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Dynamical mean-field theory (DMFT) is one of the most widely-used methods to treat accurately electron
correlation effects in ab-initio real material calculations. Many modern large-scale implementations of DMFT
in electronic structure codes involve solving a quantum impurity model with a continuous-time quantum Monte
Carlo (CT-QMC) solver [Rubtsov et al., Phys. Rev. B 72, 035122 (2005); Werner et al., Phys. Rev. Lett. 97,
076405 (2006); Werner and Millis, Phys. Rev. B 74, 155107 (2006); Gull et al., Rev. Mod. Phys. 83, 349 (2011)].
The main advantage of CT-QMC is that, unlike standard quantum Monte Carlo approaches, it is able to generate
the local Green’s functions G(τ ) of the correlated system on an arbitrarily fine imaginary time τ grid, and is free
of any systematic errors. In this work, we extend a hybrid QMC solver proposed by Khatami et al. [Phys. Rev.
E 81, 056703 (2010)] and Rost et al. [Phys. Rev. E 87, 053305 (2013)] to a multiorbital context. This has the
advantage of enabling impurity solver QMC calculations to scale linearly with inverse temperature β, and permit
its application to d- and f -band materials. In addition, we present a Green’s-function processing scheme which
generates accurate quasicontinuous imaginary time solutions of the impurity problem which overcome errors in-
herent to standard QMC approaches. This solver and processing scheme are incorporated into a full DFT+DMFT
calculation using the CASTEP DFT code [Clark et al., Z. Kristallogr. 220, 567 (2005)]. Benchmark calculations
for SrVO3 properties are presented. The computational efficiency of this method is also demonstrated.
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I. INTRODUCTION

Density functional theory (DFT), in both its local density
(LDA) and generalized gradient (GGA) approximations, is a
highly effective method for the calculation of quantitatively
accurate ab initio ground-state properties of a wide range
of real materials [1]. However, for some materials DFT’s
outstanding predictive capabilities become significantly less
reliable. Such materials are found typically amongst the tran-
sition metal oxides, as well as in lanthanide and actinide-
based compounds. This is problematic because of the poten-
tial application of these materials in the fields of quantum
computing, data storage, and high-temperature superconduc-
tivity. These materials characteristically have narrow band-
widths (W ∼ 2–3 eV), so the correlations induced by the
Coulomb interaction between valence electrons (U ∼ 4–5 eV)
are strong, implying that, i.e., U/W � 1. When bandwidths
are broader the ratio of electron correlation to bandwidth is
reduced (i.e., U/W � 1), so the effects of electron correlation
are weaker. In the latter case, the typical approximations
involved at the DFT level work well, often with a quantitative
precision that sustains comparison with experiment.

A single unified framework is sought in which the effects
of electron correlation can be addressed for real material

*christopher.rhodes@kcl.ac.uk

calculations over a wide range of temperatures and correlation
strengths U/W . In recent years, a combination of DFT and
dynamical mean-field theory (DMFT) has proved to be an ef-
fective way of interpolating between the itinerant and strongly
localized limits of the electronic behavior. The DFT+DMFT
approach has been well established, and allows extending the
capabilities of DFT-based approaches into calculations where
electron correlation effects are significant. DFT+DMFT has
evolved into a powerful method for dealing with correlation
effects, and is being frequently used for material-specific
applications. In addition to DFT+DMFT, the GW+DMFT
approach is continuing to mature into an effective way
of undertaking material-specific calculations for correlated
systems [2].

The critical component of a DFT+DMFT calculation is
the so-called “impurity solver,” which represents the quantum
many-body physics interactions of the correlated electrons in
the material. It is essential that the solver contains an accurate
representation of the physics of the interacting electrons, and
can efficiently compute solutions in a fast and stable way over
a wide range of parameters (U , W , and T ). A variety of solvers
are available for use in DMFT calculations, and they can be
selected to match the computational resources available to
complete a calculation in a time-efficient way. These solvers
can be based on quasianalytical methods [e.g., Hubbard I,
iterated perturbation theory (IPT), noncrossing approximation
(NCA), or fluctuation exchange approximation (FLEX)] or
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numerical methods [e.g., numerical renormalization group
(NRG), exact diagonalization (ED), quantum Monte Carlo
(QMC)] [3]. Of all these methods it is the quantum Monte
Carlo methods which have proved to be particularly popular.
This is because QMC methods are conceptually straightfor-
ward and can return stable results (to statistical accuracy) over
a wide range of parameter values.

A QMC technique known as continuous-time QMC (CT-
QMC) [4–7] has emerged lately as a popular solver for
many DMFT applications. The main advantage of CT-QMC
is that it overcomes one of the most significant limitations of
conventional QMC methods—namely, the systematic errors
which arise due the Trotter-Suzuki decomposition and the
concomitant discretization of the imaginary time interval.
Errors of this kind can generate substantial bias in the results
of DMFT calculations. This is because they can significantly
shift the converged fixed point of the DMFT iteration [8].
However, a disadvantage of most of the readily available CT-
QMC solvers is that the computational effort scales cubically
with inverse temperature β = 1/kBT , and this severely limits
their access to low-temperature phases. Moreover, because
the order of perturbation of CT-(HYB)QMC scales with the
product of kinetic energy and β, it is costly to apply to systems
far from the localization-delocalization transition, especially
at low temperatures. Although our method is applicable over
a large range of parameters, we concede that in the limit of
very large Coulomb repulsion a technique such as CT-HYB
may be more effective. For multiorbital or cluster DMFT
applications, the inverse temperature scaling limitation be-
comes even more significant. A key computational bottleneck
in calculations of fully charge self-consistent DFT+DMFT
properties of real materials is the requirement to generate
accurate impurity model solutions on a fast time scale with
medium-scale computational resources. For such challenging
applications QMC methods remain a competitive technique
for solving quantum impurity problems, and our intention
here is to introduce a complementary QMC technique that has
an advantage for some applications. Also, when calculating
a material equation of state, numerous DFT+DMFT total-
energy calculations are needed over a range of temperatures
and pressures [9]. To perform these calculations to a level
comparable with experimental data demands accurate and
computationally efficient impurity solvers [10,11].

In this paper we present a QMC solver which scales
linearly in inverse temperature [8,12] extended to a mul-
tiorbital context, and supplement the solver with a ro-
bust Lagrange/Chebyshev-based Green’s-function interpola-
tion technique that facilitates controlled extrapolations of the
impurity Green’s functions on multiple discretized imaginary
time grids to a solution that is quasicontinuous in imaginary
time. Because the solver self-energy is very sensitively de-
pendent upon this Green’s function it is imperative that the
impurity model solution is an accurate one. In this way we
are able to calculate accurate quasicontinuous time quantum
impurity model solutions for multiorbital systems faster than
CT-QMC solvers, particularly at temperatures those solvers
find challenging to access.

The paper is organized as follows. In Sec. II we introduce
the QMC solver and describe how it is integrated into a
DFT+DMFT scheme for real material calculations using the

CASTEP plane-wave DFT code [13]. In Sec. III a technique de-
signed to generate accurate quasi-CT Green’s functions using
fits of multiple low-resolution QMC solutions is presented.
Some of the particular issues of fitting Green’s functions
from real materials are discussed. In Sec. IV, to test the
technique fully, we undertake a full DFT+DMFT calculation
on strontium vanadium oxide SrVO3 by integrating our solver
with both the CASTEP DFT code and the quasi-CT Green’s-
function scheme. Where appropriate, calculations are base-
lined against equivalent quasi-CT QMC calculations using
the TRIQS solver that is embedded in CASTEP [13,14]. All
energies and temperatures are in eV.

II. QMC IMPURITY SOLVER AND DFT+DMFT
CALCULATIONS

A. QMC algorithm

The purpose of a quantum impurity solver in a DMFT
calculation is to adequately capture the physics of spin-
dependent electron-electron interactions, using either a nu-
merical model Hamiltonian representation or a quasianalytic
approach [3]. The initial conditions for the model are derived
from a material-specific DFT calculation, and then the solver
solution is processed and fed back to the DFT code in an
iterative cycle. The key to efficient DFT+DMFT calculations
of real material properties is finding a fast, accurate, and
stable solution to the impurity model (without a fermionic sign
problem [15]) over a wide range of model parameters (U , J ,
and W ) and inverse temperatures β.

Most early DFT+DMFT calculations employed a Hirsch-
Fye (HF) solution of the single impurity Anderson model
to represent electron correlation effects [3]. The appeal of
this solver is that it is a QMC-based method which can be
applied over a broad parameter range and band fillings without
being compromised by fermionic sign problems. However,
this method contains a systematic error inherent in the Trotter
decomposition and imaginary time discretization. Also, its in-
verse temperature scaling goes as β3. More recently HF-QMC
has been complemented by the CT-QMC method (and variants
thereof) discussed above. But, as noted there, it too scales
as β3. Another popular impurity solver is based on exact
diagonalization (ED) of the impurity Hamiltonian [16,17].
The advantage of that method is that it gives an exact Green’s-
function solution and scales linearly in β. However, it relies on
a discretization of the Weiss field (bath Green’s function), and
the computational load scales exponentially with the number
of bath sites which can be limiting for applications beyond
application to single site, single band, impurity models.

Khatami et al. [12] and later Rost et al. [8] introduced a
Hamiltonian-based QMC scheme that combined the virtues
of ED with a standard QMC-type solution, resulting in an im-
purity solver that scales cubically in the number of discretized
bath sites and linearly in inverse temperature. Moreover, it has
the same fermion sign performance as HF-QMC. Rost et al.
[8] demonstrated the advantages of using this type of solver
in DMFT studies of the single impurity model on a Bethe
lattice [3]. The solver still exhibits the systematic Trotter
errors characteristic of QMC methods, but, as we show below,
these can be treated by the application of a Green’s-function
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interpolation and extrapolation technique which generates a
quasi-CT solution.

The formulation of the QMC algorithm for single band
physics is described in detail in [12] and [8]. In what follows
we will be extending the method in a multiband context. For
the general case of electrons on a single impurity site which
interact both on and between 2M orbital/spin pairs (where
1 < m � 2M), the Hamiltonian is given by

H = H0
LDA +

∑
m

Ummnm↑nm↓ −
∑
mσ

μnmσ

+
∑

m<m′σ

Umm′nmσ nm′−σ

+
∑

m<m′σ

(Umm′ − Jmm′ )nmσ nm′σ (1)

where Umm = U , Jmm′ = J , and Umm′ = U − 2J for m �= m′.
Also, nmσ = c†

mσ cmσ where c(†)
mσ are the annihilation (cre-

ation) operators for electrons in orbital m with spin σ . In
this formulation there are Hubbard-like interactions between
opposite-spin electrons in the same orbitals and neighboring
orbitals, and Ising-like Hund’s coupling between same-spin
electrons on neighboring orbitals. The full Slater-Kanamori
Hamiltonian for multiorbital interactions is rotationally invari-
ant in spin space [18] and also includes “spin-flip” and “pair-
hopping” terms, which are likewise determined by ≈Jmm′ .
These interactions cannot be straightforwardly factorized into
products of quadratic operators nmσ , which is essential in any
auxiliary field QMC-based implementation. Various schemes
have been proposed to include these additional terms into
QMC formulations [18–23], but this is not wholly straight-
forward to do without introducing additional sign problems,
especially at low temperatures. To obviate such sign problems
we do not include spin-flip and pair-hopping terms in this
work, and this is a current limitation of this method. However,
future work will address this deficiency. ED and CT-QMC
approaches can handle the full Hamiltonian, and this must be
borne in mind when comparing results generated by different
multiorbital impurity solvers.

Our solver uses a multiorbital generalization of the
standard determinantal QMC procedure. For a multior-
bital interaction matrix

∑
mm′ Umm′nmnm′ the usual Hubbard-

Stratonovich transformation can be applied, i.e.,

e−Umm′�τ (nm−1/2)(nm′ −1/2) = 1

2

∑
smm′=±1

eλmm′ smm′ (nm − nm′ ), (2)

where λmm′ = acosh[e[(1/2)�τUmm′ ]] and Umm′ is one of U , (U −
2J ) or (U − 3J ), depending on which orbital/spin pair is
being considered. There is an auxiliary spin fields s for each
interorbital and intraorbital interaction.

Following conventional QMC procedure, at each imagi-
nary time slice each of the M(2M − 1) auxiliary spin fields is
flipped sequentially and then tested for acceptance or rejection
using the ratio R = RmRm′ where

Rm = 1 + {(1 − Gm)γm},
Rm′ = 1 + {(1 − Gm′ )γm′ } (3)

with γm = e2λmm′ smm′−1 and γm′ = e−2λmm′ smm′−1. If the spin flip
is accepted the Green’s function is updated according to the

standard Blankenbecler, Scalapino, and Sugar (BSS) [24]
prescription

Gj,k,m = Gj,k,m − (δ j,1 − Gj,1,m )γmG1,k,m/Rm,

Gj,k,m′ = Gj,k,m′ − (δ j,1 − Gj,1,m′ )γm′G1,k,m′/Rm′ . (4)

If the spin flip is rejected the Green’s functions remain
the same. The condition for half filling in this Hamil-
tonian is given by μ = [U + (M − 1)(U − 2J ) + (M −
1)(U − 3J )]/2.

In the exact diagonalization method [16] the infinite lattice
surrounding the impurity site is approximated by a discretized
bath of finite size Nb, and the identical procedure is followed
in this QMC solver. The first step is to parametrize the Weiss
field G0 for each orbital and spin in terms of a finite number of
bath parameters by approximating the Weiss Green’s function
in terms of a noninteracting Anderson impurity model as
follows:

G−1
And,m(iωn) = iωn + μ − εimp

m −
k=Nb∑
k=1

Vm,kV ∗
m,k

iωn − εm,k
, (5)

where k is the index for the bath level, m is the index
for each orbital/spin. Essentially, this entails minimizing the
difference between the Weiss field and Eq. (5) using a cost
function, typically

χ2[εk,Vk] =
n=nc∑
n=0

An|GAnd(iωn : {εk,Vk}) − G0(iωn)|2. (6)

In practice it has been found advisable to weight the cost
function towards smaller imaginary frequencies by using pref-
actor An ≈ 1/iω2

n. This avoids squandering fitting cost on
the asymptotic regions of the Green’s function, and has been
found particularly apposite when attempting accurate fits to
real material Green’s functions. A robust multidimensional
fitting routine was used to determine the set of εk and Vk for
each orbital, which are subsequently used to parametrize the
QMC solver. To avoid falling into local minima, multiple fits
over a wide range of initial conditions are performed and the
best fit is then selected.

Once a set of εk,Vk has been found to fit the Anderson
impurity Green’s function the QMC part of the calculation
proceeds as a standard Monte Carlo simulation for a multior-
bital context, where the imaginary time interval 0 � τ � β is
discretized into L time slices (β = L�τ ). A sufficient number
of Monte Carlo steps are run on a parallelized processor con-
figuration, and the imaginary time impurity Green’s functions
are calculated for each orbital and spin using the procedure of
White et al. [25], and Loh and Gubernatis [26].

B. DFT+DMFT implementation with CASTEP

In our implementation of DFT+DMFT the plane-wave
DFT code CASTEP was used [13]. It is a widely available
DFT code that can be readily used for calculating ab initio
material properties. Previous work with CASTEP has demon-
strated the integration of a Hubbard I solver [14] and an
ED-based solver [17] for material-specific calculations, and
what follows builds on that. The multiorbital solver described
above was integrated with CASTEP to better represent the
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electron correlation effects. Many of the issues associated
with integrating an impurity solver with a DFT code are
generic and a variety of methods have been used. Here we give
a description of our CASTEP implementation of DFT+DMFT,
and this can be compared to other approaches.

A CASTEP calculation generates a linear combination of
atomic orbital (LCAO) basis set using either norm-conserving
or ultrasoft pseudopotentials. These two cases can be dealt
with on an equal footing by defining an “overlap matrix”
S. The basis set functions generated from norm-conserving
pseudopotentials are orthogonal by construction, so the over-
lap matrix is the identity matrix. In the case of ultrasoft
pseudopotentials these states are overlapping with a matrix:

〈χm′R′ |S|χmR〉 = δm′,mδR,R′ . (7)

This implies that the Kohn-Sham (KS) equations transform
from a standard eigenvalue problem into a generalized one,

HKS
k |�k,ν〉 = Ek,νS|�k,ν〉, (8)

where �k,ν are the KS eigenstates.

C. Projectors

The standard DMFT technique is defined in terms of com-
pletely localized electronic states (e.g., as in Hubbard model).
On the other hand, in a wide class of ab initio codes, including
CASTEP, the electrons are described in terms of completely
delocalized plane-wave states. Consequently, a key feature of
the DFT+DMFT calculation is the selection of a correlated
subspace of orbitals, and the means to bridge the DFT Bloch
space basis and the basis of the correlated subspace. To do this
we define the orthonormal projectors PL,ν (k), where

PL,ν (k) = 〈χL|S|�k,ν〉. (9)

We now have two distinct spaces: (i) the KS Bloch space
indexed by k and ν, and (ii) the localized (correlated) subspace
indexed by L.

To go from χL to �k,ν , i.e., “upfolding,” we use

|ak,ν〉 =
∑

L

P∗
ν,L(k)|bL〉. (10)

Conversely, to go from �k,ν to χL, i.e., “downfolding,” we use

|bL〉 =
∑
k,ν

PL,ν (k)|ak,ν〉, (11)

where ak,ν is a vector defined in Bloch space and bL is a vector
defined in the space of correlated orbitals.

The projector matrix satisfies the following condition:

∑
k,ν

PL,ν (k)P∗
ν,L′ (k) = δL,L′ . (12)

In this scheme an upfolding operation followed by a down-
folding operation is equivalent to an identity operation. Both
the upfolding and downfolding operations are each used once
in each DMFT iteration cycle, as we now discuss.

D. DMFT cycle

To begin the DMFT iteration for SrVO3 we use CASTEP to
calculate the Bloch Green’s function,

GB
ν,ν ′ (k, iωn) = {

(iωn + μ − εk,ν )δν,ν ′ − �B
ν,ν ′ (k, iωn)

}−1
,

(13)

which is the Fourier transform F T[〈r|Ĝ|r〉], where

Ĝ(r, iωn) =
(

iωn + μ + 1

2
∇2 − νKS (r) − �B(r, iωn)

)−1

.

(14)

(An adjustment to the chemical potential μ is necessary at
this point in the cycle to ensure correct level of electron
occupancy—see Appendix A.) We now consider a correlated
atom at location R. The basis functions in the correlated
subspace are denoted by m. The local Green’s function for
the correlated sites is now obtained from the Bloch Green’s
function by downfolding and then averaging over the Brillouin
zone, as follows:

Gloc
m,m′ (iωn) = 1

Nk

∑
ν,ν ′,k

Pm,ν (k)GB
ν,ν ′ (k, iωn)P∗

ν ′,m′ (k). (15)

We now make the identification of Gloc with Gimp—so in the
DMFT impurity Dyson equation we calculate the Weiss field

[G0(iωn)]−1
m,m′ = �

imp
m,m′ (iωn) + [Gimp(iωn)]−1

m,m′ . (16)

On the first iteration we make a guess for the self-energy
(typically �imp = 0). We then parametrize the Weiss field
[G−1

0 ]m,m′ using Eq. (5) for G−1
And.

It is now possible to run the multiorbital QMC solver
(described above) to obtain a set of impurity Green’s functions
[GQMC(τ )]. Following the interpolation and extrapolation pro-
cedure (described in Sec. III), the Fourier transformed Green’s
functions are used to calculate a revised impurity self-energy,
i.e.,

�
imp
m,m′ = [G0(iωn)]−1

m,m′ − [GQMC(iωn)]−1
m,m′ . (17)

At this point it is necessary to make allowance for the “double
counting” term, V DC

m,m′ (see Appendix B), and then upfold the
impurity self-energy back to Bloch space, i.e.,

�B
ν,ν ′ (k, iωn) =

∑
m,m′

P∗
ν,m(k)

[
�

imp
m,m′ (iωn) − V DC

m,m′
]
Pm′,ν ′ (k).

(18)

The self-energy is purely local when expressed in the set
of correlated orbitals, but it acquires momentum dependence
when upfolded to the Bloch basis set. The upfolded self-
energy is returned to Eq. (13), and the iteration sequence is
continued until an acceptable level of convergence is reached
in the self-energy (or chemical potential).

System properties can also be calculated during the
DMFT iteration cycle. Of particular value are the Bloch-level
occupation matrix:

Ne = 1

Nk

∑
ν,k

∑
n

GB
ν,ν ′ (k, iωn)eiωn0+

, (19)
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the spectral density

Aν,ν ′ (k, ω) = − 1

π
ImGB

ν,ν ′ (k, ω), (20)

and the density of states (DOS)

D(ω) = 1

Nk

∑
ν,k

Aν,ν ′ (k, ω). (21)

To calculate the spectral density and DOS, the analytic con-
tinuation from imaginary (iωn) to real (ω) frequency is made
using the Padé approximation [27].

As well as our implementation here, which uses the BSS
method to update the Green’s function, a version of the
multiorbital solver code has also been implemented which
uses the Nukala et al. [28] fast updating method. The results
are identical to BSS, but the Nukala method will be better
suited to multiorbital cluster DMFT applications.

III. A QUASICONTINUOUS IMAGINARY TIME SOLUTION

The conventional QMC method calculates imaginary time
Green’s functions G(τ ) on a grid of (L) regularly spaced
τ points over the interval 0 � τ � β(= L�τ ). In DMFT
calculations this Green’s function is Fourier transformed and
then used to calculate the self-energy of the impurity problem.
However, any attempt to calculate the frequency-dependent
self-energy �(iωn) using the raw QMC Green’s functions
immediately generates two problems, both related to the fact
that the Green’s function is calculated on a discrete imaginary
time grid. First, the Trotter decomposition implies that the
resulting self-energy will be in error–to first order ∼U�τ 2.
Second, attempting to Fourier transform the Green’s function
GQMC(τ ) as it stands will introduce aliasing errors in the
transformed function GQMC(iωn). Aliasing arises from the
fact that the Fourier transform of the imaginary time Green’s
function is a periodic function in imaginary frequency with
poles at multiples of the Nyquist frequency (2πL/β). This
leads to weight being folded back into the transform from fre-
quencies above the Nyquist frequency, and generates incorrect
asymptotic behavior of GQMC(iωn).

In this section we present a multiscale Green’s-function
processing technique that simultaneously addresses these two
issues. The method interpolates a set of comparatively coarse
time-scale QMC impurity Green’s functions on to a fine-scale
τ grid (to eliminate aliasing problems), and extrapolates them
to a generate a quasicontinuous imaginary time solution for
the multiorbital impurity problem (to eliminate systematic
Trotter errors). This method generates Green’s functions and
self-energies with the correct behavior across all imaginary
frequencies that can be seamlessly integrated into the DMFT
iteration cycle.

Splining procedures (with and without quasi-CT extrapo-
lation) have been used previously to process imaginary time
Green’s functions so they can be used in DMFT calcula-
tions [8]. In real material calculations the imaginary time
Green’s function can substantially change its magnitude over
the space of few imaginary time intervals, �τ . For strong
electron interactions and low temperature, this behavior can
be particularly acute. Because of this care must be taken when
interpolating and extrapolating Green’s functions so as not

to inadvertently incorporate spurious processing pathologies
into calculated Green’s functions. Moreover, QMC methods
generate noisy data which can cause additional challenges
for splining schemes, so here we describe a Green’s function
splining and extrapolation scheme which is robust and can fit
noisy data before generating a quasicontinuous time solution
to the DMFT Hamiltonian. As we will show subsequently, it
is straightforward to integrate this scheme into a full material-
specific DFT+DMFT calculation.

A. Polynomial basis method

One way to reduce the systematic error introduced by the
Trotter decomposition is to simply reduce �τ by increasing
the number of imaginary time steps L. However, the price for
an increasingly accurate representation of G(τ ) is a signifi-
cantly more computationally intensive QMC calculation. For
example, the ubiquitous Hirsch-Fye solver scales as ∼L3.

The objective of our Green’s-function processing protocol
is to demonstrate that by using a polynomial basis interpo-
lation for GQMC(τ ), and an extrapolation scheme, we can
perform QMC calculations on multiple, relatively coarse,
imaginary time grids to generate a quasicontinuous imaginary
time solution.

We expand G(τ ) in an arbitrary orthogonal polynomial
basis P(k)

i [x(τ )] (e.g., Legendre, Chebyshev, etc.) where i
is the polynomial order, k is the polynomial species, and
x(τ ) = 2τ

β
− 1 is the transformation from [−1,+1] to [0, β].

The expansion is

G(k)(τ ) =
∑
i�0

P(k)
i [x(τ )]G(k)

i . (22)

To isolate the basis coefficients we apply the orthogonality
constraints obeyed by the polynomials, i.e.,

∫ β

0
dτG(k)(τ )P(k)

i′ [x(τ )]W [x(τ )]

=
∫ β

0
dτP(k)

i [x(τ )]P(k)
i′ [x(τ )]W [x(τ )]G(k)

i . (23)

The general orthogonality condition obeyed by the family of
polynomials P(k)

i [x(τ )] is

∫ β

0
dτP(k)

i [x(τ )]P(k)
i′ [x(τ )]W [x(τ )] = W̃ (i)δi,i′ , (24)

and so the basis coefficients can be calculated as

G(k)
i = 1

W̃ (τ )

∫ β

0
dτG(k)(τ )P(k)

i [x(τ )]W [x(τ )]. (25)

Here we restrict our analysis only to the Legendre polyno-
mials, where W (τ ) = 1 and W̃ (i) = 1

2i+1 .
Calculating Gi allows us to express G(τ ) on an arbitrarily

fine imaginary time grid.
It is imperative to first obtain a reliable representation of

G(τ ) in the Legendre basis. To achieve this, it is possible to
formulate a controlled fitting procedure that uses the Legendre
basis coefficients gl as parameters to be adjusted to the raw
QMC data.
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B. Green’s-function fitting procedure

Expressing G(τ ) in the Legendre basis allows a fitting pro-
cedure to be formulated, which amounts to the minimization
of the function

min{gl }
[
GQMC(τ ) − G{gl }

FIT (τ )
]
, (26)

where the fitted (model) function G{gl }
FIT (τ ) is parametrized by

the basis coefficients gl , i.e.,

G{gl }
FIT (τ ) =

Nl∑
l�0

√
2l + 1

β
Pl [x(τ )]gl . (27)

It is straightforward to find G{Gl }
FIT (τ ) using the conjugate

gradient method, and since Nl (the number of Legendre co-
efficients) is generally quite modest. In our case because Nl ≈
20, this procedure is exceptionally computationally efficient.
Moreover, by shifting the paradigm of dealing with a statis-
tical problem, i.e., Monte Carlo, to that of an optimization
one allows the advantage of including a priori information.
This strategy becomes particularly attractive when dealing
with unrefined QMC data on exceedingly coarse imaginary
time grids. In this respect, the Legendre basis proves to be an
extremely useful tool for two outstanding reasons; the first is
its simple relationship to the moments of the GQMC(iωn), and
the second is due to the convergence properties of gl in the
kernel polynomial method (KPM) [29]. The final significant
constraint that can be imposed on the parameters gl in an
a priori fashion is the convexity of G(τ ). We now discuss
how incorporating this additional information on GFIT(τ ) can
reliably improve its accuracy.

In many-body calculations it is essential that the Green’s-
function solutions have the correct high-frequency tail. Often
the high-frequency tail, which has a 1/iωn behavior, is fitted
onto the low-frequency result. However, in the Legendre
basis there is an exact relationship between the moments of
the Green’s function and the Legendre coefficients [30]. By
introducing a set of Lagrange parameter penalty terms into
Eq. (26) information on the tail can be included into the fit,
thereby eliminating the need for an ad hoc fit of the tail. The
term added to Eq. (26) to ensure the correct high-frequency
tail asymptotic behavior is

λ1

⎛
⎝c1 +

∑
l�0,even

2
√

2l + 1

β
gl

⎞
⎠

+ λ2

⎛
⎝c2 −

∑
l�0,odd

2
√

2l + 1

β2
gl l (l + 1)

⎞
⎠, (28)

where λ1 is the Lagrange parameter controlling the first
moment c1, and λ2 is the Lagrange parameter controlling the
second moment c2. The inclusion of the two Lagrange penalty
terms relies on knowing the values for c1 and c2 for G(iωn)
before the fit is performed. Fortunately, for c1 it is known
that in the high-frequency limit of GQMC(iωn), it behaves as
1/(iωn), and therefore c1 = 1. The equivalent considerations
for c2 are somewhat more involved, but it can be shown that

c2 = μ − ε + �′(∞), (29)

where μ is the chemical potential, ε is the impurity level,
and �′(∞) is the high-frequency real asymptotic self-energy
of an isolated impurity. �′(∞) is attainable by solving the
Anderson impurity model with a finite set of bath orbitals; for
simplicity, this can be achieved using an ED solver [17], or
Hubbard I solver [3].

It is an unavoidable fact that the truncation of a function
in any polynomial basis that is, in principle, infinite can lead
to convergence issues. In the case where there are nondif-
ferentiable points or singularities it is especially problematic
and can lead to the well established Gibbs oscillations. The
severity of the oscillations near these ill-defined points can
be damped by the introduction of a kernel kl in Eq. (27)
such that gl → klgl . The process of truncating this series and
modifying the basis coefficients amounts to convolving G(τ )
with a kernel kl . Since G(τ ) is continuously differentiable
(except at its boundaries) it is possible to pick a kernel that
will guarantee this behavior, and in the process filter out any
spurious noise. In this work, we concern ourselves only with
the kernels of Dirichlet and Jackson.

C. Green’s-function extrapolation for �τ2 scaling

Representing G(τ ) in a polynomial basis is the first stage in
the two-step quasicontinuous method by generating an accu-
rate parametrization of the raw QMC Green’s functions on an
imaginary time grid of arbitrary resolution. The second step
is the systematic removal of the Trotter error by engineering
a well defined extrapolation procedure of the Legendre basis
coefficients on different Green’s functions Gλ(τ ), where λ is
the imaginary time grid index, related to �τλ = β/Nλ, with
Nλ being the number of imaginary time points.

The procedure begins with defining a measure of error on
each grid and time point, i.e., Fλ(τi ) such that

Fλ(τi ) =
Np∑

l=1

[
gλ

l − Tl
]
Pl [x(τi )] = α(τi )�τ 2

λ , (30)

where Tl are Legendre basis coefficients of quasicontinu-
ous Green’s function GQC-QMC(τ ), absent of the systematic
Trotter error. The α(τi ) are the scaling coefficients of each
imaginary time point.

The motivation for defining such an object is that we would
like to find the set of coefficients {gλQC

l } such that FλQC (τi ) =
0. To find this set of coefficients we define the following
minimization problem:

minTl ,α(τi )[F
λ(τi ) − α(τi )�τ 2], (31)

over the completely continuous target parameters Tl and scal-
ing coefficients α(τi ). It is possible to simplify this procedure
by introducing the matrix Aλ(τi ) such that

Aλ(τi ) =
Np∑

l=1

[
gλ

l − Tl
]

�τ 2
i

= α(τi ), (32)

and noticing that across each grid λ Aλ(τi ) remains un-
changed. As a result, it is possible to map the minimization
problem of Eq. (31) to that of a simpler one,

minTl

∣∣∣∣ Aλ(τi )

Aλ−1(τi )
− 1

∣∣∣∣, (33)
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that is simply a minimization with respect to the target param-
eters Tl and not the scaling coefficients α(τi ).

Of critical importance in generating a controlled estimate
of the high-frequency tails of GQC-QMC(iωn), and thus also
�QC-QMC(iωn), is the implementation of the additional con-
straint on the second moment of GQC-QMC(iωn), as discussed
earlier. In principle, it is only sensible to add this constraint
here, at the level of the Green’s function without any system-
atic error, since GQC-QMC(iωn) truly represents a physically
relevant object while the Gλ(iωn) are inherently nonphysical.

IV. APPLICATION TO SrVO3

A. DFT+DMFT for SrVO3

In this section we integrate the three main components of
our DFT+DMFT scheme: the CASTEP DFT code, the multior-
bital QMC-based solver, and the quasicontinuous imaginary
time Green’s-function processing protocol.

We apply this scheme to a full iterated DFT+DMFT
calculation of SrVO3 properties, and, where relevant, show
comparison calculations made using the TRIQS CT-HYB
solver.

The lack of any structural or magnetic phase-transition be-
havior over a broad temperature range makes the metallic tran-
sition metal oxide SrVO3 an ideal test material against which
to benchmark our CASTEP first-principles DFT+DMFT tech-
nique. There have been previous experimental and theoretical
investigations of this material (using a variety of flavors of
DFT+DMFT) against which results using our DFT+DMFT
scheme can be compared [31–34]. These studies highlight
the necessity to explicitly account for electron correlation
when calculating material properties, beyond those given by
basic one-particle LDA. SrVO3 has a perovskite structure with
completely occupied oxygen 2p bands, and partially occupied
vanadium 3d bands.

B. Calculation of SrVO3 Green’s functions and self-energies

A basic electronic structure calculation for SrVO3 was
carried out in CASTEP. SrVO3 has a perovskite unit cell (space
group of crystal = 221: Pm-3m, -P 4 2 3) with lattice param-
eters a = b = c = 3.8421 Å [34], giving a unit-cell volume

V = 56.72Å
3
. We have used a 20 × 20 × 20 Monkhorst-Pack

k-point grid, with 550 irreducible k points. The pseudopo-
tentials for all three elements Sr, V, and O were taken from
the C17 CASTEP set, and the plane-wave basis cutoff was
automatically determined to be 653.07 eV. The calculations
were performed at a temperature T = 0.1 eV (β = 10 eV−1).

Figure 1 shows the LDA band structure and DOS calcu-
lation for SrVO3 obtained from CASTEP. The DOS for O(2p)
and V(3d ) orbitals are shown, along with the total DOS. There
is an isolated set of three partially occupied bands around the
Fermi level, which originate mainly from the triply degenerate
vanadium t2g orbitals, (dxy, dxz, dyz ). The contribution from
V(eg) and O(2p) orbitals is minimal in the vicinity of ε f .

Particularizing our QMC solver to the three vanadium t2g −
d orbitals, M = 3, gives μ = 5U/2 − 5J , and M(2M − 1) =
15 auxiliary fields are required for the multiorbital quantum
Monte Carlo simulation.
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FIG. 1. Upper panel: The corresponding metallic DOS for per-
ovskite SrVO3 from CASTEP LDA. Lower panel: CASTEP LDA band
structure for perovskite SrVO3. The isolated set of three partially
occupied bands around the Fermi level (blue line) are formed from
the almost triply degenerate vanadium t2g orbitals, (dxy, dxz, dyz ).

Previous studies with ED-like solvers have used <5 bath
levels to parametrize the Weiss field [8,35] at inverse tem-
peratures of β ≈ 10. In our calculation we set the number of
bath levels Nb = 5. The QMC solver can in fact deal with a
large number of bath orbitals, and test calculations with Nb

as great as 9 showed no significant change to the accuracy of
the impurity Green’s function at this temperature. It should
be noted that the computational load of the QMC simulation
scales as ∝ N3

b β [12]. Furthermore the fitting error of the
parametrized Weiss field can be systematically controlled and
in this calculation was of the order of 10−6.

The results of the impurity QMC Green’s function are
shown in Fig. 2(a) for the first iteration of the DMFT calcu-
lation for SrVO3 across the interval 0 � τ � β. Two QMC
Green’s functions are shown for one of the t2g − d orbitals for
imaginary time discretizations L = 50 and L = 80, along with
fits to these functions using the method described in Sec. III.
The parameters chosen for this calculation are U = 4, J = 0,
and β = 10, and match those used in other DFT+DMFT
studies of SrVO3. That said techniques such as constrained-
RPA have been successfully used to give ab initio estimates
of model parameters for this kind of application [36]. The
effect of the Trotter error is evident, and in Fig. 2(b) a
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FIG. 2. BSS-QMC impurity Green’s functions for a selected
t2g SrVO3 orbital at U = 4, J = 0, T = 0.1 on successive discrete
imaginary time grids for the first DMFT iteration. The extrapolation
of the fitted functions, which use Nl = 22 Legendre polynomials, to
�τ → 0 is shown. Also included is the CT-QMC result, which is
free of Trotter error. The extrapolation procedure is using the data
obtained at respectively L = 50, 60, 70, 80.

detailed portion of the Green’s function is shown, along with
the Green’s function that results from our integrated fitting
and extrapolation procedure. In this example a set of grids
L = 50, 60, 70, 80 were used. However identical results are
also seen when using either L = 50, 60, 70 or L = 60, 70, 80,
for instance. Additionally, a minimum of Nl = 22 Legendre
polynomials are needed to correctly express G(τ ) across
the interval, but especially so near the boundaries where its
derivative is larger. For comparison, the equivalent TRIQS
CT-QMC result is also shown, and the agreement between the
two results can be readily observed. This demonstrates that the
QMC solver combined with our interpolation-extrapolation
method is capable of generating quasicontinuous time solu-
tions to the impurity problem.

To test the method further, an additional calculation was
performed for U = 8, J = 0.65 and β = 10. Figure 3(a)
shows the Green’s functions and their fits for the same time
discretizations as before, illustrating the enhanced Trotter
error for this larger U value. In Fig. 3(b) a comparison with the
extrapolated Green’s function with a QMC calculation for L =
200 is shown. It is expected that the quasicontinuous solution
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FIG. 3. BSS-QMC impurity Green’s functions for a selected t2g
SrVO3 orbital at U = 8, J = 0.65, T = 0.1.

will be very close to the very fine-scale (but computationally
demanding) QMC calculation, and this is indeed the case.

The next step is the calculation of the self-energy, which
involves Fourier transforming the Green’s function from τ to
iωn, i.e.,

�(iωn) = G−1
0 (iωn) − G−1

QMC(iωn), (34)

where G−1
QMC is the inverse of the calculated quasicontinuous

time Green’s function. Figure 4 shows the self-energy result
for the first DMFT iteration for a set of different L values at
U = 8, J = 0.65, β = 10. The extrapolated result, for both
the real [Fig. 4(a)] and imaginary [Fig. 4(b)] parts, is a close
match to the fine-scale QMC calculation. Clearly, discretiza-
tion of the imaginary time interval has a significant effect of
self-energies.

In Fig. 5 the self-energy calculations are now taken to
full DMFT convergence. It is not computationally feasible
to perform a fully converged self-consistent calculation using
an imaginary time discretization of L = 200. As justified in
Fig. 4, by extrapolating a finite set of coarse discrete time
grids it is, however, possible to replicate the continuous result
with this method. Therefore, it is possible to converge the
calculation using a subset of successively coarse grids that
achieve the same accuracy as that of the more expensive fine
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FIG. 4. The DMFT self-energy at U = 8, J = 0.65, and T = 0.1
in the limit of �τ → 0 for the first DMFT iteration. The excellent
agreement of the extrapolated data in both real and imaginary parts
with the L = 200 result is a consequence of the systematic nesting
of the coarse-grid set of discrete BSS-QMC results, their fitting, and
subsequent extrapolation.

grid calculation. We see that after three iterations the DMFT
converges, as SrVO3 is relatively weakly correlated.

The QMC solver and its associated quasicontinuous time
protocol can be straightforwardly applied to ever-larger values
of electron correlation. In Fig. 6 calculations are shown for
U = 12, J = 0.65, β = 10. For this large U value the Trotter
error on the Green’s-function calculation is non-negligible.
For one of the orbitals, Fig. 6(a) shows the raw QMC Green’s
function (with interpolations), along with an extrapolation
to quasicontinuous time. Figure 6(b) shows that at this sig-
nificant level of correlation the Trotter error is dramatically
enhanced in contrast to smaller values of U . As a result, it is
necessary to extrapolate with a finer set of discrete grids, i.e.,
L = 80, 90, 100, while also increasing the size of the Legen-
dre basis to Nl = 28 polynomials. In doing so, it is possible
to recover the correct form of the extrapolation scaling and
therefore remove the nontrivial Trotter error induced by such
strong interactions.

We conclude this section with some observations on the
comparative computational efficiency of the TRIQS CT-QMC
solver and the quasi-CT BSS-QMC solver method described
above, using U = 4, J = 0 at β = 10.
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FIG. 5. The self-energy during a self consistent DMFT cycle
of a selected t2g SrVO3 orbital at U = 8, J = 0.65, and T = 0.1.
SrVO3 is weakly correlated with a small quasiparticle weight, and it
converges after five iterations.

Figure 7(a) compares the BSS-QMC calculation method
run for 20 core hours to the 100 core hour CT-QMC(TRIQS)
result. A factor 5 times speedup generates a smooth Green’s
function of comparable accuracy to the TRIQS result. Fig-
ure 7(b) shows that the very small residual difference between
these two results is resolved by using a BSS-QMC calculation
of 50 core hours.

The BSS-QMC calculations shown here use imaginary
time grids of L = 50, 60, 70 and 80 time slices, with Nl = 22
Legendre fitting polynomials. To make a comparison, the
CT-QMC was run to achieve sufficient statistics to be of com-
parable accuracy to the BSS-QMC result: these calculations
used 104 imaginary time points with a binning of 200, for 106

update steps, for ∼100 core hours.
In Fig. 8 we run an even faster BSS-QMC calculation

using a grid of L = 40, 50, 60, and 70 imaginary time slices,
with Nl = 12 Legendre fitting polynomials, which takes eight
core hours. This represents more than an order-of-magnitude
speedup compared with TRIQS to achieve a comparable
result.

The computational advantage of the solver described in this
paper will be further enhanced at lower temperatures due to
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FIG. 6. Upper panel: BSS-QMC impurity Green’s function in the
strongly interacting limit of U = 12, J = 0.65, and T = 0.1. Lower
panel: The relative separation of the successive grids is indicative of
the severe systematic Trotter error present in BSS-QMC calculations
for large values of U . Using the quasicontinuous orthogonal poly-
nomial method, by extrapolating respectively the L = 80, 90, 100
grids with Nl = 28 Legendre polynomials, illustrates how it can be
remedied by comparing with the approximately continuous L = 200
data.

the advantageous temperature scaling of the method over the
CT-QMC approach.

V. CONCLUSIONS

In recent years the DFT+DMFT framework has emerged
as a powerful and effective procedure for undertaking ab
initio calculations of the properties of real materials when
electron correlation effects are a significant influence. The
method builds on the well-established capabilities of DFT,
while seeking to enhance the way the electron correlation
problem is addressed by utilizing a quantum many-body
physics approach.

A big step towards demonstrating the full potential of the
DFT+DMFT scheme would be to attempt fully charge self-
consistent calculations for many more materials. However, to
do this requires computationally efficient and accurate quan-
tum impurity solvers that work over a very broad range of pa-
rameters. The work presented in this paper presents one possi-
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FIG. 7. Upper panel: Comparison of CT-QMC and BSS-QMC
impurity Green’s functions over the full imaginary time range. Lower
panel: Detail of the Green’s function showing the comparison of a 50
core hour calculation with the CT-QMC result.

ble implementation of a QMC-based solver that addresses this
need. Additionally, applications such as the calculation of ma-
terial equations of state, where many repeated DFT+DMFT
calculations are needed, also require very fast and accurate
QMC solvers. The solver we have presented here has the
advantage of scaling linearly in inverse temperature, and
moreover provides a quasicontinuous imaginary time solu-
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FIG. 8. A calculation comparable with TRIQS can be achieved
an order of magnitude faster using the BSS-QMC solver.
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tion. We have integrated the solver with the popular DFT code
CASTEP, thus opening the way to fully charge self-consistent
calculations on real materials. Though the validation
of this approach has been done here against SrVO3 it will
be of particular value when used in the more challenging
context of modeling the properties of f -band materials, and
particularly for calculating materials’ equations of state where
the availability of an accurate and computationally efficient
solver will be essential.
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APPENDIX A: UPDATING THE CHEMICAL POTENTIAL

During each cycle in the DMFT iteration it is necessary
to adjust the chemical potential in the Bloch Green’s function
[Eq. (13)] in order to maintain the overall correct number of
electrons. Essentially, at each iteration a value of μ is sought
that ensures the constancy of the overall electron occupancy,
Eq. (19). A search algorithm employing the Brent method [37]
is used to fix μ.

APPENDIX B: DOUBLE-COUNTING CORRECTION

CASTEP calculations already include a partial representa-
tion of electron correlation effects through the DFT exchange-
correlation potential. In order not to count the contribution
due to electron correlation twice the first step is to subtract
the effect of the DFT potential through the “double counting”
approximation.

Double counting is not unambiguously resolved in
DFT+DMFT, and there is no incontestable way to per-
form this correction. In CASTEP there is a choice of three
double counting corrections: (i) fully localized limit (FLL);
(ii) around mean-field limit; and (iii) Held’s correction
[3,14,38,39]. A selection can be made according to the mod-
eling context. Taking each in turn:

(i) FLL. In this approximation it is assumed that an orbital
occupation is either 0 or 1, i.e., empty or full. Denoting Nσ =∑

m nmσ , Ntot = ∑
σ Nσ and taking an average value for U and

J as follows:

Uavg = U = 1

(2l + 1)2

∑
m,m′

Umm′

and

Uavg − Javg = U − J = 1

2l (l + 1)

∑
m,m′

(Umm′ − Jmm′ ),

the double counting is found to be

EDC = 1

2
UNtot(Ntot − 1) − 1

2
J

∑
σ

Nσ (Nσ − 1).

Differentiating with respect to Nσ gives

V DC
σ = U

(
Ntot − 1

2

)
− J

(
Nσ − 1

2

)
.

This approximation is better suited to insulating systems.
(ii) AMF. Here it is assumed that the average occupation of

an orbital (nmσ ) is independent of m, so that

nmσ = nσ ≡ Nσ

2l + 1
,

where Nσ is the total occupation of the impurity site (with spin
σ ) and l orbitals. The double-counting energy is given by

EDC = Un↑n↓ + 2l

2l + 1

U − J

2
(n2

↑ + n2
↓)

and the potential by

VDC = U

(
Ntot − nσ

2l + 1

)
− J

(
nσ − nσ

2l + 1

)
.

This approximation is better suited to metallic systems.
(iii) Held’s correction. In this approximation an average

Coulomb repulsion Uav is introduced as follows:

Uav = U + (l − 1)(U − 2J ) + (l − 1)(U − 3J )

2l − 1
,

where l is the degeneracy of the shell. The double counting
and associated potential is given as

EDC = UavNtot(Ntot − 1)

2

and

V DC
σ = Uav

(
Ntot − 1

2

)
.

[1] F. Giustino, Materials Modelling using Density Functional
Theory: Properties and Predictions (Oxford University Press,
Oxford, 2014).

[2] J. M. Tomczak, P. Liu, A. Toschi, G. Kresse, and K. Held,
Merging GW with DMFT and non-local correlations beyond,
Eur. Phys. J.: Spec. Top. 226, 2565 (2017).

[3] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Dynamical mean-field theory of strongly correlated fermion

systems and the limit of infinite dimensions, Rev. Mod. Phys.
68, 13 (1996).

[4] A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Continuous-
time quantum Monte Carlo method for fermions, Phys. Rev. B
72, 035122 (2005).

[5] P. Werner, A. Comanac, L. de Medici, M. Troyer, and A. J.
Millis, Continuous-Time Solver for Quantum Impurity Models,
Phys. Rev. Lett. 97, 076405 (2006).

205156-11

https://doi.org/10.1140/epjst/e2017-70053-1
https://doi.org/10.1140/epjst/e2017-70053-1
https://doi.org/10.1140/epjst/e2017-70053-1
https://doi.org/10.1140/epjst/e2017-70053-1
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevB.72.035122
https://doi.org/10.1103/PhysRevB.72.035122
https://doi.org/10.1103/PhysRevB.72.035122
https://doi.org/10.1103/PhysRevB.72.035122
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/PhysRevLett.97.076405


SHERIDAN, WEBER, PLEKHANOV, AND RHODES PHYSICAL REVIEW B 99, 205156 (2019)

[6] P. Werner and A. J. Millis, Hybridization expansion impu-
rity solver: General formulation and application to Kondo
lattice and two-orbital models, Phys. Rev. B 74, 155107
(2006).

[7] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M.
Troyer, and P. Werner, Continuous-time Monte Carlo methods
for quantum impurity models, Rev. Mod. Phys. 83, 349 (2011).

[8] D. Rost, F. Assaad, and N. Blumer, Quasi-continuous-time
impurity solver for the dynamical mean field theory with linear
scaling in the inverse temperature, Phys. Rev. E 87, 053305
(2013).

[9] S. Mehta, G. D. Price, and D. Alfé, Ab-initio thermodynamics
and phase diagram of solid magnesium: A comparison of the
LDA and GGA, J. Chem. Phys. 125, 194507 (2006).

[10] E. R. Ylvisaker, DFT and DMFT: Implementations and Ap-
plications to the Study of Correlated Materials. Ph.D. thesis,
University of California, Davis, 2008.

[11] A. K. McMahan, Combined local-density and dynamical mean
field theory calculations for the compressed lanthanides Ce, Pr
and Nd, Phys. Rev. B 72, 115125 (2005).

[12] E. Khatami, C. R. Lee, Z. J. Bai, R. T. Scalettar, and M.
Jarrell, Cluster solver for dynamical mean-field theory with
linear scaling in inverse temperature, Phys. Rev. E 81, 056703
(2010).

[13] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J.
Probert, K. Refson, and M. C. Payne, First principles methods
using CASTEP, Z. Kristallogr. 220, 567 (2005).

[14] E. Plekhanov, P. Hasnip, V. Sacksteder, M. Probert, S. J. Clark,
K. Refson, and C. Weber, Many-body renormalisation of forces
in f -materials, Phys. Rev. B 98, 075129 (2018).

[15] R. R. dos Santos, Introduction to Monte Carlo simulations for
fermionic systems, Braz. J. Phys. 33, 36 (2003).

[16] M. Caffarel and W. Krauth, Exact Diagonalisation Approach
to correlated Fermions in Infinite Dimensions: Mott Transition
and Superconductivity, Phys. Rev. Lett. 72, 1545 (1994).

[17] C. Weber, A. Americci, M. Capone, and P. B. Littlewood,
Augmented hybrid exact-diagonalization solver for dynamical
mean field theory, Phys. Rev. B 86, 115136 (2012).

[18] S. Sakai, R. Arita, K. Held, and H. Aoki, Quantum Monte Carlo
study for multiorbital systems with preserved spin and orbital
rotational symmetries, Phys. Rev. B 74, 155102 (2006).

[19] S. Sakai, R. Arita, and H. Aoki, Numerical algorithm for the
double-orbital Hubbard model: Hund-coupled pairing symme-
try in the doped case, Phys. Rev. B 70, 172504 (2004).

[20] J. E. Han, Spin-triplet s-wave local pairing induced by Hund’s
rule coupling, Phys. Rev. B 70, 054513 (2004).

[21] Y. Motome and M. Imada, A Quantum Monte Carlo Method
and Its Applications to Multi-Orbital Hubbard Models, J. Phys.
Soc. Jpn. 66, 1872 (1997).

[22] Y. Motome and M. Imada, Numerical Study for the Ground
State of Multi-Orbital Hubbard Models, J. Phys. Soc. Jpn. 67,
3199 (1998).

[23] K. Held and D. Vollhardt, Microscopic conditions favoring
itinerant ferromagnetism: Hund’s rule coupling and orbital de-
generacy, Eur. Phys. J. B 5, 473 (1998).

[24] R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Monte Carlo
calculations of coupled boson-fermion systems I, Phys. Rev. D
24, 2278 (1981).

[25] S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh,
J. E. Gubernatis, and R. T. Scalettar, Numerical study of
the two-dimensional Hubbard model, Phys. Rev. B 40, 506
(1989).

[26] E. Y. Loh and J. E. Gubernatis, Stable numerical simulations of
models of interacting electrons in condensed matter physics, in
Electronic Phase Transitions, edited by W. Hanke and Yu. V.
Kopaev (Elsevier Science Publishers B.V., 1992).

[27] H. J. Vidberg and J. W. Serene, Solving the Eliashberg equa-
tions by means of N-point Padé approximants, J. Low Temp.
Phys. 29, 179 (1977).

[28] P. K. V. V. Nukala, T. A. Maier, M. S. Summers, G. Alvarez,
and T. C. Shulthess, Fast update algorithm for the quantum
Monte Carlo simulation of the Hubbard model, Phys. Rev. B
80, 195111 (2009).

[29] A. Weiße, G. Wellein, A. Alvermann, and H. Fehske, The kernel
polynomial method, Rev. Mod. Phys. 78, 275 (2006).

[30] L. Boehnke, H. Hafermann, M. Ferrero, F. Lechermann,
and O. Parcollet, Orthogonal polynomial representation of
imaginary time Green’s functions, Phys. Rev. B 84, 075145
(2011).

[31] V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, I. A.
Nekrasov, Z. V. Pchelkina, J. W. Allen, S.-K. Mo, H.-D. Kim,
P. Metcalf, S. Suga, A. Sekiyama, G. Keller, I. Leonov, X. Ren,
and D. Vollhardt, Full orbital calculation scheme for materials
with strongly correlated electrons, Phys. Rev. B 71, 125119
(2005).

[32] I. A. Nekrasov, G. Keller, D. E. Kondakov, A. V. Kozhevnikov,
T. Pruschke, K. Held, D. Vollhardt, and V. I. Anisimov, Com-
parative study of correlation effects in CaVO3 and SrVO3,
Phys. Rev. B 72, 155106 (2005).

[33] F. Lechermann, A. Georges, A. Poteryaev, S. Biermann, M.
Posternak, A. Yamasaki, and O. K. Anderson, Dynamical mean-
field theory using Wannier functions: A flexible route to elec-
tronic structure calculations of strongly correlated materials,
Phys. Rev. B 74, 125120 (2006).

[34] B. Amadon, F. Lechermann, A. Georges, F. Jollet, T. O.
Wehling, and A. I. Lichtenstein, Plane-wave based electronic
structure calculations for correlated materials using dynamical
mean-field theory and projected local orbitals, Phys. Rev. B 77,
205112 (2008).

[35] A. Liebsch and H. Ishada, Temperature and bath size in exact di-
agonalisation dynamical mean-field theory, J. Phys.: Condens.
Matter 24, 053201 (2012).

[36] F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Bierman,
and A. I. Lichtenstein, Frequency-dependent local interac-
tions and low-energy effective models from electronic structure
calculations, Phys. Rev. B 70, 195104 (2004).

[37] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes in FORTRAN: The Art of Scientific
Computing, 2nd ed. (Cambridge University Press, NY, USA,
1992).

[38] K. Held, Electronic structure calculations using dynamical
mean field theory, Adv. Phys. 56, 829 (2007).

[39] E. Pavarini, Mott transition: DFT+U vs DFT+DMFT, Autumn
School on Correlated Electrons: The Physics of Correlated
Insulators, Metals, and Superconductors (Forschungszentrum
Jülich, 2017).

205156-12

https://doi.org/10.1103/PhysRevB.74.155107
https://doi.org/10.1103/PhysRevB.74.155107
https://doi.org/10.1103/PhysRevB.74.155107
https://doi.org/10.1103/PhysRevB.74.155107
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/PhysRevE.87.053305
https://doi.org/10.1103/PhysRevE.87.053305
https://doi.org/10.1103/PhysRevE.87.053305
https://doi.org/10.1103/PhysRevE.87.053305
https://doi.org/10.1063/1.2374892
https://doi.org/10.1063/1.2374892
https://doi.org/10.1063/1.2374892
https://doi.org/10.1063/1.2374892
https://doi.org/10.1103/PhysRevB.72.115125
https://doi.org/10.1103/PhysRevB.72.115125
https://doi.org/10.1103/PhysRevB.72.115125
https://doi.org/10.1103/PhysRevB.72.115125
https://doi.org/10.1103/PhysRevE.81.056703
https://doi.org/10.1103/PhysRevE.81.056703
https://doi.org/10.1103/PhysRevE.81.056703
https://doi.org/10.1103/PhysRevE.81.056703
https://doi.org/10.1524/zkri.220.5.567.65075
https://doi.org/10.1524/zkri.220.5.567.65075
https://doi.org/10.1524/zkri.220.5.567.65075
https://doi.org/10.1524/zkri.220.5.567.65075
https://doi.org/10.1103/PhysRevB.98.075129
https://doi.org/10.1103/PhysRevB.98.075129
https://doi.org/10.1103/PhysRevB.98.075129
https://doi.org/10.1103/PhysRevB.98.075129
https://doi.org/10.1590/S0103-97332003000100003
https://doi.org/10.1590/S0103-97332003000100003
https://doi.org/10.1590/S0103-97332003000100003
https://doi.org/10.1590/S0103-97332003000100003
https://doi.org/10.1103/PhysRevLett.72.1545
https://doi.org/10.1103/PhysRevLett.72.1545
https://doi.org/10.1103/PhysRevLett.72.1545
https://doi.org/10.1103/PhysRevLett.72.1545
https://doi.org/10.1103/PhysRevB.86.115136
https://doi.org/10.1103/PhysRevB.86.115136
https://doi.org/10.1103/PhysRevB.86.115136
https://doi.org/10.1103/PhysRevB.86.115136
https://doi.org/10.1103/PhysRevB.74.155102
https://doi.org/10.1103/PhysRevB.74.155102
https://doi.org/10.1103/PhysRevB.74.155102
https://doi.org/10.1103/PhysRevB.74.155102
https://doi.org/10.1103/PhysRevB.70.172504
https://doi.org/10.1103/PhysRevB.70.172504
https://doi.org/10.1103/PhysRevB.70.172504
https://doi.org/10.1103/PhysRevB.70.172504
https://doi.org/10.1103/PhysRevB.70.054513
https://doi.org/10.1103/PhysRevB.70.054513
https://doi.org/10.1103/PhysRevB.70.054513
https://doi.org/10.1103/PhysRevB.70.054513
https://doi.org/10.1143/JPSJ.66.1872
https://doi.org/10.1143/JPSJ.66.1872
https://doi.org/10.1143/JPSJ.66.1872
https://doi.org/10.1143/JPSJ.66.1872
https://doi.org/10.1143/JPSJ.67.3199
https://doi.org/10.1143/JPSJ.67.3199
https://doi.org/10.1143/JPSJ.67.3199
https://doi.org/10.1143/JPSJ.67.3199
https://doi.org/10.1007/s100510050468
https://doi.org/10.1007/s100510050468
https://doi.org/10.1007/s100510050468
https://doi.org/10.1007/s100510050468
https://doi.org/10.1103/PhysRevD.24.2278
https://doi.org/10.1103/PhysRevD.24.2278
https://doi.org/10.1103/PhysRevD.24.2278
https://doi.org/10.1103/PhysRevD.24.2278
https://doi.org/10.1103/PhysRevB.40.506
https://doi.org/10.1103/PhysRevB.40.506
https://doi.org/10.1103/PhysRevB.40.506
https://doi.org/10.1103/PhysRevB.40.506
https://doi.org/10.1007/BF00655090
https://doi.org/10.1007/BF00655090
https://doi.org/10.1007/BF00655090
https://doi.org/10.1007/BF00655090
https://doi.org/10.1103/PhysRevB.80.195111
https://doi.org/10.1103/PhysRevB.80.195111
https://doi.org/10.1103/PhysRevB.80.195111
https://doi.org/10.1103/PhysRevB.80.195111
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1103/PhysRevB.84.075145
https://doi.org/10.1103/PhysRevB.84.075145
https://doi.org/10.1103/PhysRevB.84.075145
https://doi.org/10.1103/PhysRevB.84.075145
https://doi.org/10.1103/PhysRevB.71.125119
https://doi.org/10.1103/PhysRevB.71.125119
https://doi.org/10.1103/PhysRevB.71.125119
https://doi.org/10.1103/PhysRevB.71.125119
https://doi.org/10.1103/PhysRevB.72.155106
https://doi.org/10.1103/PhysRevB.72.155106
https://doi.org/10.1103/PhysRevB.72.155106
https://doi.org/10.1103/PhysRevB.72.155106
https://doi.org/10.1103/PhysRevB.74.125120
https://doi.org/10.1103/PhysRevB.74.125120
https://doi.org/10.1103/PhysRevB.74.125120
https://doi.org/10.1103/PhysRevB.74.125120
https://doi.org/10.1103/PhysRevB.77.205112
https://doi.org/10.1103/PhysRevB.77.205112
https://doi.org/10.1103/PhysRevB.77.205112
https://doi.org/10.1103/PhysRevB.77.205112
https://doi.org/10.1088/0953-8984/24/5/053201
https://doi.org/10.1088/0953-8984/24/5/053201
https://doi.org/10.1088/0953-8984/24/5/053201
https://doi.org/10.1088/0953-8984/24/5/053201
https://doi.org/10.1103/PhysRevB.70.195104
https://doi.org/10.1103/PhysRevB.70.195104
https://doi.org/10.1103/PhysRevB.70.195104
https://doi.org/10.1103/PhysRevB.70.195104
https://doi.org/10.1080/00018730701619647
https://doi.org/10.1080/00018730701619647
https://doi.org/10.1080/00018730701619647
https://doi.org/10.1080/00018730701619647

