ′ − J )(cos kx + cos ky),

Bk = −(J ′ + J )(cos kx +cos ky)−2iD′(cos kx −cos ky).

(2.13)

Using the abbreviations X = cos kx and Y = cos ky, we obtain
the magnon energy spectrum

Ek =
√

A2
k − |Bk|2 =

√
[4J ′−2J (X +Y )+Bn0][2J ′(2+X +Y )+Bn0]−(2D′)2(X −Y )2. (2.14)

The spectrum has two local minima, at k = 0 and k = Q =
(π, π ), with the minimum energy at k = 0 given by

E0 =
√

(4(J ′ − J ) + Bn0][8J ′ + Bn0]. (2.15)

It is governed by the larger of the DM energy, J ′ − J ∼ D2/J ,
and the Zeeman energy Bn0. Spin-rotation invariance of the
Hamiltonian is completely lost due to the DM vector, and one
sees a magnon gap of order D2/J even in the absence of the
Zeeman field.

The magnon spectrum derived from the Hamiltonian (2.1)
is well-known [30], but little attention has been paid to the
magnon eigenstates and the associated Berry curvature. The
magnon eigenstate is given in the spinor form as follows:

|ψk〉 =
(

cosh θk/2
−e−iφk sinh θk/2

)
, eiφk = Bk

|Bk| ,

cosh
θk

2
=

√
Ak

2Ek
+ 1

2
, sinh

θk

2
=

√
Ak

2Ek
− 1

2
. (2.16)

Transformation to the quasiparticle operator γk is imple-
mented by the formula

bk = cosh
θk

2
γk − eiφk sinh

θk

2
γ

†
−k . (2.17)

The Berry curvature of the magnon band can be calculated
exactly [9] as (∂μ = ∂/∂kμ, σ3 = the Pauli matrix)

Bk = i〈∂xψk|σ3|∂yψk〉 − i〈∂yψk|σ3|∂xψk〉

= 1

2
sinh θk (∂xφk∂yθk − ∂yφk∂xθk )

= 2D′(J ′+J )(4J ′+Bn0)
sin kx sin ky

E3
k

. (2.18)

The proportionality Bk ∝ D′ implies that the Berry curvature
is possible only by the DM interaction. In the vicinity of
k = 0, one can write approximately

Bk ≈ 16D′J2

E3
0

kxky, (2.19)

which highlights the dxy character in the curvature function.
The thermal Hall conductivity κxy is deduced from the

Berry curvature through the formula developed by Murakami
and collaborators [9,10]:

κxy

T
= −k2

B

h̄

∫
d2k

(2π )2

(
c2(Ek ) − π2

3

)
Bk, (2.20)

where c2(Ek ) is some generalized Bose-Einstein distribution
function of magnons. We find κxy = 0 by symmetry of the
integral in Eq. (2.20). Specifically, Bk changes sign under
either kx → −kx or ky → −ky, but Ek does not.

III. LOCAL DEFECT SCENARIO

A. Local spirals

In a series of papers, Sushkov and collaborators have
argued that holes introduced by a doping Sr atom at the La
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site, for instance, get localized and distort the local spin con-
figuration into a spiral with the wave vector K = √

2x(π,−π )
for a given doping concentration 0 < x � 0.055 [31–33]. For
0.055 � x � 0.12 the K vector is directed along the crystal-
lographic axis in accordance with the stripe scenario: K =
2x(±π, 0).

Inspired by this proposal, we generalize the ground-
state triad (2.10) to incorporate the spiral structure by
writing

ni = n1(−1)iâi − n0ẑ,

θi = (−1)ib̂i,

φi = n0(−1)iâi + n1ẑ, (3.1)

where the local orthonormal vectors âi and b̂i are now position
dependent:

âi = â cos θi + b̂ sin θi,

b̂i = b̂ cos θi − â sin θi. (3.2)

Having θi = 0 irrespective of site i corresponds to the mag-
netic order considered previously. Having θi = K · ri with
|K| � 1 corresponds to the uniform spiral of slow mod-
ulation. Sushkov’s scenario corresponds to having a finite
rotation angle θi only in the vicinity of the impurity site. We
first consider the uniform spiral and the effect it has on the
magnon Hall effect. Local spiral scenario will be considered
subsequently.

There is an immediate consequence of having a finite
spiral rotation angle θi. The inner products θi · φ j and φi · θ j ,
previously equal to zero in the general magnon Hamiltonian
(3.8), are now finite:

θi · φ j = n0 sin(θi − θ j ) = −φi · θ j . (3.3)

Note that this term is nonzero only if the uniform moment n0

is present simultaneously. As a consequence, the Hamiltonian
matrix H0

k in Eqs. (2.12) and (2.13) is modified to H0
k + H1

k ,
where

H1
k = −2Jn0(sin Kx sin kx + sin Ky sin ky)σ3. (3.4)

This new piece of Hamiltonian creates a simple shift in the
magnon spectrum Ek → Ek + δEk:

δEk = −2Jn0(sin Kx sin kx + sin Ky sin ky). (3.5)

This is reminiscent of the Doppler shift; magnons whose mo-
mentum is parallel (antiparallel) to K = (Kx, Ky) experience a
red-shift (blue-shift) in energy.

Meanwhile, the magnon wave function (2.16) and the
Berry curvature (2.18) obtained earlier remain unchanged. In
particular the various energy factors in the wave function and
the Berry curvature are still those of the unperturbed Hamilto-
nian, maintaining the symmetries E (kx,−ky ) = E (−kx, ky) =
E (kx, ky). The new magnon energy Ek + δEk enters solely
through the distribution function c2(Ek + δEk ) of the ther-
mal Hall conductivity formula (2.20), which undergoes the

correction

δκxy ∝
∑

k

∂c2[Ek]

∂Ek
BkδEk

∝
∑

k

∂c2[Ek]

∂Ek
Bk (sin Kx sin kx +sin Ky sin ky) = 0.

(3.6)

The first two terms in the sum, ∂c2/∂Ek and Bk , are even under
the change k → −k, while δEk is odd. As a result, the sum
must be zero. The uniform spiral state fails to produce the
Hall effect.

Akin to the original Sushkov proposal, we now look into
the influence of localized spirals on the thermal Hall transport
of magnons. First of all, we lay down some general strategy
for attacking such a problem. The continuum language is
more appropriate for dealing with problems that break the
translation symmetry, and we begin with a continuum form
of the Hamiltonian H1 introduced in Eq. (3.4):

H1 = iJn0

∑
〈i j〉

sin(θi − θ j )(b
†
jbi − b†

i b j )

→ iJn0

∫
r
∇θ (b†∇b − b∇b†). (3.7)

The integral symbol
∫

r = ∫
dxdy is abbreviated. Spatial gra-

dient of the phase ∇θ is localized around the impurity site.
The solution worked out by Sushkov et al. [31–33] gives

θα = f (|r − rα|)b̂ · (r − rα ), (3.8)

around each impurity centered at rα . For a collection of im-
purities the phase twist is the sum θ = ∑

α θα . The envelope
function f (r) approaches the constant f0 at the center of
impurity and produces a spiral-like configuration locally.

At the level of Born scattering, the perturbation H1 fails to
produce any Hall-like transport of magnons. To see this, one
writes H1 in Fourier space,

H1 = −iJSn0

∑
k,p

p(p + 2k)θpb†
k+pbk, (3.9)

where θp is the Fourier transform of the real space θ . The
Born scattering amplitude 〈k + p|H1|k〉 is proportional to
the factor p(p + 2k) = (k + p)2 − k2. Under the continuum
approximation, however, the quasiparticle energy Ek is a
quadratic function of k [see Eq. (2.14) for the full energy
dispersion]. The elastic scattering process satisfies Ek+p =
Ek; hence (k + p)2 − k2 = 0. The Born scattering amplitude
vanishes. Higher-order contributions from H1 involve higher
powers of the uniform moment n0 and are expected to give a
negligible contribution.

Upon expanding to one higher order in the phase gradient,
we do find an additional correction in the form

H2 ≈ 1

4
JS

∑
r

(∇θ )2(b† − b)2. (3.10)

The Born scattering calculation based on this Hamiltonian
also gives negative results for the magnon Hall effect. Details
are not illuminating and are omitted here.
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B. Local skyrmions

Speculations of skyrmion formulation in the cuprates have
been around for a long time [34–36] and revived recently
with the report of their sightings in a member of the cuprate
family, La2Cu0.97Li0.03O4 [37]. It has been well-established in
the recent skyrmion literature that a magnon sees a localized
skyrmion as two units of flux quanta [11,38–41] and will
experience Aharonov-Bohm scattering. We examine whether
such a scenario can apply to the antiferromagnetic skyrmions,
assuming they do form localized defects in the underdoped or
undoped cuprates.

In a nutshell, an antiferromagnetic skyrmion per se does
not give rise to the magnon Hall effect, although the ferro-
magnetic skyrmion does. The difference can be outlined most
simply in the continuum field theory of magnons for each
case. For the ferromagnetic model we switch J → −J in the
magnon Hamiltonian and treat ni, θi, and φi as smooth func-
tions of the coordinates, as there is no staggered component in
any of them. The continuum limit of the magnon Hamiltonian
with Di j = 0 and B = 0 is easily obtained as

HFM ∼ −J

2

∑
μ

b†[∂μ − iaμ]2b + · · · , (3.11)

where the curl of the vector potential ∂xay − ∂yax = (2π )−1n ·
(∂xn × ∂yn) represents the local skyrmion density. The inte-
gral of the curl (∇ × a)z is −2 for a skyrmion charge of −1.
This is the basis of the claim that the local skyrmion magnetic
structure acts as two units of flux quanta for the magnons.
The magnon Hall effect due to skyrmions has been observed
experimentally in ferromagnetic thin films [13].

A very different effective theory of magnons is found
for antiferromagnetic ground states. The smooth texture is
realized for the staggered magnetization, so the ground-state
triad is parametrized as

ni → (−1)ins
i , θi → (−1)iθs

i , φi → φi. (3.12)

Both ni and θi are staggered but not φi, which is defined as
the cross product φi = ni × θi. Now treating ns

i , θs
i , and φi as

smooth, we obtain the continuum magnon Hamiltonian

HAFM = J

2

∑
μ

[(∂μb†)2 + (∂μb)2] + · · · . (3.13)

Various other terms proportional to b2, (b†)2, and bb† are not
shown. Crucially, there is no analog of the covariant deriva-
tive ∂μ − iaμ in this theory and no source of the emergent
magnetic field. The magnon Hall effect originating from the
skyrmion spin texture must be absent in the antiferromagnetic
ground state.

As we saw earlier, however, undoped cuprate is weakly
ferrimagnetic, due to the DM interaction and the consequent
canting of spins. Since a ferrimagnet has characteristics of
both ferromagnets and antiferromagnets, we find it worth
exploring possible low-energy magnon dynamics for a ferri-
magnetic spin-textured ground state. To this end one needs
a more elaborate setup for treating magnon dynamics by
allowing the triad of orthonormal vectors (ni, θi, φi ) to carry

FIG. 1. Coordinate system used in developing the magnon dy-
namics of the ferrimagnetic ground state.

both staggered and uniform components locally:

ni = (−1)in1i + n0θ1i,

θi = (−1)iθ1i − n0n1i,

φi = n1i × θ1i. (3.14)

Words of explanation are in order for this choice of
parametrization. The uniform moment n0i is by assumption
orthogonal to the staggered moment n1i. The staggered com-
ponent of θi, denoted θ1i, is also orthogonal to n1i. Since both
n0i and θi are required to be orthogonal to n1i, and there is a
U(1) degree of freedom in choosing the orthonormal vector
θ1i, we invoke this freedom to choose θ1i to be parallel to n0i

or write n0i = n0θ1i. This explains the parametrization of ni

in the first line of Eq. (3.14). The second line for θi follows
naturally from requiring ni · θi = 0. Orthogonality of all three
vectors in Eq. (3.14) is ensured up to first order in the small
moment n0. The parametrization we propose is summed up
pictorially in Fig. 1.

Substituting Eq. (3.14) into the general magnon Hamilto-
nian (3.8) yields the following terms, linear in n0:

θi · φ j ≈ −n0n1i · (n1 j × θ1 j ) → −n0 · (n1 × ∂μn1),

φi · θ j ≈ −n0n1i × θ1i · n1 j → n0 · (n1 × ∂μn1). (3.15)

In arriving at the expressions at the far right we assumed a
continuum approximation and introduced ∂μ for the spatial
derivative in the direction j = i + μ̂. A new contribution to
the magnon dynamics arises from

H1 = iJ
∑

μ=x,y

∫
dxdy(n0 · n1×∂μn1)(b†∂μb−b∂μb†)

= J
∑

μ=x,y

∫
dxdy(a · j), (3.16)

where the vector potential a and the magnon current density
j are defined by aμ = −n0 · n1×∂μn1 and jμ = −i(b†∂μb −
b∂μb†), respectively.

For the nontextured ground state, the uniform and stag-
gered moments are related by n0 = n0b̂ × n1 through the DM
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interaction. If we assume that this relation continues to hold
even for the textured spin configuration such as that of a
skyrmion, it turns out one can write the vector potential in
a much simpler form: a = −n0∇(b̂ · n1). In this case, the
Hamiltonian H1 reduces exactly to the form H1 ∼ Jn0∇θ · j
we discussed in the earlier subsection. The Born scattering
amplitude there was zero, and so is it here. To conclude,
even the ferrimagnetic skyrmion scenario fails to produce
skew scattering at the level of Born scattering. Again, more
elaborate theories are likely to involve higher powers of n0

and very small effects.
All of the local defect scenarios considered in this section

fail to show skew scattering, at least at the lowest order
in the uniform moment n0. There is also a general issue
of how to reconcile the impurity-induced defects with the
undoped cuprate, where the impurities are nominally absent.
Finally, the magnon gap grows with the magnetic field and
suppresses the response function in any magnon-based sce-
narios. The experiment on κxy does not show such activation
behavior [23].

IV. FERMIONIC SPINON THEORY OF
THERMAL HALL EFFECT

With the general inability of the magnon theory to ac-
count for the observed thermal Hall effect in the undoped
to lightly doped cuprates, we look for an alternative the-
ory. A very natural candidate is to assume the existence of
spinon excitations. There are many different classes of spinon
models [42]. Within the context of the cuprates, a common
starting point is the so-called π -flux phase, where there is π

flux per plaquette resulting in fermion spinons with a Dirac
dispersion at (π/2, π/2) and symmetry-related points. It is
then assumed that, due to strong gauge field fluctuations, the
spinons are bound in a confined phase and antiferromagnetism
appears, so that the only low-energy fluctuations are S = 1
spin waves (for a review see Ref. [43]) The spinon idea has
been adopted also to compute spin dynamics in the undoped
cuprates [25,26], even though long-range magnetic ordering
in such compound has been well established. The spinon-
based theories were rationalized by the fact that some aspects
of high-energy spin excitations are not captured by the spin-
wave picture alone and that a vestige of spinon excitations
must remain in the physical spectrum to account for the spin
dynamics fully. However, the expectation has been that the
spinon gap is relative large (a fraction of J) and that the
confined spinons will not influence low-temperature proper-
ties. Hence the spinon-based theories have not been applied
to low-energy transport properties such as the thermal Hall
conduction. The recent experiment, taken at its face value,
calls for a reevaluation of this traditional view.

Historically the spinons are discussed in the context of
the spin-liquid state, where there is no antiferromagnetic
order. However, it has been pointed out that this restriction
is unnecessary, and there is a possibility of spinon excitations
coexisting with antiferromagnetic (AF) order and spin waves.
Such a state possesses topological order and has been called
AF*. This scenario was first proposed by Balents, Fisher,
and Nayak [44] and have been further discussed by Senthil
and Fisher [45]. They started with a d-wave superconductor

which they disordered by proliferating hc/e vortices while the
hc/2e vortices remained gapped. The resulting state is called
a nodal spin liquid with Dirac spinons that grew out of the
d-wave Bogoliubov quasiparticles. This state can coexist with
antiferromagnetism at wave vector (π, π ). If the nodes are
connected by the AF wave vector, they will be gapped. On the
other hand, if their separation is not (π, π ), they may remain
as gapless Dirac fermions. Guided by this line of thinking, it
seems to us that the next step is to start with a Dirac spectrum
given by the π -flux model and simply assume that it coexists
with the antiferromagnetism.

We proceed to first present a simple spinon-based model
of magnetic dynamics and use it to compute the thermal
Hall conductivity and the spin chirality. Our goal is to find
the simplest model that can give results that are qualitatively
similar to the observed thermal Hall effect. Even this is a
highly nontrivial task because the experiment imposes serious
constraints. First, as we shall see, the observed κ2D

xy /T is very
large when expressed in the natural unit of k2

B/h̄ per layer.
Second, the effect is seen down to quite low temperatures of
about 5 K, which says that the spinon gap cannot be too large.
Third, the effect is linear in B. This rules out chiral spin-liquid
states which spontaneously break the time-reversal symmetry
and which will lead to hysteretic behavior that is not seen
experimentally. While the Dirac nodes have Berry curvatures
near the nodes, they are canceled between two sets of nodes
and by themselves will not give rise to the thermal Hall effect.
Thus we need to introduce some chirality which is induced
linearly with the applied magnetic field. There are two ways
an external field couples to the spinons. First is via the Zeeman
effect and the second is a coupling to the spin chirality, As we
discuss later, this latter coupling is proportional to the flux
generated by the external field per plaquette and is extremely
small. Therefore we considered the Zeeman coupling only
and we came up with the model discussed below. We do not
think this model is realistic for the cuprates. We assume a
spin-dependent hopping which is possible only in the presence
of spin-orbit coupling, which is not believed to be strong for
the cuprates. At this stage of the development, we believe
there is value in this exercise, if only to emphasize the
challenge we face in coming up with even a phenomenolog-
ical model that satisfies the experimental constraint outlined
above.

We outline general requirements in a candidate spinon
model. First, it will consist of spin-up and spin-down fermion
bands with identical dispersions and opposite Berry curva-
tures. As such, the Hall effect of one species of fermions will
be canceled out by that of the other. The applied magnetic
field will then split the energy degeneracy and lead to the
noncancellation of Berry curvatures, resulting in nonzero
thermal Hall conductivity. In such a picture, the predicted Hall
signal will be naturally proportional to the field strength B:
κxy ∝ B—a prominent feature in the observed thermal Hall
effect in underdoped cuprates [23].

The model we present can be summed up as a 2 × 2
fermion Hamiltonian:

H = 1

2

∑
kσ

ψ
†
kσ

Hkσ ψkσ . (4.1)
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FIG. 2. (a) Hopping parameters adopted in our fermion model.
Arrows indicate the imaginary hopping direction. The sign of the
diagonal hopping depends on spin σ = ±1. (b) Upper- and lower-
band dispersions obtained from the spinon model. (c) Berry curvature
of the lower band over the Brillouin zone. (d) Hall conductivity
σxy(ε). States with ε < μ are occupied at zero temperature. Plots are
drawn with h1 = 1 and h2 = 0.1.

For each spin σ = ↑,↓ we have the spinor ψkσ = (
αkσ

βkσ
) and

the Hamiltonian matrix

Hkσ =
(

4σh2sxsy − σB 2h1(cx + icy)
2h1(cx − icy) −4σh2sxsy − σB

)
. (4.2)

We have used the abbreviations cx(y) = cos kx(y) and sx(y) =
sin kx(y). The hopping amplitudes in the nearest-neighbor and
the diagonal directions are as displayed in Fig. 2. Without the
diagonal hopping this is the π -flux Hamiltonian whose energy
spectrum has Dirac nodes [25,26]. The diagonal hopping term
h2 opens up a gap at the Dirac points and creates bands
with Chern numbers. The spin-dependent diagonal hopping
amplitude is designed to generate opposite signs of Berry
curvature between the two spin orientations. The Zeeman
energy −σB is included in the Hamiltonian.

Diagonalizing the Hamiltonian, we find the energy and the
Berry curvature of the bands as follows:

Enkσ = 2n
[
h2

1

(
c2

x + c2
y

) + 4h2
2s2

xs2
y

]1/2 − σB,

Bnkσ = 2nσ
h2

1h2
(
1 − c2

xc2
y

)
[
h2

1

(
c2

x + c2
y

) + 4h2
2s2

xs2
y

]3/2 . (4.3)

The band index n = ±1 refers to the upper band and the lower
band, respectively. The Berry curvature Bnkσ has opposite
signs between the two bands and between the two spins. For
visualization of the band dispersion and the Berry curvature,
see Fig. 2. The upper and lower bands are separated by a gap
of magnitude 8|h2| at (kx, ky) = (±π/2,±π/2).

The zero-temperature Hall conductivity at the putative
chemical potential ε for each spin species is derived from the

Berry curvature through the TKNN formula [1]

σxyσ (ε) = ∑
nk Bnkσ θ (ε − Enkσ ), (4.4)

which involves the sum over all states whose energies lie
below ε. In the quantized case we obtain σxy = C/2π , where
C is the Chern number. The lower band in our fermion model
has the spin-dependent Chern number Cσ = −σ for σ = ±1
(↑,↓). For calculation of the thermal conductivity in the
fermionic model we use the formula derived in Ref. [46]:

κ2D
xy

T
= 1

4T 3

∫
dε

(ε − μ)2

cosh2[β(ε − μ)/2]
σ tot

xy (ε). (4.5)

This has the form of a well-known Mott formula relating the
thermal conductivity to the electric conductivity. To restore
physical units to the dimensionless form of κ2D

xy /T given
above, one has to multiply by k2

B/h̄, the ratio of Boltzmann’s
constant and the Planck’s constant. It is useful to note that
k2

B/h̄ = 1.81 × 10−12 W/K2. As an example, consider a bulk
La2CuO4 sample whose c-axis constant is d = 13.2 Å. Since
there are two CuO2 layers per unit cell, the effective interlayer
distance is half that, deff = 6.6 Å. If each CuO2 layer carried
a two-dimensional κ2D

xy /T worth the universal value k2
B/h̄,

the three-dimensional thermal Hall conductivity of the bulk
La2CuO4 would be given by κ3D

xy /T = κ2D
xy /(T deff ) = 2.76

mW/K2 m. The recently observed thermal Hall conductivity
in cuprates reaches maximal κ3D

xy values in the vicinity of
30–40 mW/K m at T ≈ 10 K, consistent with a per layer
value of κ2D

xy /T roughly equal to k2
B/h̄ at that temperature.

The thermal Hall conductivity formula (4.5) predicts values
of κ2D

xy /T in the range of k2
B/h̄ for σxy ∼ 1.

The Hall conductivity σ tot
xy itself is given as the sum of

contributions from the two spin species: σ tot
xy (ε) = σxy,↑(ε) +

σxy,↓(ε). In the absence of the Zeeman field we have the
opposite signs of the Berry curvature and the degener-
ate energy bands, i.e., Bnk↑ = −Bnk↓ and Enk↑ = Enk↓, and
hence a vanishing Hall conductivity: σxy,↑(ε) + σxy,↓(ε) =
0. The energy degeneracy of ↑,↓-spinons are split by the
Zeeman field, whereas the Berry curvature itself remains un-
affected by it. The Hall conductivity formula in the presence
of B becomes

σ tot
xy (ε) = σxy(ε + B) − σxy(ε − B). (4.6)

Here σxy(ε) = σxy,↑(ε) is the Hall conductivity of ↑-spinons.
There is more occupation of ↑-spinons than ↓-spinons, be-
cause the chemical potential for the former (latter) particles
has been raised (lowered) by B. In the model Hamiltonian we
chose, the ↑-spinon band carries the Chern number −1 and
results in negative values of κ2D

xy .
Numerical calculations of the thermal Hall conductivity

as a function of temperature and magnetic fields are shown
in Fig. 3. The chemical potential was chosen in such a way
that the average occupation number was 〈 f †

iσ fiσ 〉 = n at zero
temperature and magnetic field. The linear-B dependence of
κ2D

xy /T in the numerical plot is easy to understand, since
σxy(ε + B) − σxy(ε − B) ∝ B at small values of B. Thermal
smearing reduces the Hall signal at higher temperatures. The
magnitude of κ2D

xy /T values calculated within our model can
reach values close to 1 (k2

B/h̄ in physical units) with suitable
choices of h2 and μ.
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FIG. 3. Two-dimensional thermal Hall conductivity κ2D
xy /T (in

physical units of k2
B/h̄) vs (a) magnetic field B at several temperatures

T and (b) vs temperature T at several magnetic fields B. Parameters
chosen are h1 = 1, h2 = 0.1, and the chemical potential μ = −0.6,
corresponding to the filling factor n = 0.98 at T = 0 and B = 0.
Temperature and magnetic field scales are measured in units of h1.

The spinon density n was chosen to be 0.98 in the calcu-
lation of the thermal Hall conductivity (Fig. 3). In the slave
fermion model the spinon density equals the electron density
on average, and at the Mott insulator limit n should be unity.
In our model for n = 1 the thermal Hall effect is zero at
zero temperature because the chemical potential will lie in
the gap and the two spin species cancel. As expected based
on the bulk-edge correspondence, the edge states also do not
contribute even at small finite B because the up and down
spins each gives a quantized κxy of opposite sign. However,
it will be finite for sufficiently large B and/or temperature.
The value 0.98 may be considered slightly doped. Results for
other values of n are shown later.

The fermion model we study supports the spin chirality as
well. In the mean-field theory, the average of the spin-chirality
operator Si · (S j × Sk ) of the 〈i jk〉 triangle becomes, through
the substitution Si = (1/2) f †

i σ fi with fi = ( fi↑ fi↓),

〈Si · (S j × Sk )〉 = − i

2
(χi jχ jkχki − χikχk jχ ji ), (4.7)

where χi j = ∑
σ 〈 f †

iσ f jσ 〉. Calculations of χi j in the mean-
field theory are straightforward. The essential point, as it
turns out, is that the triple product of hopping parameters
χi jk ≡ χi jχ jkχki contains an imaginary term only at finite
magnetic field and diagonal hopping; thus 〈Si · (S j × Sk )〉 =
Im[χi jk] ∝ h2B.

Explicit calculation shows all elementary triangles having
the same spin chirality. In other words, a finite magnetic field
induces a uniform spin chirality state within our model. Nu-

α
i

β
j

β
l

α
k

-0.005

0.0

B

-0.010

-0.015

-0.020
0.0 0.1 0.2 0.3 0.4 0.5

·(
×

)
S i

S j
S k

FIG. 4. Magnetic field dependence of spin chirality 〈Si · (S j ×
Sk )〉 for the triangles of the elementary square. It grows linearly with
B at small fields. Parameters used are h1 = 1.0, h2 = 0.1, and μ =
−0.6 (n = 0.98) as in Fig. 3. Inset: Four corners of the elementary
square are labeled by i, j, k, and l . Spin chirality is calculated for
each of the four triangles by going in the counterclockwise fashion.
All four triangles carry the same value of spin chirality.

merical evaluation of spin chiralities through the four triangles
of the elementary square are shown in Fig. 4, displaying the
expected linear growth with B at small fields. Our observation
suggests that an interaction of the form ∼BSi · (S j × Sk )
might be present and play a hitherto neglected role in the
transport of undoped cuprates. Such an interaction Hamil-
tonian is well-known to derive from the large-U expansion
of the Hubbard interaction, when an external magnetic field
is present [47]. The application of such a spin chirality
Hamiltonian to the understanding of the behavior of the
spin-liquid phase under an external magnetic field was taken
up in Ref. [48], where the focus was the orbital effects of the
magnetic field such as the Landau level formation of spinons,
without explicit consideration of the Zeeman splitting of the
spinons as we do. The spinon hopping parameters in Ref. [48]
pick up an imaginary part as a result of the Aharonov-Bohm
effect, while our hopping parameters are deemed fixed and
unchanged under the magnetic field. We also note that a spin
chirality induced by a magnetic field was considered earlier by
Katsura et al. [6] to generate a thermal Hall effect. However
that effect is extrinsic, i.e., it depends on the scattering of the
spinons by disorder, whereas the effect we consider in this
paper is intrinsic.

Figure 5 shows the doping dependence of κxy and the spin
chirality at some fixed temperature and field. As one can see,
the κxy/T reaches a maximum in the vicinity of n ≈ 0.95
in our model. The spin chirality nearly vanishes at n = 1,
since the two orientations of spinons actually carry opposing
senses of circulation, i.e., χi j,↑χ jk,↑χki,↑ ≈ −χi j,↓χ jk,↓χki,↓,
and it is the residual part of their sum which contributes to the
spin chirality. At n = 1 the cancellation is almost complete;
hence the spin chirality becomes very small. Additionally, one
can check that the spin-spin correlation 〈Si · S j〉 preserves the
lattice symmetries as well, and the loss of translational and
rotational symmetry in the hopping patterns of our ansatz is
only an artifact of the spinon theory. The aspect of projective
symmetry restoration was discussed in Ref. [27] also.
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FIG. 5. Doping (n) dependence of (a) κxy/T and (b) spin chirality
at several values of T and B.

The spinon model we propose is not without its draw-
backs. On the theoretical side, the conventional view is that
starting from a spinon model, the Néel state can emerge as
a confinement transition, where the spinons become gapped
and confined [43]. Thus we normally do not expect the co-
existence of antiferromagnetic order and nearly free spinons.
On the other hand, such coexistence is allowed but should
be considered highly exotic [44,45]. Furthermore, the spinon
gap must be small in the insulator in order to give a thermal
Hall effect at relatively low temperature and magnetic field.
The particular spinon dynamics that we assume, with spin-
dependent hopping, does not have a well-defined microscopic
justification at the moment, except that it might in some way
be tied to spin-orbit interaction. The model on the whole is an
attempt to fit the observation. On the experimental side, the
renormalized spin-wave theory does a good job of accounting
for the magnetic excitations in the square-lattice antiferromag-
net, as revealed for instance in recent experiments [49,50].
On the other hand, some high-energy features in the magnetic
excitation are not fully explained within the spin-wave theory
alone [49,50], which in turn prompted speculations about
residual spinon excitations in the Heisenberg model [51].
Overall it is fair to say that, at this point, spinons as low-energy
excitations in square-lattice quantum antiferromagnets have
quite weak experimental support. On the other hand, the two
quasiparticles—magnons and spinons—give contrasting pre-
dictions in regard to their behavior under the magnetic field.
In the spin-wave scenario, a magnon gap inevitably opens and
suppresses the magnons’ contribution to transport. For the
spinon-based scenario, as demonstrated here, linear growth

of the response function κxy/T with the field is natural. The
diagonal spinon hopping term ∼h2 necessary for the opening
of the gap, the existence of Berry curvature, and ultimately
the thermal Hall transport all seem closely related to the spin
chirality correlation, given that the latter quantity scales with
h2 in our model. In turn, including the three-spin exchange
interaction on top of the Heisenberg interaction might be
a necessary ingredient for the complete understanding of
magnetic dynamics in undoped cuprates.

If the spinon excitations indeed play a role in the thermal
transport in the antiferromagnetic phase of the cuprates, they
must have manifestations on other probes such as inelastic
neutron scattering and heat capacity measurement. Calcula-
tions of such physical quantities within the same spinon sce-
nario, coupled with critical reexamination of past experiments
in light of such theory, might shed further light on the true
nature of low-energy excitations in the undoped cuprates. The
thermal Hall measurement on other square-lattice antiferro-
magnets will be a nice cross-check on the observed effect in
the cuprates as well.

Note added. Spinon theory of the thermal Hall effect
in magnets with Dzyaloshinskii-Moriya interaction was also
advanced in a recent preprint [52] and applied to the Kagome
lattice. We also mention a preprint by Chatterjee et al. [53]
which also used the π -flux spinon as a starting point. A
key ingredient is the term Jχ

∑
� Si · (S j × Sk ) in their Eq.

(2), where Jχ is proportional to the magnetic flux through
a triangular plaquette. This term generates a net chirality
which produces a thermal Hall effect. We considered this
term in the last section but did not discuss it further be-
cause of the very small magnitude. One can make an esti-
mate of Jχ using the t/U expansion by Motrunich [48] to
find Jχ = −48π (t2t2/U 2)(φ/φ0), where φ0 = hc/e = 2.07 ×
10−15 Wb is the flux quantum, and φ = BA0 is the magnetic
flux through a triangular plaquette of area A0 ≈ (3.8 Å)2/2 for
the cuprate. At B = 10 T we find φ/φ0 ≈ 3.5 × 10−4. Further
using commonly accepted values of t2 = −0.3t , U = 8t , and
J = 4t2/U , we find Jχ ≈ 5.6 × 10−4J at B = 10 T. The use
of a smaller effective U may increase this number a bit, but
in any case a very small number is expected for Jχ , due to
the small ratio φ/φ0. As we emphasized in this paper, the
unexpected nature of the experimental data means that all
avenues should be explored. Nevertheless, the small value of
this term should be kept in mind. The assumed proximity to a
quantum critical point also makes it challenging to explain the
linear B dependence of κxy observed over a large range from 5
to 15 T.
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