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The phase diagram of the quantum spin- 1
2 antiferromagnetic J1-J2 XXZ chain was obtained by Haldane

using bosonization techniques [Haldane, Phys. Rev. B 25, 4925 (1982); 26, 5257 (1982)]. It supports three
distinct phases for 0 � J2/J1 < 1

2 , i.e., a gapless algebraic spin-liquid phase, a gapped long-range ordered Neel
phase, and a gapped long-range ordered dimer phase. Even though the Neel and dimer phases are not related
hierarchically by a pattern of symmetry breaking, it was shown that they meet along a line of quantum critical
points with a U(1) symmetry and central charge c = 1. Here, we extend the analysis made by Haldane on the
quantum spin- 1

2 antiferromagnetic J1-J2 XYZ chain using both bosonization and numerical techniques. We show
that there are three Neel phases and the dimer phase that are separated from each other by six planes of phase
boundaries realizing Gaussian criticality when 0 � J2/J1 < 1

2 . We also show that each long-range ordered phase
harbors topological point defects (domain walls) that are dual to those across the phase boundary in that a defect
in one ordered phase locally binds the other type of order around its core. By using the bosonization approach, we
identify the critical theory that describes simultaneous proliferation of these dual point defects, and show that it
supports an emergent U(1) symmetry that originates from the discrete symmetries of the XYZ model. To confirm
this numerically, we perform exact diagonalization and density-matrix renormalization-group calculations and
show that the critical theory is characterized by the central charge c = 1 with critical exponents that are consistent
with those obtained from the bosonization approach. Furthermore, we generalize the field-theoretic description
of direct continuous phase transition to higher dimensions, especially in d = 3, by using a nonlinear sigma model
(NLSM) with a topological term. In particular, we propose the π -flux phase on the cubic lattice with local quartic
interactions as a platform for direct continuous phase transition and deconfined criticality. We discuss possible
phase diagrams for the π -flux phase on the cubic lattice with these quartic interactions from the renormalization
flow of NLSMs.

DOI: 10.1103/PhysRevB.99.205153

I. INTRODUCTION

A paradigm for a phase transition with spontaneous sym-
metry breaking is the antiferromagnetic phase transition of
quantum spin systems with antiferromagnetic exchange in-
teractions. The antiferromagnetic phase is characterized by
a local order parameter, the staggered magnetization. In di-
mensions above the lower critical dimension, it is sufficient
to account for the smooth fluctuations of the order parameter,
the spin waves, in order to describe the second-order transition
from the antiferromagnetic to the paramagnetic phase.

The discovery of the Berezinskii-Kosterlitz-Thouless tran-
sition [1–4] demonstrated that fluctuations that are pointwise
singular can also drive classical continuous phase transitions,
while the spin waves are only good enough to downgrade
long-range order to quasi-long-range order owing to the low
dimensionality of space. In the context of quantum phase
transitions, Haldane in Ref. [5] and Read and Sachdev in
Ref. [6] pointed out that the proliferation of hedgehog de-
fects in (2 + 1)-dimensional space-time have the potential

to drive a transition from an antiferromagnetic ground state
to a spin-dimerized ground state in spin- 1

2 two-dimensional
(2D) systems. Because both phases spontaneously break dis-
tinct symmetries of the microscopic Hamiltonian [the spin
SU(2) symmetry in the antiferromagnetic phase and the point-
group symmetry of the lattice in the spin-dimerized phase],
such a transition was originally considered to be nongeneric
and discontinuous.

This interpretation, derived as it is from the conventional
wisdom based on the Landau-Ginzburg paradigm for sym-
metry breaking, was questioned in a series of theoretical
papers [7–11], where it was proposed that a direct continuous
quantum phase transition between the antiferromagnetic and
spin-dimerized (valence bond solid) phases of 2D spin- 1

2 sys-
tems is generic when driven by the proliferation of nontrivial
point defects. In this scenario, the nature of the transition
is encoded by the duality relating the point defects in the
two phases. Namely, a point defect in one phase binds the
order of the other phase in its core. At the transition, both
types of point defects proliferate. It was also argued that the
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critical theory is described by a doublet of bosonic matter
fields that are coupled to a noncompact U(1) gauge field. This
emerging scalar quantum electrodynamics is in its deconfined
Coulomb phase and, hence, was called deconfined quantum
criticality [7].

A series of numerical studies of 2D lattice models that
were designed with the potential to host deconfined quantum
criticality have been performed [12–24]. However, confirming
numerically the existence of deconfined quantum criticality
has been a hard task. First, one must identify the proper
two-dimensional lattice model that may host a direct con-
tinuous quantum phase transition between two phases that
break spontaneously and in distinct ways the symmetries of
the lattice Hamiltonian. Second, the numerics must rule out a
quantum phase transition that is weakly discontinuous.

Whereas the original proposal for deconfined quantum
criticality referred to a direct phase transition between anti-
ferromagnetic order and valence bond (dimerization) order,
one may consider many-body quantum systems that are not
quantum magnets, one may consider different choices of
the ordered phases, and one may work in spaces with a
dimensionality other than two [10,11,25–34]. In particular,
if one considers discrete symmetries instead of continuous
ones, one may seek examples of deconfined quantum critical-
ity characterizing one-dimensional (1D) lattice Hamiltonians.
This approach has recently been advocated in Ref. [35] in the
context of quantum spin- 1

2 chains.
In this paper, we report analytical and numerical studies of

quantum spin- 1
2 chains supporting the core idea of quantum

criticality beyond the Landau-Ginzburg paradigm, namely,
that a direct continuous quantum phase transition between two
ordered phases can be interpreted as the proliferation of point
defects that nucleate the order across the transition. Specif-
ically, we identify the critical theory in (1 + 1)-dimensional
space-time by the bosonization approach and show that the
critical theory supports an emergent U(1) symmetry. Perform-
ing exact diagonalization and density-matrix renormalization-
group (DMRG) calculations, we numerically confirm that the
critical theory is characterized by the central charge c = 1
with critical exponents that are consistent with those from the
bosonization approach.

We also argue that higher-dimensional analogs of decon-
fined quantum criticality can be obtained from fermionic
tight-binding Hamiltonians that support a Dirac semimetallic
phase with certain contact interactions. Mean-field decoupling
of interactions naturally leads to a nonlinear sigma model
(NLSM) augmented by a topological term. This topological
term describes the mutual relationship between the defects
in the two ordered phases and is responsible for deconfined
quantum criticality. As an example in three-dimensional (3D)
space, we demonstrate that the π -flux phase on the cubic
lattice with contact interactions gives a natural platform for a
duality between point defects that nucleate the antiferromag-
netic (dimer) order at the core in the dimer (antiferromagnetic)
phase.

The paper is organized as follows. The case of 1D space,
d = 1, is treated in Sec. II. The case of 3D space, d = 3, is
treated in Sec. III. A summary is given in Sec. IV.

II. J1-J2 XYZ MODEL ON A (LINEAR) CHAIN

A. Symmetries and phases

The sites of a spin chain are denoted by the letter l =
1, . . . , L, where the number of sites L is assumed to be an even
integer. We study the quantum spin- 1

2 XYZ chain with the
antiferromagnetic nearest-neighbor J1 > 0 and next-nearest-
neighbor J2 � 0 couplings defined by the Hamiltonian

H := J1

L∑
l=1

(
Sx

l Sx
l+1 + �y Sy

l Sy
l+1 + �z Sz

l Sz
l+1

)

+ J2

L∑
l=1

(
Sx

l Sx
l+2 + �y Sy

l Sy
l+2 + �z Sz

l Sz
l+2

)
, (2.1a)

where we have chosen to impose the periodic boundary con-
ditions Sα

l+L ≡ Sα
l (α = x, y, z). The spin operators obey the

SU(2) algebra[
Sα

l , Sβ

l ′
] = i δl,l ′ ε

αβγ Sγ

l , S2
l = 3

4 , (2.1b)

with εαβγ the fully antisymmetric Levi-Civita tensor
where α, β, γ = x, y, z and l, l ′ = 1, . . . , L. The exchange-
anisotropy parameters �y and �z are non-negative numbers
(�y,�z � 0). The Hamiltonian thus depends on three dimen-
sionless positive parameters, namely,

J := J2

J1

� 0, �y � 0, �z � 0. (2.1c)

We restrict our discussion to the case of weak frustration

J < 1
2 (2.1d)

for which the nearest-neighbor exchange coupling J1 is the
dominant interaction and sets the dimension of energy. In
other words, we are not concerned with other phases that
can exist for J > 1

2 , such as the UUDD (up-up-down-down)
Neel-ordered phase that appears in the limit �z � 1, etc.
When �y = 0, Hamiltonian (2.1a) is equivalent to the one
recently studied by Jiang and Motrunich in Ref. [35]. Ref-
erence [36] also reports numerical simulations of the spin- 1

2
XYZ Hamiltonian (2.1a).

We first discuss the symmetries of the model defined by
Eq. (2.1). Hamiltonian H is invariant under the following
transformations:

(i) π rotations about the x, y, and z axes in spin space

Rx
π :

(
Sx

l , Sy
l , Sz

l

) �→ (
Sx

l ,−Sy
l ,−Sz

l

)
, (2.2a)

Ry
π :

(
Sx

l , Sy
l , Sz

l

) �→ (−Sx
l , Sy

l ,−Sz
l

)
, (2.2b)

Rz
π :

(
Sx

l , Sy
l , Sz

l

) �→ (−Sx
l ,−Sy

l , Sz
l

)
; (2.2c)

(ii) translation by one lattice site

T :
(
Sx

l , Sy
l , Sz

l

) �→ (
Sx

l+1, Sy
l+1, Sz

l+1

)
; (2.2d)

(iii) inversion about the site l = 0 (≡ L),

P :
(
Sx

l , Sy
l , Sz

l

) �→ (
Sx

L−l , Sy
L−l , Sz

L−l

)
; (2.2e)
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(iv) time reversal

	 :
(
Sx

l , Sy
l , Sz

l

) �→ (−Sx
l ,−Sy

l ,−Sz
l

)
. (2.2f)

We note that inversion about the center of a nearest-
neighbor bond of the lattice is obtained by combining the
site inversion P with the lattice translation T . Similarly, we
note that Rz

π = Ry
π Rx

π . Equations (2.2a)–(2.2c) thus imply the
existence of a global internal Z2 × Z2 symmetry.

As we shall show in the following subsections, the ground-
state phase diagram of the quantum spin- 1

2 antiferromagnetic
J1-J2 XYZ chain defined by Eq. (2.1) consists of the following
four gapped phases: Neelx, Neely, Neelz, and valence-bond-
solid (VBS or dimer) phases:

(1) Neelx phase. The symmetries Ry
π , Rz

π , T , 	 are sponta-
neously broken. The order parameter is

ONx
:= 1

L

L∑
l=1

(−1)l
〈
Sx

l

〉
, (2.3a)

where we recall that L is the number of sites and 〈A〉 is the
expectation value of the operator A in a ground state. The
composition T 	 is a symmetry.

(2) Neely phase. The symmetries Rz
π , Rx

π , T , 	 are sponta-
neously broken. The order parameter is

ONy
:= 1

L

L∑
l=1

(−1)l
〈
Sy

l

〉
. (2.3b)

The composition T 	 is a symmetry.
(3) Neelz phase. The symmetries Rx

π , Ry
π , T , 	 are sponta-

neously broken. The order parameter is

ONz
:= 1

L

L∑
l=1

(−1)l
〈
Sz

l

〉
. (2.3c)

The composition T 	 is a symmetry.
(4) VBS (dimer) phase. The symmetries P and T are

spontaneously broken. We can take

OVBS := 1

L

L∑
l=1

(−1)l
〈
Sx

l Sx
l+1 + Sy

l Sy
l+1 + Sz

l Sz
l+1

〉
(2.3d)

as an order parameter of the VBS phase.
It is important to note that the Z2 symmetries Rα

π are
broken in the Neelβ phase provided α 	= β, while the site-
inversion symmetry P is broken in the VBS phase. Since the π

rotation Rα
π and the inversion P are symmetries in the spin and

real spaces, respectively, a direct continuous phase transition
between a Neel phase and a VBS phase cannot be described by
the Ginzburg-Landau theory. As we discuss below, the phase
transitions between gapped ordered phases are continuous
transitions described by a Gaussian theory with no less than
a U(1) symmetry.

B. Phase diagram at �y = 1

We first discuss the case �y = 1 for which the Hamiltonian
H describes the quantum spin- 1

2 antiferromagnetic J1-J2 XXZ
chain with an enhanced U(1) symmetry under continuous spin
rotations about the z axis compared to the case when �y 	= 1.
The quantum spin- 1

2 antiferromagnetic J1-J2 XXZ chain has

been studied in many publications [37–44]. Its ground-state
phase diagram and low-energy effective theory are well un-
derstood; see e.g., Refs. [38,39]. We briefly review the low-
energy effective theory, in order to fix notations and prepare
for the full discussion of the ground-state phase diagram of the
quantum spin- 1

2 antiferromagnetic J1-J2 XYZ chain (�y 	= 1).
We introduce the Jordan-Wigner fermions cl through the

relations

Sz
l =: c†

l cl − 1

2
≡ nl , (2.4a)

S+
l ≡ Sx

l + iSy
l =: c†

l exp

(
iπ

∑
n<l

c†
n cn

)
, (2.4b)

with which the Hamiltonian H at �y = 1 is rewritten as

HXXZ ≡ J1

∑
l

[
1

2
(c†

l+1 cl + c†
l cl+1) + �z nl nl+1

]

+ J2

∑
l

[(c†
l+2cl + c†

l cl+2)nl+1 + �znl nl+2].

(2.4c)

When both �z and J ≡ J2/J1 are zero, the Jordan-Wigner
fermions are noninteracting and their energy band is half-
filled. We introduce left- and right-moving fermions ψL(x)
and ψR(x), which describe low-energy excitations near the
two Fermi points at momentum k = ±π/2a:

cl ≈ √
a[e+iπx/(2a) ψL(x) + e−iπx/(2a) ψR(x)], (2.5a)

where x = l a with a the lattice spacing. We take the contin-
uum limit to approximate Hamiltonian HXXZ by the integral∫

dx HXXZ over the Hamiltonian density HXXZ, where

HXXZ = iv(ψ†
L ∂xψL − ψ

†
R ∂xψR)

+ g+(:ψ†
L ψL : + : ψ

†
R ψR :)2

+ g−(:ψ†
L ψL : − :ψ†

R ψR :)2

+ gu(:ψ†
L ψ

†
L : :ψR ψR : + :ψ†

R ψ
†
R : :ψL ψL :).

(2.5b)

Here, v is the velocity (v > 0), the coupling constants g±
and gu are matrix elements of forward and umklapp scat-
terings, and the normal-ordered operators are defined using
point splitting, i.e., :OA(x)OB(x) : is the leading term from
the Laurent expansion in powers of a of OA(x)OB(x + a) −
〈OA(x)OB(x + a)〉, where OA and OB are ψM or ψ

†
M with

M = L, R.
Next, we bosonize the fermion fields using the formulas

ψL(x) = e−iϕL (x)

√
2πa

, ψR(x) = e+iϕR (x)

√
2πa

, (2.6a)

where a is a short-distance cutoff of the order of the lattice
spacing a and the chiral boson fields ϕM(x) with M = L, R
satisfying the equal-time commutation relations

[ϕR(x), ϕR(y)] = −[ϕL(x), ϕL(y)] = iπ sgn(x − y), (2.6b)

[ϕR(x), ϕL(y)] = iπ. (2.6c)
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The Hamiltonian density, when expressed in terms of this pair
of bosonic chiral fields, takes the form

HXXZ = g̃+
8π

[∂x(ϕL + ϕR)]2 + g̃−
8π

[∂x(ϕL − ϕR)]2

+ g̃u cos[2(ϕL + ϕR)]. (2.6d)

Here, the parameters g̃± and g̃u are given by

g̃+ = a J1

[
1 + 4

π
(�z + J )

]
, (2.7a)

g̃− = a J1

(
1 − 4

π
J

)
, (2.7b)

g̃u = a J1

2π2a2
[�z − J (2 + �z )], (2.7c)

in the weak-coupling limit

0 � �z � 1, 0 � J � 1/2. (2.7d)

However, the chiral representation (2.6d) of HXXZ holds be-
yond the perturbative regime (2.7d).

Instead of the chiral representation (2.6d) of HXXZ, we
shall use the sine-Gordon representation

HXXZ = v

2

[
1

η
(∂xθ )2 + η(∂xφ)2 + λφ cos(

√
8π φ)

]
, (2.8a)

v

2η
:= g̃−, 2vη := g̃+,

vλφ

2
:= g̃u. (2.8b)

The sine-Gordon Hamiltonian density HXXZ is invariant under
any constant shift of θ . In other words, HXXZ is invariant
under the global U(1) transformation

θ �→ θ + constant (mod
√

2π ), φ �→ φ. (2.8c)

The freedom in shifting θ by an arbitrary constant originates
from the U(1) symmetry of the quantum spin- 1

2 antiferro-
magnetic J1-J2 XXZ Hamiltonian, whereby the compactifi-
cation radius

√
2π stems from the relation (2.11) between

the quantum spin- 1
2 degrees of freedom on the lattice and the

quantum fields φ and θ . The advantage of the sine-Gordon
representation (2.8a) of HXXZ is that the parameter η has a
simple interpretation. It controls the exponents of algebraic
correlation functions when the cosine interaction is irrelevant.
Here, we have adopted the conventions from Ref. [45] (see
also references therein). The nonchiral bosonic fields φ and θ

are dual to each other and defined by

φ(x) := 1√
2π

[ϕL(x) + ϕR(x)], (2.8d)

θ (x) := 1√
8π

[ϕL(x) − ϕR(x)]. (2.8e)

They inherit the commutation relation

[φ(x), θ (y)] = i	(y − x), (2.8f)

where 	(x) is the Heaviside function taking the value 1
2 at

the origin. We note that the dimensionful coupling constant
λφ = 2g̃u/v is a function of �z and J . In the weak-coupling
limit (2.7d), it is seen that λφ changes its sign from positive to
negative as J is increased holding �z fixed.

When the coupling λφ of the sine-Gordon interaction in the
effective Hamiltonian density (2.8a) flows to zero in the low-
energy limit, the ground state is a critical phase, the
Tomonaga-Luttinger liquid (TLL) phase, described by the
Gaussian Hamiltonian

Hη := v

2

∫
dx

[
1

η
(∂xθ )2 + η (∂xφ)2

]
. (2.9)

The TLL phase realizes a c = 1 conformal field theory in (1 +
1)-dimensional space-time. It is invariant under the global
U(1) transformation (2.8c). The Gaussian Hamiltonian (2.9)
inherits this U(1) symmetry from that of the sine-Gordon
Hamiltonian density (2.8a). Moreover, the Gaussian Hamil-
tonian (2.9) is also invariant under the global U(1) transfor-
mation

φ �→ φ + constant (mod
√

2π ), θ �→ θ. (2.10)

Therefore, the Gaussian Hamiltonian (2.9) has the U(1)θ ×
U(1)φ symmetry or, equivalently, the U(1)L × U(1)R symme-
try. This global U(1)×U(1) symmetry is enhanced to a global
SU(2) symmetry when �y = �z = 1 that originates from the
SU(2) symmetry of the quantum spin- 1

2 antiferromagnetic
J1-J2 XXX Hamiltonian. At the SU(2) symmetric point �y =
�z = 1, η = 1 must necessarily hold in the effective Hamilto-
nian (2.9). Conversely, if η = 1 holds in the effective theory,
then Hη=1 supports a global SU(2) symmetry, as we now
explain.

The spin operators are related to the bosonic fields by

Sz
l ≈ a√

2π
∂xφ(x) + a1(−1)l sin(

√
2πφ(x)), (2.11a)

S+
l ≈ e+i

√
2πθ (x) [a2(−1)l + a3 sin(

√
2πφ(x))], (2.11b)

where a1, a2, and a3 are real numbers that are functions of J
and �z. From Eq. (2.11b) the Sx

l and Sy
l operators are written

as

Sx
l = a2 (−1)l cos(

√
2π θ (x))

+ ia3 sin(
√

2π θ (x)) sin(
√

2π φ(x)), (2.12a)

Sy
l = a2 (−1)l sin(

√
2π θ (x))

− ia3 cos(
√

2π θ (x)) sin(
√

2π φ(x)). (2.12b)

Here, the commutator [φ(x), θ (x)] = i/2 was used.
Motivated by the four order parameters (2.3a)–(2.3d) that

were defined on the lattice, we define in the field theory
the following four fields whose nonvanishing ground-state
expectation value signals long-range order. From Eqs. (2.11a),
(2.12a), and (2.12b), the triplet of fields whose nonvanishing
ground-state expectation value signals Neel order are

Nx(x) := cos(
√

2π θ (x)), (2.13a)

Ny(x) := sin(
√

2π θ (x)), (2.13b)

Nz(x) := sin(
√

2π φ(x)). (2.13c)

The field whose nonvanishing ground-state expectation value
signals VBS (dimer) long-range order is [45]

D(x) := cos(
√

2π φ(x)). (2.13d)
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z

J Dimer

Neelzcritical
< 1

= 1

= 1 > 1

0 1 2
0

0.5

FIG. 1. Ground-state phase diagram of the quantum spin- 1
2 an-

tiferromagnetic J1-J2 XXZ Hamiltonian (2.4c) with the Ising ex-
change anisotropy �z and the exchange ratio J = J2/J1. The phase
boundaries are taken from Ref. [38]. When 0 � �z < 1 and 0 �
J < Jc(�z ), the system is in the critical phase with in-plane spin-
correlation exponent η < 1 (η = 1 on the boundary of the critical
phase). The umklapp coupling vanishes along the phase boundary
with η > 1 separating the gapped dimer (VBS) and Neelz phases that
break different Z2 symmetries.

The π rotations Rx
π , Ry

π , and Rz
π in spin space, the lattice

translation T , the site inversion P, and the (antiunitary) time
reversal 	 act on the bosonic fields as

Rx
π : (φ, θ ) �→ (−φ,−θ ), (2.14a)

Ry
π : (φ, θ ) �→ (−φ,

√
π/2 − θ ), (2.14b)

Rz
π : (φ, θ ) �→ (φ, θ +

√
π/2 ), (2.14c)

T : (φ, θ ) �→ (φ +
√

π/2, θ +
√

π/2 ), (2.14d)

P : (φ, θ ) �→ (−φ +
√

π/2, θ ), (2.14e)

	 : (φ, θ ) �→ (−φ, θ +
√

π/2), (2.14f)

respectively. The U(1) spin rotation symmetry about the z axis
of the quantum spin- 1

2 antiferromagnetic J1-J2 XXZ chain is
generated by the infinitesimal transformation

(φ, θ ) �→ (φ, θ + δθ ). (2.15)

Figure 1 is a schematic picture of the ground-state phase
diagram of the quantum spin- 1

2 antiferromagnetic J1-J2 XXZ
chain obtained by Haldane. The phase diagram supports a
critical phase (extended over a finite region of parameter
space) and two gapped phases. These long-range ordered
phases are separated by a phase boundary that realizes a line
of quantum critical points, each of which realizes a c = 1
conformal field theory with U(1) symmetry.

The critical phase defined by

0 � �z < 1, 0 � J < Jc(�z ) (2.16)

is governed by the Gaussian Hamiltonian density Hη defined
by Eq. (2.9) with η < 1. The parameter η takes the value
η = 1

2 at the free-fermion point J = �z = 0 and continu-
ously increases until η = 1, the value of which defines the

phase boundaries to the gapped phases. The cosine term
λφ cos(

√
8π φ) in the effective theory (2.8) has scaling di-

mension 2/η > 2. It is thus an irrelevant perturbation to the
Gaussian Hamiltonian (2.9). This critical phase is charac-
terized by quasi-long-range order for all correlation func-
tions of local operators. In particular, the two-point func-
tions 〈Nx(x) Nx(0)〉 and 〈Ny(x) Ny(0)〉 show the slowest decay
proportional to |x|−η, whereas 〈Nz(x) Nz(0)〉 and 〈D(x) D(0)〉
decay like |x|−1/η. The isotropy in the decay of the correlation
functions 〈Nx(x) Nx(0)〉 and 〈Ny(x) Ny(0)〉 is a consequence of
the global U(1) symmetry (2.15) that the Gaussian Hamil-
tonian (2.9) enjoys. At η = 1, all four two-point functions
decay like |x|−1. The isotropy in the decay of the correlation
functions 〈Nx(x) Nx(0)〉, 〈Ny(x) Ny(0)〉, 〈Nz(x) Nz(0)〉 is a con-
sequence of the hidden (nonmanifest) global SU(2) symmetry
of Hη when η = 1. It follows that the critical points on the
upper edge of the critical phase (2.16) shown in Fig. 1 have a
global SU(2) symmetry.

Outside the critical phase (2.16), the cosine term
λφ cos(

√
8π φ) is relevant and opens an energy gap. The

resulting ground state is either the Neelz phase or the dimer
phase, depending on the sign of the coupling constant λφ .
If λφ < 0, then the cosine term pins the φ field at φ = 0 or√

π/2 (mod
√

2π ), and the dual field θ is disordered. This
leads to D = +1 or −1 (if we ignore quantum fluctuations
for simplicity), and Nx = Ny = Nz = 0; the ground state is in
the dimer phase. If λφ > 0, then the cosine term pins the φ

field at φ = √
π/8 or 3

√
π/8 (mod

√
2π ), and the dual field

θ is disordered. This leads to Nz = +1 or −1 (if we ignore
quantum fluctuations for simplicity), and D = Nx = Ny = 0;
the ground state is in the Neelz phase.

The phase transition between the dimer phase and the Neelz

phase for �z > 1 is determined by the condition λφ = 0; see
Fig. 1. The critical theory at the phase transition is the c = 1
Gaussian Hamiltonian (2.9) with η > 1 [39]. At any dimer-
Neelz critical point, the two-point functions 〈Nz(x) Nz(0)〉
and 〈D(x) D(0)〉 show the slowest algebraic decay ∼|x|−1/η,
whereas 〈Nx(x) Nx(0)〉 and 〈Ny(x) Ny(0)〉 decay like ∼|x|−η.

Along the SU(2) invariant line �z = 1 the phase transition
from the critical Tomonaga-Luttinger liquid phase to the
dimer phase is known to occur at [37,42]

J = J �
c ≡ Jc(�z = 1) = 0.2411 . . . . (2.17)

We now examine the effects of breaking the U(1) symmetry
(2.8c) with small |�y − 1| > 0. Following the steps of the
Jordan-Wigner transformation and bosonization, we find that
the deviation of �y from unity yields the perturbation

(1 − �y)
(
Sx

l Sx
l+1 − Sy

l Sy
l+1

) = 1 − �y

2
(S+

l S+
l+1 + H.c.)

≈ a2
2(�y − 1) cos(

√
8π θ ),

(2.18)

which should be added to the effective theory (2.8). The
operator cos(

√
8π θ ) is invariant under the transformations

(2.14) and has the scaling dimension 2η. It is thus a relevant
perturbation to the Gaussian Hamiltonian (2.9) with η < 1 in

205153-5



MUDRY, FURUSAKI, MORIMOTO, AND HIKIHARA PHYSICAL REVIEW B 99, 205153 (2019)

the critical phase

0 � �z < 1, 0 � J < Jc(�z ), �y = 1. (2.19)

As such, the potential (�y − 1) cos(
√

8π θ ) pins the θ field at

θ = 0 or
√

π/2 (mod
√

2π ) for �y < 1 and at θ = √
π/8 or

3
√

π/8 (mod
√

2π ) for �y > 1. This means that the critical
phase (2.19) is located exactly on the boundary between
the Neelx phase at �y < 1 and the Neely phase at �y > 1.

On the other hand, the cos(
√

8π θ ) operator is an irrelevant
perturbation in both the dimer phase and the Neelz phase
where the dual φ field is pinned by the cos(

√
8π φ) per-

turbation. More importantly, the cos(
√

8π θ ) perturbation is
an irrelevant perturbation to the Gaussian Hamiltonian (2.9)
with η > 1 on the phase boundary between the Neelz and
the dimer phases. Hence, the Neelz-dimer phase boundary is
a two-dimensional surface of c = 1 Gaussian criticality that
extends out of the plane �y = 1.

It turns out that the criticality on the phase boundary
between the dimer and Neelx phases or between the dimer and
Neely phases for �y 	= 1 is also described by the Gaussian
Hamiltonian (2.9). On the upper edge of the critical phase
(2.19), whose low-energy theory is the Gaussian model (2.9)
with η = 1, both cos(

√
8π φ) and cos(

√
8π θ ) are marginal

operators with scaling dimension 2. The competition between
these two dual operators is known [46] to yield a line of c = 1
fixed points, whose basin of attraction forms a critical plane of
the Neelx-dimer and Neely-dimer phase boundaries. We will
discuss the criticality between gapped phases in more detail
below.

C. Global phase diagram

We deduce the global phase diagram and criticality of the
quantum spin- 1

2 antiferromagnetic J1-J2 XYZ chain (2.1) from
the analysis of the effective sine-Gordon Hamiltonian density
(2.8) perturbed by (2.18). This prediction is validated numer-
ically in Sec. II D. Parameter space for this phase diagram is
the three-dimensional slab

�y � 0, �z � 0, 0 � J � 1/2 (2.20)

of R3. The global phase diagram for the ground states of
Hamiltonian (2.1) is symmetric:

(1) about the plane defined by �y = �z in the three-
dimensional parameter space (2.20);

(2) under cyclic permutations of the indices x, y, and z
entering either the anisotropies �x, �y, and �z, where we
have fixed �x ≡ 1, or the Neel phases Neelx, Neely, and Neelz.

We define Jc(�y,�z ) to be the critical value of J ≡ J2/J1
above which the ground state is in the dimer phase. By
symmetry,

Jc(�y,�z ) = Jc(�z,�y). (2.21)

The phase diagram on the �z = 1 plane in the parameter
space (2.20) follows from the phase diagram on the �y = 1
plane in the parameter space (2.20) that we derived in Sec. II B
by interchanging the Neely and Neelz phases. The phase
diagram on the �z = 1 plane has thus three phases:

(i) the c = 1 critical phase with quasi-long-range order of
the easy-plane Neel correlations (Nx, Nz ) for

0 � J < Jc(�y, 1), 0 � �y � 1; (2.22a)

(ii) the Neely phase for

0 � J < Jc(�y, 1), �y > 1; (2.22b)

(iii) the dimer phase for

J > Jc(�y, 1). (2.22c)

The phase boundary between the Neely phase and the dimer
phase is a line of c = 1 critical points with η > 1.

Similarly, the phase diagram on the plane defined by �y =
�z is also obtained from the phase diagram on the �y = 1
plane by replacing �z with 1/�z in the horizontal axis in
Fig. 1 and by exchanging the Neelz and Neelx phases. By this
logic, there are three phases on the �z = �y plane:

(i) the c = 1 critical phase with quasi-long-range order of
the easy-plane Neel correlations (Nz, Ny ) for

0 � J < Jc(�z,�z ), �z > 1; (2.23a)

(ii) the Neelx phase for

0 � J < Jc(�z,�z ) 0 � �z < 1; (2.23b)

(iii) the dimer phase for

J > Jc(�z,�z ). (2.23c)

Examples (2.22) and (2.23) illustrate that, whereas the
condition

J > Jc(�y,�z ) (2.24)

always selects the dimer phase in the parameter space (2.20),
the condition

J < Jc(�y,�z ) (2.25)

selects either one of the three Neel phases or the critical
manifold separating them. Which one of the Neel phases is
selected depends on which of the anisotropies �y or �z is the
largest:

(a) the Neelx phase is selected when

�y < 1, �z < 1; (2.26a)

(b) the Neely phase is selected when

�y > 1, �y > �z; (2.26b)

(c) the Neelz phase is selected when

�z > 1, �z > �y. (2.26c)

The phase boundaries between these three Neel phases are
the c = 1 critical phases located on the �y = 1 plane, �z = 1
plane, or �y = �z plane, which cross at the SU(2) symmetric
line �y = �z = 1. A schematic picture of the phase dia-
gram in the three-dimensional parameter space (�y,�z,J )
is shown in Fig. 2.

The criticality at the Neel-dimer and Neel-Neel phase
transitions can be studied perturbatively near a special point
along the SU(2) symmetric segment [recall Eq. (2.17)]

�y = �z = 1, 0 � J � J �
c , J �

c := Jc(1, 1). (2.27)
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y

FIG. 2. Qualitative phase diagram of the quantum spin- 1
2 anti-

ferromagnetic J1-J2 XYZ model in the three-dimensional parameter
space (�z, �y,J ). The three Neel phases and the dimer phase are
separated by six planes of phase boundaries, each of which realizes
Gaussian criticality with U(1)×U(1) symmetry. These six planes join
at the four solid blue lines, along which the fixed-point theory is
the Gaussian model with SU(2) symmetry. The dimer phase exists
for J > Jc(�y, �z ). The three Neelα phases with α = x, y, z are
located below the phase boundaries of the Gaussian criticality J <

Jc(�y, �z ). The pair of Neelα and Neelβ phases with α < β = x, y, z
are separated by the phase boundary at �α = �β of the Gaussian
criticality (�x ≡ 1). We have omitted other phases (such as the
UUDD Ising ordered phase) that can exist for J > 1

2 .

At the special point

�y = �z = 1, J = J �
c , (2.28)

the low-energy theory is the Gaussian Hamiltonian density
with η = 1, i.e.,

H0 ≡ 1
2 [(∂xθ )2 + (∂xφ)2], (2.29)

where we have set v = 1 for simplicity. Away from this
special point, the effective Hamiltonian density is perturbed
by local operators that are invariant under the symmetry
transformations (2.14). Among all such local operators, the
less irrelevant ones at the special point (2.28) in parameter
space (2.20) are the three marginal operators

cos(
√

8π φ), cos(
√

8π θ ), (∂xφ)2 − (∂xθ )2, (2.30)

for they all share the scaling dimension 2 when η = 1. They
are related to the chiral generators of the su(2)1 affine Lie
algebra by

J±
L := 1

a
e±i

√
2φL , Jz

L := 1√
2

∂xφL, (2.31a)

J±
R := 1

a
e∓i

√
2φR , Jz

R := 1√
2

∂xφR, (2.31b)

where we have introduced yet a second pair of left- and right-
moving chiral bosonic fields, namely,

φL(x) := √
π [φ(x) + θ (x)], φR(x) := √

π [φ(x) − θ (x)].

(2.31c)

Here, we chose the normalization convention for the left-
and right-moving currents J±

M with M = L, R such that
〈J+

M(x) J−
M(0)〉 = −1/x2 for the SU(2) symmetric Gaussian

Hamiltonian (2.29). The microscopic origin of the compo-
nents J±

M(x) and Jz
M(x) is the following. The nonoscillating

components of the spin operators Sz
l and S+

l in Eqs. (2.11a)
and (2.11b) are equal to a/

√
π times Jz

L + Jz
R and J+

L + J+
R ,

respectively, at η = 1. If we define the linear combinations

Jx
M := J+

M + J−
M

2
, Jy

M := J+
M − J−

M

2i
, M = L, R (2.32a)

we may then define the current-current interaction density
[47]

HJJ := λx Jx
L Jx

R + λy Jy
L Jy

R + λz Jz
L Jz

R

= − 1

a2
(λx − λy) cos(

√
8π θ )

− 1

a2
(λx + λy) cos(

√
8π φ)

− πλz

2
[(∂xθ )2 − (∂xφ)2], (2.32b)

where the real-valued couplings λx, λy, and λz are dimension-
less.

The perturbed Hamiltonian density H0 + HJJ should be
compared with the perturbed Hamiltonian density HXXZ +
A
a2 (�y − 1) cos(

√
8π θ ), where A is a nonuniversal positive

number of order one, by demanding that

H0 + HJJ = HXXZ + A

a2
(�y − 1) cos(

√
8π θ ). (2.33)

By matching the couplings of cos(
√

8π θ ) on both sides of
this equation and using the symmetry under cyclic permuta-
tions of the indices x, y, and z with �x ≡ 1, we infer that

λx − λy = A (1 − �y), (2.34a)

λy − λz = A (�y − �z ), (2.34b)

λz − λx = A (�z − 1). (2.34c)

Furthermore, by matching the coefficients of (∂xθ )2 and
(∂xφ)2 on both sides of this equation, we deduce that

η =
√

1 + πλz

1 − πλz

. (2.35a)

In particular,

η ≈ 1 + πλz (2.35b)

when |λz| � 1. Finally, remembering that the scaling dimen-
sions of cos(

√
8π θ ) and cos(

√
8π φ) in the Gaussian theory

(2.9) are

2η ≈ 2 + 2π λz, |λz| � 1 (2.36a)

and

2

η
≈ 2 − 2π λz, |λz| � 1 (2.36b)

respectively, we deduce from the renormalization-group (RG)
equation dO/d� = (2 − dO) O in (1+1)-dimensional space-
time, where d� = d ln a and O is an operator whose exact
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x

z

0

FIG. 3. Renormalization-group flow diagram of Eq. (2.38) on the
λx = λy plane. The shaded region corresponds to the critical phase in
Fig. 1.

scaling dimension is dO, the one-loop RG flows

d (λx − λy)

d�
= −2πλz(λx − λy), (2.37a)

d (λx + λy)

d�
= +2πλz(λx + λy), (2.37b)

for |λx − λy|, |λx + λy|, |λz| � 1. With the help of cyclic
permutations of the indices x, y, and z, we thus obtain the
one-loop RG equations

dλx

d�
= 2π λy λz,

dλy

d�
= 2π λz λx,

dλz

d�
= 2π λx λy,

(2.38)

for the couplings λx, λy, λz of the current-current interaction
density (2.32b) at the Gaussian fixed point (2.29).

The coupled flow equations (2.38) have three lines of fixed
points: (i) λx = λy = 0, (ii) λy = λz = 0, and (iii) λz = λx =
0, where the fixed-point Hamiltonian is given by Eq. (2.9).
Let us consider RG flows on the λx = λy plane, for example;
see Fig. 3. On this plane the RG flows in the region defined
by λz � −|λx| end up on λz axis with λz < 0. The boundary
of this critical region is the diagonal λx = ±λz for λz < 0
flowing to the origin λx = λy = λz = 0. The RG flows on the
λx = −λy plane are the reverse of those on the λx = λy plane,
and the critical region on the λx = −λy plane is given by
λz > |λx|. Similar RG flows can be obtained for the λy = ±λz
plane and the λz = ±λx plane. From these considerations we
find that the three-dimensional parameter space (λx, λy, λz )
has six critical planes on which the low-energy theory is the
Gaussian Hamiltonian (2.9); see Fig. 4. The six critical planes
form the boundaries of four gapped phases corresponding to
the Neelx, Neely, Neelz, and dimer phases.

We note that the critical phase at �z < 1 in Fig. 1 corre-
sponds to the critical region λz < −|λx| on the λx = λy plane.
The phase transition between the Neelz and dimer phases at

x

z

y

FIG. 4. Six critical planes separating four gapped phases in the
three-dimensional parameter space (λx, λy, λz ).

�z > 1 corresponds to the positive half of the λz axis. We thus
deduce that

λz = b (J − J �
c ) + c

(
�z − 1 + �y

2

)
, (2.39a)

where �y = 1 in Fig. 1 and b and c are positive constants. By
cyclic permutations of the indices x, y, and z with �x ≡ 1, we
obtain

λx = b (J − J �
c ) + c

(
1 − �y + �z

2

)
, (2.39b)

λy = b (J − J �
c ) + c

(
�y − �z + 1

2

)
. (2.39c)

Consistency with Eq. (2.34) demands here that c = 2A/3.
This perturbative RG analysis is justified for |�y −

1|, |�z − 1|, |J − J �
c | � 1. However, we expect that the

global picture of the phase diagram and the c = 1 Gaussian
criticality (2.9) at the phase boundaries should generally be
valid beyond this perturbative regime. Furthermore, the phase
transitions between a Neel phase and a dimer phase are the
Gaussian criticality (2.9) with η > 1 while the phase transi-
tions between Neel phases are that with η < 1. At a Neelα-
dimer transition with α = x, y, z defined by the condition

J = Jc (2.40a)

(the dependence of Jc on �y and �z is implicit), the de-
pendencies on the length L of the chain for the Neel and
dimer order parameters are power laws with the same scaling
exponent,

〈Nα〉 ∼ 〈D〉 ∼ L−1/(2η). (2.40b)
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Moreover, in the thermodynamic limit L → ∞, their depen-
dencies on J − Jc are the power laws

〈Nα〉 ∼ (Jc − J )1/[4(η−1)] 	(Jc − J ), (2.40c)

〈D〉 ∼ (J − Jc)1/[4(η−1)] 	(J − Jc), (2.40d)

where 	(x) is the Heaviside function, respectively. Similarly,
at the Neelα-Neelβ transition with α < β = x, y, z defined by
the condition

�α = �β, (2.41a)

the Neelα and the Neelβ order parameters also vanish as power
laws as a function of the length L of the chain with the same
scaling exponent

〈Nα〉 ∼ 〈Nβ〉 ∼ L−η/2. (2.41b)

Hereto, in the thermodynamic limit L → ∞, their dependen-
cies on �α − �β are the power laws

〈Nα〉 ∼ (�α − �β )η/[4(1−η)] 	(�α − �β ), (2.41c)

〈Nβ〉 ∼ (�β − �α )η/[4(1−η)] 	(�β − �α ), (2.41d)

respectively. Equations (2.40) and (2.41) express the duality

J − Jc, η ←→ �β − �α, 1/η (2.42)

at the level of the scaling variables and the scaling exponents
between the Neel-dimer and the Neelα-Neelβ transitions.
Thereto, the Neelα-Neelβ transition is an example of a phase
transition beyond the Landau-Ginzburg paradigm, as it sep-
arates two gapped phases breaking spontaneously distinct Z2
sectors of the Z2 × Z2 symmetry in spin space of the quantum
spin- 1

2 antiferromagnetic J1-J2 XYZ Hamiltonian (2.1).
Finally, we stress that the critical theory has an emergent

U(1)×U(1) symmetry that is enhanced relative to the discrete
symmetries (Z2 × Z2 in spin space, Z × Z2 of 1D lattice,
and Z2 in time) of the quantum spin- 1

2 antiferromagnetic
J1-J2 XYZ Hamiltonian (2.1). We have performed numerical
studies to confirm this conjecture.

D. Numerical results

We are going to study the phase diagram of the quantum
spin- 1

2 antiferromagnetic J1-J2 XYZ Hamiltonian (2.1a) nu-
merically using two complementary methods, namely, exact
diagonalization and DMRG. We will confirm numerically
that, by varying the dimensionless coupling J ≡ J2/J1 while
holding �y and �z fixed to suitable values, Hamiltonian (2.1a)
undergoes a quantum phase transition between a Neelα with
α = x, y, z phase and a dimer phase within the c = 1 Gaussian
universality class in (1 + 1)-dimensional space-time. To this
end, we shall study exclusively the phase transition between
the Neelz and dimer phases. Indeed, the relations between the
phase transitions separating the Neelα phase with α = x, y
from the dimer phase and the phase transition between the
Neelz and dimer phases were given in Sec. II C. As a typical
example, we focus on the two-dimensional cut

�z = 2.0, 0 � �y < �z, 0 � J < 0.5 (2.43)

from the three-dimensional parameter space (2.20) in which
the Neelz to dimer quantum transition is expected to take
place.

We first analyze the eigenenergy spectrum of the quantum
spin- 1

2 antiferromagnetic J1-J2 XYZ Hamiltonian (2.1a) for a
chain hosting L spins obeying periodic boundary conditions.
We assume that L is an even integer. Eigenstates with as-
cending eigenenergies are denoted �0(L), �1(L), �2(L), etc.
Their eigenenergies are denoted E0(L), E1(L), E2(L), etc. The
finite-size excitation gap above the ground state is defined by

�E0(L) := E1(L) − E0(L). (2.44)

The finite-size excitation gap above the first excited state is
defined by

�E1(L) := E2(L) − E1(L), (2.45)

and so on. The dependence of �E0(L) on J should be qualita-
tively different depending on whether the system is at or away
from a critical point, as we explain below. On the one hand,
deep either in the Neelz or dimer phases, �E0(L) is expected
to decay exponentially fast to zero with increasing L, while
�E1(L) remains nonvanishing in the thermodynamic limit
L → ∞. Hence, the finite-size ground and first-excited states
become degenerate while remaining linearly independent in
the thermodynamic limit L → ∞, for which a continuum of
excitations is separated from the twofold-degenerate ground
states by a gap. On the other hand, at a putative continuous
quantum critical point separating the Neelz phase from the
dimer phase, the finite-size gap �E0(L) between ground and
first-excited states is expected to decay algebraically to zero
with increasing L, with a level crossing of the first-excited
state �1(L) whose inversion quantum number differs between
the Neelz side and the dimer side. According to this scenario,
we may identify a putative continuous quantum critical point
separating the Neelz phase from the dimer phase by a cusp
singularity in the dependence of �E0(L) on J for fixed �y,
�z, and L. Indeed, this scenario was verified for the quantum
spin- 1

2 antiferromagnetic J1-J2 XXZ chain in Ref. [38].
For several values of �y, we have computed the finite-size

excitation gap (2.44) along the one-dimensional cuts

�z = 2.0, 0 � J < 0.5 (2.46)

of the two-dimensional cut (2.43) for L increasing from L =
8 to 20 using the exact diagonalization (Lanczos) method.
Our results for the one-dimensional cut with �y = 0.5 are
presented in Fig. 5(a), by plotting the dependence of L �E0(L)
on J . The cusp singularity of the dependence on J of the
finite-size excitation gap (2.44) signals the anticipated level
crossing of the first-excited states �1(L) on the Neelz side
crossing energetically with �1(L) on the dimer side of the
critical point Jc. On both sides of the cusp, the scaled finite-
size gap L �E0(L) decays with L, suggesting the rapid decay
(faster than 1/L) of �E0(L) in the gapped phases. We also
find that L �E0(L) at the cusp is almost independent of L,
indicating the critical scaling of the gap �E0(L) ∼ 1/L. These
numerical results support our conjecture that the quantum
spin- 1

2 antiferromagnetic J1-J2 XYZ Hamiltonian (2.1a) with
�y suitably chosen undergoes a continuous quantum phase
transition between the Neelz and dimer phases with a dynam-
ical scaling exponent z = 1 upon varying J .
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FIG. 5. (a) Dependence on J ≡ J2/J1 of the scaled finite-size gap L �E0(L) with �E0(L) defined in Eq. (2.44) for �y = 0.5, �z = 2.0,
and L = 8 to 20. The position of the cusp defines Jc(L). The inset shows the data for the range 0 � J < 1/2, while the main panel limits the
range of data to the vicinity of the cusp singularity. (b) Critical coupling Jc = limL→∞ Jc(L) at which a continuous quantum phase transition
separates the Neelz from the dimer phase for �z = 2.0 as a function of 0 � �y < 2.0.

We have extrapolated the critical value Jc(L) determined
above by fitting the data to a second-order polynomial of
1/L (see Appendix). The extrapolated value of the critical
coupling Jc is shown in Fig. 5(b) as a function of �y.
With increasing �y, Jc runs from Jc = 0.3918(9) at �y = 0
toward Jc = 0.276 at �y = �z = 2.0, the latter was obtained
in Ref. [38].

Second, we determine the central charge at the continuous
quantum critical point separating the Neelz and dimer phases.
For this purpose, we analyze the entanglement entropy S (l )
between the left l-site block and the right (L − l )-site block
in the ground state of the quantum spin- 1

2 antiferromagnetic
J1-J2 XYZ Hamiltonian (2.1a) when open boundary condi-
tions are imposed. It is known that the entanglement entropy
at criticality in (1 + 1)-dimensional space-time scales with l
as [48–52]

S (l ) = c

6
ln[ f (xl )] + αosc Eosc(l ) + S0, (2.47a)

where c is the central charge, the function

f (xl ) := L + 1

π
sin

(
π xl

L + 1

)
, xl := l + 1

2
(2.47b)

is the effective size of the left l-site block, αosc is a constant,
the oscillating component of the local bond-energy expecta-
tion value Eosc(l ) is defined in Eq. (A3), and S0 is a constant.
We can therefore estimate the central charge c from the slope
of the uniform contribution

Suni(l ) := S (l ) − αosc Eosc(l ) (2.47c)

to the entanglement entropy S (l ) plotted as a function of
ln[ f (l + 1

2 )].
Using the DMRG method, we have computed the entan-

glement entropy S (l ) and the oscillating part Eosc(l ) of the
local bond-energy expectation value for the quantum spin- 1

2
antiferromagnetic J1-J2 XYZ Hamiltonian (2.1a) for an open
chain hosting up to L = 192 spins at all the continuous quan-
tum critical points from Fig. 5(b) separating the Neelz phase
from the dimer phase. Results for �y = 0.5 are summarized
in Fig. 6. For all the critical values of Jc obtained in Fig. 5(b),
we find the central charge c obtained for L = 192 to be in

the range 0.993 < c < 1.000, in agreement with the analytical
arguments supporting the claim that all Neelα=x,y,z-dimer
quantum critical points realize a c = 1 Gaussian conformal
field theory (CFT) in (1 + 1)-dimensional space-time.

Finally, we estimate the critical exponent η at the transition.
To this end, we have calculated the expectation value of the
local dimer-order operator

OVBS(L) := 〈
Sx

L
2

Sx
L
2 +1 + Sy

L
2

Sy
L
2 +1

+ Sz
L
2

Sz
L
2 +1

〉
L

− 〈
Sx

L
2 −1 Sx

L
2
+ Sy

L
2 −1

Sy
L
2
+ Sz

L
2 −1

Sz
L
2

〉
L

(2.48)

at the center of an open chain of length L (L is chosen a mul-
tiple of four). Here, 〈A〉L denotes the ground-state expectation
value of the operator A for an open chain of length L. At
a continuous quantum critical point, OVBS(L) is expected to
behave as

OVBS(L) ∼ L− 1
2η . (2.49)

Figure 7(a) presents our DMRG data of OVBS(L) for �z =
2.0, �y = 0.5, and J = Jc. They show the expected scaling
behavior (2.49). The estimates of η obtained from the fitting
outlined in Appendix are shown in Fig. 7(b). It is found that,
as anticipated, η > 1 for 0 � �y < �z and η approaches unity
as �y approaches �z, η − 1 ∝ √

2 − �y.

E. Revisiting the Neelz-VBS transition

Having obtained the numerical evidence that the dimer-
Neelα phase boundaries [i.e., the critical values Jc(�y,�z )]
realize a c = 1 conformal field theory in (1+1)-dimensional
space-time for a wide range in the two-dimensional parameter
space (�y,�z ), we return to the dimer-Neelz phase transition
at �z > 1 for |�y − 1| � 1. Our aim is to give a complemen-
tary description of this transition.

As a warmup exercise, we consider first the bosonized
theory (2.8). Because η > 1 in the Hamiltonian density (2.8a),
the operator cos(

√
8π θ ) is irrelevant and thus plays only a

minor role close to the Neelz-dimer transition, a role that we
shall ignore. By inspection of Eq. (2.13c) we deduce that
the φ field is pinned at either φ = √

π/8 or 3
√

π/8 (mod√
2π ) in the Neelz phase. These two values correspond to two
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FIG. 6. Entanglement entropy S (l ) (open circles) and its uniform part Suni(l ) (filled circles) at the quantum critical point J = Jc for �z =
2.0 and �y = 0.5. (a) S (l ) and Suni(l ) for L = 192 are plotted as a function of l . Successive open circles are either above or below the curve
defined by the filled circles. This effect originates from choosing open boundary conditions. (b) S (l ) and Suni(l ) for L = 32, 64, 96, 128, 192
are plotted as a function of ln[ f (xl )] with xl := l + 1

2 .

degenerate Ising-ordered states in the Neelz phase. Suppose
that the ground state is in the Neelz phase and that there
is a domain wall between the two Ising-ordered states [e.g.,
φ = √

π/8 for x < 0 and φ = 3
√

π/8 for x > 0 as shown
in Fig. 8(a)]. At the domain wall the φ field displays a kink
structure that crosses φ = 0 or

√
π/2 (mod

√
2π ), where the

dimer order parameter (2.13d) takes a nonvanishing expecta-
tion value D = cos(

√
2πφ) 	= 0. Conversely, suppose that the

ground state is in the dimer phase in which there is a domain
wall between the two degenerate dimer-ordered states. By
Eq. (2.13d), the φ field must then be pinned at either φ = 0 or√

π/2 (mod
√

2π ). At the domain wall the φ field displays a
kink structure that crosses φ = √

π/8 or 3
√

π/8 (mod
√

2π )
as shown in Fig. 8(b), where the Neelz order parameter (2.13c)
takes a nonvanishing expectation value Nz = sin(

√
2πφ) 	= 0.

Therefore, the center of a domain wall in the Neelz phase
supports a local dimer order and, conversely, a domain wall
in the dimer phase supports a local Neelz order.

We may draw a parallel to the scenario of deconfined
quantum criticality in two spatial dimensions that separate
easy-plane Neel order from dimer order. On the one hand,
U(1) vortices in the Neel-ordered phase nucleate local dimer

order. On the other hand, Z4 vortices in the dimer-ordered
phase nucleate local easy-plane Neel order. The proliferation
of these point defects in one of the ordered phases destroys
this phase in favor of long-range order in the competing phase
[7–9].

Let us return to the fermionic theory with the Hamiltonians
(2.4c) and (2.5b). We first note that the local Neelz operator
can be written in the fermion representation as

nz(x) = ψ
†
L(x) ψR(x) + ψ

†
R(x) ψL(x) = �†(x) σ1 �(x),

(2.50a)

while the local dimer operator can be written as

d (x) = −iψ†
L(x) ψR(x) + iψ†

R(x) ψL(x) = �†(x) σ2 �(x),

(2.50b)

where σ1, σ2, and σ3 are Pauli matrices, and

�(x) ≡
(

ψL(x)
ψR(x)

)
. (2.50c)

102
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FIG. 7. (a) Log-log plot of the dependence of OVBS(L) defined in Eq. (2.48) on L at the critical point J = Jc for �z = 2.0 and �y = 0.5.
(b) Exponent η at the Neelz-dimer transition for �z = 2.0 as a function of �y.
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FIG. 8. Schematic picture of a domain wall in (a) the Neelz phase
and (b) the VBS (dimer) phase.

Equation (2.50b) is obtained from the oscillating contribu-
tions in S+

l S−
l+1 + S−

l S+
l+1 = c†

l+1 cl + c†
l cl+1 and Sz

l Sz
l+1 =

nl nl+1. Equations (2.50a) and (2.50b) encode the correspon-
dence (nz, d ) ↔ (σ1, σ2) between the local pair of order
parameters (nz, d ) and the pair of Pauli matrices, i.e., two
elements of a Clifford algebra.

Taking the two local order operators nz and d as mean fields
(or Hubbard-Stratonovich fields), we replace the XXZ Hamil-
tonian density (2.5b) with the mean field Dirac Hamiltonian
density

HMF(x) := iv(�†σ3∂x�)(x) − gn nz(x) (�† σ1 �)(x)

− gd d (x) (�† σ2 �)(x), (2.51)

which is to be supplemented by the additive Hubbard-
Stratonovich (HS) contributions

HHS(x) := gn n2
z (x) + gd d2(x), (2.52)

where the couplings gn and gd are related to the couplings gu
and g± entering the XXZ Hamiltonian density (2.5b). Integrat-
ing out the Hubbard-Stratonovich fields nz and d reproduces
HXXZ approximately. Therefore, HMF can be used as a starting
point for the discussion of the Neelz-dimer phase transition.
It is important to point out that the two order parameters
nz and d are Dirac mass terms when they are constants in
(1+1)-dimensional space-time.

Suppose that we are in the Neelz phase, in which there
is a domain wall. We thus assume nz(x) = n0

z tanh(x/ξ ) and
d (x) = 0, where ξ is a width of the domain wall. We then
find that there is a zero mode localized at x = 0, which is
an eigenstate of σ2 [53]. This implies that the dimer order
is locally generated at the center of a domain wall in the
Neelz phase. Conversely, if we are in the dimer phase with
a domain wall, where d (x) = d0 tanh(x/ξ ) and nz(x) = 0.
Again we obtain a zero mode localized at x = 0, which is
an eigenstate of σ1 [53]. This implies that the Neelz order is
locally generated at the center of a domain wall in the dimer

phase. These considerations run parallel to the discussion on
domain walls in the bosonized theory.

Next, we consider deriving from HMF an effective theory
for the Neelz-dimer phase transition by integrating out the
Dirac fermions ψM with M = L, R. To this end, the two
order-parameter fields nz and d are regarded as elements of
the vector field

n := (d, nz ) (2.53a)

on which we impose the nonlinear constraint

n2 = 1. (2.53b)

A by-product of this nonlinear constraint is that it regularizes
the domain walls supported by either one of the pair nz and d
in such a way that n points locally toward d when nz vanishes
and conversely. In this way, the zero modes from the previous
paragraph are moved to a finite energy. Integration over the
Dirac fermions in the partition function is now safe.

Expanding the Dirac-fermion determinant in a gradient
expansion of the smooth fluctuations about a saddle point
corresponding to a mean field solution n = n0, we obtain,
after analytical continuation of time t to imaginary time τ ,
the Euclidean effective action given by

S0 = 1

2g

∫
dτ

∫
dx [(∂τ n)2 + (∂xn)2]. (2.54)

Here, we have set the velocity to be unity for simplicity. The
stiffness g is a positive dimensionless coupling constant. The
smooth unit vector field n may be parametrized by a smooth
angle ϕ through

n = (d, n) = (cos ϕ, sin ϕ), (2.55)

in which case the action S0 is now represented by the Gaussian
action

S0 = 1

2g

∫
dτ

∫
dx [(∂τϕ)2 + (∂xϕ)2]. (2.56)

Very much as was the case with Eqs. (2.13c) and (2.13d), the
long-range Neelz order corresponds to pinning ϕ to the values

ϕ = π

2
,

3π

2
(mod 2π ), (2.57a)

while the long-range dimer order corresponds to pinning ϕ to
the values

ϕ = 0, π (mod 2π ). (2.57b)

The four extrema (2.57a) and (2.57b) of cos ϕ and sin ϕ on the
interval 0 � ϕ < 2π are the four local minima of −λ4 cos(4ϕ)
on the same interval with λ4 > 0. We thus add to S0 the
potential −λ4 cos(4ϕ) to stabilize the Neelz and dimer phases.
Furthermore, we can introduce another potential λϕ cos(2ϕ)
that selects either the Neelz or dimer order depending on the
sign of the coupling constant λϕ . We note that the potential
−λ4 cos(4ϕ) reduces the symmetry from U(1) in S0 to Z4,
and the potential λϕ cos(2ϕ) further reduces the symmetry to
Z2 × Z2.

Similarly to the classical XY model in two-dimensional
space, the unit vector n need not be smooth as it may support
point defects in the form of vortices in (1+1)-dimensional
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space-time. The vorticities of such point defects are a topo-
logical attribute such as the charge one vortex at the origin
given by

ϕvtx(τ, x) := arctan
( x

τ

)
, (2.58)

say. It turns out, however, that the relevant vortices to the
Neelz-dimer transition are the charge ±2 vortices, as we will
explain below. The presence of such charge ±2 vortices can
be taken into account by adding to the Lagrangian density in
Eq. (2.56) the cosine potential [46,54,55]

Lvtx := λϑ cos(4πϑ ), (2.59)

where the coupling λϑ is dimensionful. Here, the field ϑ is
related to the field ϕ by the Cauchy-Riemann conditions

∂xϕ = +ig∂τϑ, ∂τϕ = −ig∂xϑ, (2.60a)

once the measure for ϕ has been augmented to accommodate
vortices. Alternatively, in the operator formalism, we must
demand the equal-time commutation relation

[ϕ(x), ϑ (y)] = i	(y − x) (2.60b)

with the convention 	(0) ≡ 1
2 for the Heaviside function.

We have therefore deduced the effective Lagrangian den-
sity [56]

LZ2×Z2
:= −i∂xϑ ∂τϕ + g

2
(∂xϑ )2 + 1

2g
(∂xϕ)2

+ λϑ cos(4πϑ ) + λϕ cos(2ϕ) − λ4 cos(4ϕ),

(2.61)

where λϑ , λϕ , λ4 are dimensionful coupling constants, and
λ4 > 0. The effective Lagrangian density LZ2×Z2

is to be
compared with the Hamiltonian H0 perturbed by the current-
current interaction HJJ through the identifying (ϕ, ϑ ) with
(
√

2πφ, θ/
√

2π ). As we have discussed in Sec. II C, the
critical theory at the Neelz-dimer phase transition is the
Gaussian Hamiltonian (2.9) with the continuous parameter
η > 1 and a U(1)×U(1) symmetry. At the Neelz-dimer tran-
sition, the renormalized coupling constant λϕ vanishes, while
the interaction λ4 cos(4ϕ) is irrelevant and thus vanishes in
the long-distance limit. The parameter η is related to 1/g.
In the Hamiltonian picture, the role of the dual potential
λϑ cos(4πϑ ) is to create a 4π kink in the ϕ field, as seen from
the relation

ei4πϑ (y)ϕ(x)e−i4πϑ (y) = ϕ(x) + 4π 	(y − x). (2.62)

It is important to realize that the shift of ϕ(x) at x = y
is 2π , the period of the ϕ field. The potential cos(2πϑ )
corresponding to charge one vortices would introduce a ±π

shift and therefore is not allowed in the effective action. As
we have seen in Sec. II B, the physical origin of the cos(4πϑ )
potential, or the cos(

√
8πθ ) potential invariant under (2.14),

is S+
l S+

l+1 + S−
l S−

l+1. It is also interesting to point out the
analogy to the case of (2 + 1)-dimensional space-time for
which no monopoles with a charge less than four appear in
the effective theory of deconfined quantum criticality [7–9],
while no vortices with a vorticity less than two appear here.

III. DIRAC SEMIMETALLIC PHASE
IN (d > 1)-DIMENSIONAL SPACE PERTURBED

BY A CONTACT INTERACTION

When the dimensionality d of space is d = 1, we have
shown in Sec. II that the quantum spin- 1

2 antiferromagnetic
J1-J2 XYZ chain supports a pair of gapped phases at zero
temperature, each of which breaks spontaneously an Ising
symmetry, that are separated by a continuous phase transi-
tion with an enlarged U(1)×U(1) continuous symmetry. One
phase is an Ising Neel phase. The other phase is a valence-
bond-solid (VBS or dimer) phase. The driving mechanism for
this transition is the proliferation of a dual pair of domain
walls. The duality means here that a domain wall in the Ising
Neel ordered phase nucleates locally the Ising VBS order,
while the converse also holds, i.e., a domain wall in the Ising
VBS ordered phase nucleates locally the Ising Neel order.
At the quantum critical point, both dual domain walls have
proliferated extensively.

Inspired by Sec. II E, we are going to present a general
framework to describe Neel-VBS quantum phase transition
beyond Landau-Ginzburg theory and related phenomena by
using a model of Dirac fermions in three-dimensional space
(d = 3) with contact interactions. This is a generalization of
the approach taken for d = 2 by Tanaka and Hu [10] and by
Senthil and Fisher [11]. In their work, it was shown that the
effective action for the Neel and VBS order parameter fields
takes the form of a nonlinear sigma model (NLSM) with a
topological term. In particular, for a quantum phase transition
between an easy-plane Neel phase and a VBS phase, the O(4)
nonlinear sigma model with a theta term is obtained as an
effective theory and its connection to the noncompact CP1

model was discussed [11].
Our model for d = 3 supports a pair of long-range ordered

phases at vanishing temperature that break spontaneously the
symmetries of the Hamiltonian, namely, Neel ordering that
breaks the (internal) spin- 1

2 SU(2) symmetry and VBS (dimer)
ordering that breaks the translation and rotation symmetries of
some underlying cubic lattice model. We propose the two pos-
sibilities that these phases are either separated by a continuous
phase transition with an enlarged continuous symmetry or by a
gapless spin-liquid phase that is extended in parameter space.
Hereto, the driving mechanism for these two possibilities is
the proliferation of a dual pair of topological defects.

We will first introduce a tight-binding model on the cubic
lattice and a Dirac Hamiltonian in the continuum limit. The
Neel and dimer order parameters are related to Dirac mass
terms in the Dirac Hamiltonian. Integrating out the Dirac
fermions gives a bosonic effective field theory for the order-
parameter fields, which is a NLSM augmented by a Wess-
Zumino term. The RG flow for this NLSM will be used to
conjecture the fate of the semimetallic phase defined by the π -
flux phase on the cubic lattice at half-filling, when perturbed
by certain local quartic fermionic interactions preserving an
O(3) × O(3) symmetry.

A. The π-flux phase in three-dimensional space
and its instabilities

In this section, we show that the π -flux phase on the
cubic lattice for spinless electrons accommodates an eight-
dimensional representation of the Dirac Hamiltonian at the
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FIG. 9. We define the π -flux model on the three-dimensional
cubic lattice by the following rules. Only nearest-neighbor hopping
amplitudes are allowed. All nearest-neighbor hopping amplitudes
have the magnitude t/2 > 0 and are real valued. The sign of the
nearest-neighbor hopping amplitudes is +1 (−1) when the nearest-
neighbor is colored in black (red).

corner (π, π, π ) of the π -flux phase Brillouin zone. We
show that there are four mass terms at the Dirac point that
anticommute pairwise and are compatible with time-reversal
symmetry and fermion-number conservation, three of which
are compatible with chiral symmetry, one of which breaks
the chiral symmetry. If time-reversal symmetry and fermion-
number conservation are both broken, the corresponding 16-
dimensional representation of the Bogoliubov–de Gennes
Dirac Hamiltonian can be shown to accommodate two addi-
tional massive channels that, together with the four previous
ones, anticommute pairwise [57]. Alternatively, we show be-
low that the π -flux phase on the cubic lattice for spinful elec-
trons also accommodates a 16-dimensional representation of
the Dirac Hamiltonian with six mass terms at the Dirac point
that anticommute pairwise and are compatible with fermion-
number conservation. Three of those masses are associated
to valence-bond (dimer) ordering, while the other three are
associated to antiferromagnetic (Neel) order that breaks the
SU(2) spin symmetry down to a U(1) subgroup.

We consider a cubic lattice with the lattice spacing a/2,
which we partition into eight sublattices with a cubic re-
peated unit cell whose volume is a3. This repeated unit cell
contains eight nonequivalent sites, as is shown in Fig. 9.
The site 3 of this repeated unit cell is assigned the coordi-
nate i ∈ Z3. To each i, we assign the eight-component wave
function

�i ≡ (ψi1 ψi2 ψi3 ψi4 ψi5 ψi6 ψi7 ψi8)T ∈ C8. (3.1)

The local Hilbert space C8 can be represented by the span of
the 16 Hermitian matrices

Xμ1μ2μ3
:= τμ1

⊗ υμ2
⊗ ζμ3

, μ1, μ2, μ3 = 0, 1, 2, 3

(3.2a)

where τμ, υμ, and ζμ each denote a quadruplet of unit 2 × 2
matrix (μ = 0) and Pauli matrices (μ = 1, 2, 3) and the action
of the Pauli matrices τ3, υ3, and ζ3 on the wave function �i is

defined by the following rules. The matrix

X300 = τ3 ⊗ υ0 ⊗ ζ0 (3.2b)

has the eigenvalues +1 and −1 when �i is only nonvanishing
on the face with the vertices (1,3,5,7) and (2,4,6,8) in the yz
plane of the repeat unit cell, respectively. The matrix

X003 = τ0 ⊗ υ0 ⊗ ζ3 (3.2c)

has the eigenvalues +1 and −1 when �i is only nonvanishing
on the face with the vertices (1,2,3,4) and (5,6,7,8) in the zx
plane of the repeat unit cell, respectively. The matrix

X030 = τ0 ⊗ υ3 ⊗ ζ0 (3.2d)

has the eigenvalues +1 and −1 when �i is only nonvanishing
on the face with the vertices (1,2,5,6) and (3,4,7,8) in the xy
plane of the repeat unit cell, respectively.

We define a tight-binding model by the following rules.
Only nearest-neighbor hopping amplitudes are allowed. All
nearest-neighbor hopping amplitudes have the magnitude
t/2 > 0 and are real valued. The sign of the nearest-neighbor
hopping amplitudes is +1 (−1) when the nearest neighbor is
colored in black (red) in Fig. 9.

Hopping along the positive x direction in Fig. 9 takes wave
functions localized on the face (1,3,5,7) in Fig. 9 to wave
functions localized on the face (2,4,6,8) and conversely. This
process is encoded by the product

�1 ≡ −X103 (3.3a)

of the matrices

X100 = τ1 ⊗ υ0 ⊗ ζ0, −X003 = −τ0 ⊗ υ0 ⊗ ζ3, (3.3b)

by inspection of Fig. 9. Hopping along the positive y direction
in Fig. 9 takes wave functions localized on the face (1,2,3,4)
in Fig. 9 to wave functions localized on the face (5,6,7,8) and
conversely. This process is encoded by the product

�2 ≡ +X001 (3.4a)

of the matrices

X001 = τ0 ⊗ υ0 ⊗ ζ1, X000 = τ0 ⊗ υ0 ⊗ ζ0, (3.4b)

by inspection of Fig. 9. Hopping along the positive z direction
in Fig. 9 takes wave functions localized on the face (3,4,7,8)
in Fig. 9 to wave functions localized on the face (1,2,5,6) and
conversely. This process is encoded by the product

�3 ≡ +X313 (3.5a)

of the matrices

X010 = τ0 ⊗ υ1 ⊗ ζ0, X303 = τ3 ⊗ υ0 ⊗ ζ3, (3.5b)

by inspection of Fig. 9. If we choose units such that a =
t = 1, the tight-binding Hamiltonian defined by Fig. 9 is thus
represented by

H kin
k := cos kx �1 + cos ky �2 + cos kz �3 (3.6a)

in the first Brillouin zone

−π

2
� kx �

π

2
, −π

2
� ky �

π

2
, −π

2
� kz �

π

2
,

(3.6b)
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associated with the repeated unit cell of unit volume, where
we have set a = 1.

The eigenvalues of H kin
k are fourfold degenerate and come

in pairs of opposite signs

εk = ±
√

cos2 kx + cos2 ky + cos2 kz. (3.7)

The upper fourfold-degenerate band touches the lower
fourfold-degenerate band at the eight corners

k(±,±,±)
D := (± 1

2 ,± 1
2 ,± 1

2

)
(3.8)

of the Brillouin zone. All those corners are equivalent modulo
a reciprocal wave vector. We may then choose the Dirac point
to be

kD := (
1
2 , 1

2 , 1
2

)
(3.9)

without loss of generality. Expanding to linear order around
the Dirac point H kin

k delivers an eight-dimensional represen-
tation of the massless Dirac Hamiltonian in three-dimensional
space. This representation is twice as large as the four-
dimensional representation of the original Dirac Hamiltonian.
This is an example of fermion doubling.

So far, all hopping amplitudes from Fig. 9 have the same
magnitude t/2. This assumption can be relaxed by demanding
that two consecutive nearest-neighbor bonds along the direc-
tions x, y, and z within the repeat unit cell are changed by the
substitutions

t

2
�→ t

2
∓ dx

2
,

t

2
�→ t

2
± dy

2
,

t

2
�→ t

2
± dz

2
, (3.10)

with dx, dy, dz ∈ R, respectively. With this substitution,

H kin
k �→ H kin

k + V VB
k (3.11a)

with

V VB
k = dx sin kx �4 + dy sin ky �5 + dz sin kz �6, (3.11b)

where

�4 ≡ X203, �5 ≡ X002, �6 ≡ X323. (3.11c)

Here, V VB
k follows from replacing in H kin

k the Pauli matrices
with index 1 by the Pauli matrices with index 2 and the cosine
by the sine function. As it should be

V VB∗
−k = V VB

k . (3.12)

On the other hand, the cubic symmetry of H kin
k is reduced

to an orthorhombic one for generic values of dx, dy, and
dz. Hereto, each member of the triplet of (dimer) masses
(�4, �5, �6) anticommutes with each member of the triplet
of Dirac matrices (�1, �2, �3). Thus, at the Dirac point (3.9),
this dimerization pattern opens up the gap

2|d| ≡ 2
√

d2
x + d2

y + d2
z . (3.13)

Among all 8 × 8 Hermitian matrices, there is one more
matrix of the form (3.2a) that anticommutes with the three
Dirac matrices (3.3a)–(3.5a) and the three dimerization mass
matrices (3.11c). It is the diagonal matrix

�7 := X333 (3.14)

that represents a staggered chemical potential [a charge den-
sity wave with the momentum (π, π, π )]. We conclude that
the most generic opening of a gap at the Dirac point (3.9) is
encoded by the Hamiltonian

Hk := H kin
k + V VB

k + m X333 (3.15a)

with the gap

� ≡ 2
√

d2
x + d2

y + d2
z + m2 (3.15b)

that depends on four real-valued parameters.
So far, we have been considering spinless fermions and we

have assumed that the fermion number was a good quantum
number. We attach to each spinless fermion a spin- 1

2 degree
of freedom, while preserving the conservation of the total
fermion quantum number. We thus introduce the three Pauli
matrices σ = (σ1, σ2, σ3) and the 2 × 2 unit matrix σ0. All
four 2 × 2 matrices act on the spin- 1

2 degrees of freedom. We
also introduce the basis

Xμ1μ2μ3μ4
:= σμ1

⊗ τμ2
⊗ υμ3

⊗ ζμ4
(3.16)

with μ1, μ2, μ3, μ4 = 0, 1, 2, 3 for all 16 × 16 Hermitian
matrices.

Define the 16 × 16 Hermitian matrices

αx ≡ −X0103, αy ≡ X0001, αz ≡ X0313, (3.17a)

βVB
x ≡ X0203, βVB

y ≡ X0002, βVB
z ≡ X0323, (3.17b)

βAF
x ≡ X1333, βAF

y ≡ X2333, βAF
z ≡ X3333. (3.17c)

All nine matrices are Hermitian, anticommute pairwise, and
square to the identity 16 × 16 matrix. We then define the
single-particle tight-binding model

Hk := Hkin
k + HVB

k + HAF
k , (3.18a)

where

Hkin
k := αx cos kx + αy cos ky + αz cos kz, (3.18b)

HVB
k := βVB

x dx sin kx + βVB
y dy sin kVB

y + βVB
z dz sin kz,

(3.18c)

HAF
k := βAF

x nx + βAF
y ny + βAF

z nz. (3.18d)

Reversal of time is defined by conjugation with

T := iX2000 K, (3.18e)

where K represents complex conjugation. Any nonvanishing
value for any one of nx, ny, and nz breaks time-reversal
symmetry.

There are 16 bands that form an eightfold-degenerate
valence band and an eightfold-degenerate conduction band.
Conduction and valence bands are separated by the direct gap

� ≡ 2
√

d2 + n2 (3.19a)

at the eight corners of the Brillouin zone. The gap at the Dirac
point (3.9) thus depends on six real-valued parameters that can
be interpreted as the pair of three-component vectors

d := (dx dy dz ) (3.19b)
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and

n := (nx ny nz ). (3.19c)

The vector d realizes dimerization of the hopping amplitude
within the repeat unit cell of Fig. 9. Using two different
color codes to represent the sign of the dimerized hopping
amplitude realizes a valence-bond covering of the cubic lattice
by which each site is the end point of one and only one colored
nearest-neighbor bond. The vector n realizes a collinear mag-
netic order with the antiferromagnetic wave vector (π, π, π )
within the repeat unit cell of Fig. 9.

B. Dualities between point defects

We work with the single-particle tight-binding Hamilto-
nian (3.18) that we linearize about the Dirac point (3.9).
The cubic lattice is thus replaced by Euclidean space R3,
whose points we denote with r = (rx, ry, rz ). We consider
static configurations of the vector fields d(r) and n(r) that
support a monopole at the origin of R3.

For example, in the presence of one such defect, say
in d, the single-particle tight-binding Hamiltonian (3.18). is
approximated to linear order in a gradient expansion around
the Dirac point (3.9) by

H := iα1∂x + iα2∂y + iα3∂z + f (r)
[
d̂x(r) βVB

x

+ d̂y(r) βVB
y + d̂z(r) βVB

z

]
, (3.20a)

where f (r) is a smooth monotonic function satisfying

f (0) = 0, lim
|r|→∞

f (r) = 1, (3.20b)

while the function d̂ is singular at the origin

d̂(r) := r
|r| (3.20c)

for r ∈ R3. The singularity of d(r) has a topological character,
for the order parameter d has the integer-valued winding
number

W :=
∫
R3

d3r
8π

∂

∂ri

[
εi jk εabc d̂a(r)

(
∂ d̂b

∂r j

)
(r)

(
∂ d̂c

∂rk

)
(r)

]

(3.20d)

of magnitude one around the origin. The single-particle
Hamiltonian (3.20a) obeys the index theorem (see Ref. [53]
and, in a slightly more general context, Ref. [58])

IndexH = W tr σ0 = 2W, (3.20e)

where the left-hand side is the analytical index of H that
counts the difference in the number of zero modes of H with
the chiral eigenvalues ±1, respectively, of a chiral operator
that one may choose to be

βAF
z := X3333 (3.20f)

without loss of generality.
If βAF

z is used as a probe, i.e., as a small perturbation to the
single-particle Hamiltonian (3.20a), it will lift the spin degen-
eracy of the zero modes through the Zeeman effect. Which of
the spin projections acquires a positive energy depends on the

eigenvalue of the chiral zero modes with respect to βAF
z . In

turn, the sign of this eigenvalue depends on which sublattice
[even versus odd sites as measured by (−1)ix+iy+iz ] the chiral
zero modes is nonvanishing, i.e., on the sign of the winding
number. Hence, the core of the monopole in the VBS order
parameter d nucleates Neel order. The same argument can be
reversed to infer that a monopole in the Neel order parameter
n nucleates dimer order at its core.

C. Functional bosonization nonlinear sigma model
with a Wess-Zumino term

We define the dimensionless vector field N(τ, r) ∈ R6

comprised of the Neel, n(τ, r) ∈ R3, and VBS (dimer),
d(τ, r) ∈ R3, order parameters through its components

N(τ, r) ≡ (n(τ, r), d(τ, r)), (3.21a)

n(τ, r) ≡ (nx(τ, r), ny(τ, r), nz(τ, r)), (3.21b)

d(τ, r) ≡ (dx(τ, r), dy(τ, r), dz(τ, r)). (3.21c)

We define the single-particle Dirac Hamiltonian

H := iα · ∂ + m N(τ, r) · β, (3.21d)

where the constant m has the dimension of inverse length

α := (αx, αy, αz ) (3.21e)

and

β := (
βAF

x , βAF
y , βAF

z , βVB
x , βVB

y , βVB
z

)
. (3.21f)

We define the four Hermitian 16 × 16 matrices

γ0 := βAF
x , γ1 := iβAF

x αx,

γ2 := iβAF
x αy, γ3 := iβAF

x αz,
(3.21g)

together with the six 16 × 16 matrices

�1 := βAF
x βAF

x , �4 := βAF
x βVB

x ,

�2 := βAF
x βAF

y , �5 := βAF
x βVB

y ,

�3 := βAF
x βAF

z , �6 := βAF
x βVB

z .

(3.21h)

We define the partition function in (3 + 1)-dimensional Eu-
clidean space-time to be

ZHS :=
∫

D[N] e− ∫
d4x LHS

∫
D[ψ̄, ψ] e− ∫

d4x L, (3.21i)

where

LHS := 1

2

∫
d4x

[
n2(x)

UAF

+ d2(x)

UVB

]
(3.21j)

and

L := ψ̄ (x)

⎡
⎣i

3∑
μ=0

γμ

∂

∂xμ

+ im
6∑

a=1

Na(x)�a

⎤
⎦ψ (x). (3.21k)

Here, UAF � 0 and UVB � 0 are couplings with the dimension
of length raised to the power (d + 1). Moreover, the 16 com-
ponents of ψ̄ (x) and the 16 components of ψ (x) are Grass-
mann valued and independent. Each component depends on
the position x ≡ (xμ) := (τ, r) ∈ R4 in (3 + 1)-dimensional
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Euclidean space-time. If we integrate over the vector field
(order parameter) N in the partition function, there follows
the quartic contact fermionic interaction density

m2 UAF

2

3∑
a=1

(ψ̄ �a ψ )2 + m2 UVB

2

6∑
a=4

(ψ̄ �a ψ )2

= −m2 UAF

2

3∑
a=1

(
ψ†βAF

a ψ
)2 − m2 UVB

2

3∑
a=1

(
ψ†βVB

a ψ
)2

,

(3.22a)

where

ψ̄ ≡ ψ† iβAF
x . (3.22b)

When the fermionic quartic interaction in the channel a =
1, . . . , 6 is expressed in terms of (ψ† βa ψ )2, it may be
interpreted as an attractive interaction since (ψ† βa ψ ), as an
operator, is Hermitian so that its square can only have positive
or vanishing eigenvalues.

Alternatively, we may also define the partition function

ZNLSM :=
∫

D[N] δ(N2 − 1)
∫

D[ψ̄, ψ] e− ∫
d4x L. (3.23)

As any m 	= 0 opens a spectral gap in the single-particle
Dirac spectrum, we can integrate approximately the Grass-
mann fields within a gradient expansion. There follows the
approximate bosonic partition function

ZNLSM ≈
∫

D[N] δ(N2 − 1) eiStopo[N] e− ∫
dτ

∫
d3xLeff . (3.24a)

The Lagrangian density

Leff := 1

2g

3∑
μ=0

(∂μN)2, x ≡ (τ, x) ≡ (xμ), (3.24b)

in imaginary time x0 ≡ τ := it is that of the nonlinear sigma
model (NLSM) with the unit sphere S6−1 = S5 as the target
manifold. The bare coupling

g ∝ m1−d (3.24c)

has the dimension

[g] = [length]d−1 (3.24d)

with d = 3. A necessary condition for the presence of the
phase factor exp(iStopo[n]), one that is compatible with local-
ity, is that the homotopy group

πn(S5) 	= ∅ (3.24e)

is not trivial for one of the integers n = 1, 2, . . . , 5 (the upper
bound 5 = d + 2 with d = 3 on n follows from demanding
that the equations of motion for N are local). This condition
is only met for n = 5.

Explicit computation (see Ref. [59] and references therein)
yields the nonvanishing topological action given by

Stopo[N] = 2π SWZ[N]. (3.25a)

Here, SWZ[N] is the Wess-Zumino action, an action that is
nonlocal in (3 + 1)-dimensional Euclidean space-time, but

delivers local equations of motion. When Euclidean space-
time R3+1 is compactified to S3+1, the Wess-Zumino action
is given by

SWZ[N] = 1

(3 + 2)! Area(S3+2)

∫ 1

0
du

∫
S3+1

d3+1x

× εμ1...μ3+2
εaa1...a3+2

N̄a(u, x) ∂μ1
N̄a1

(u, x) . . .

× ∂μ3+2
N̄a3+2

(u, x), (3.25b)

whereby the vector field

N̄(u, x) = (N̄1(u, x), . . . , N̄3+2(u, x), N̄3+3(u, x)) (3.25c)

smoothly interpolates between

N̄(0, x) := (0, . . . , 0, N3+3(x)) (3.25d)

and

N̄(1, x) := (N1(x), . . . , N3+2(x), N3+3(x)) ∈ S3+2 (3.25e)

as a function of 0 � u � 1. The real-valued vector field
N̄(u, x) is therefore defined on a disk D ⊂ R3+2 such that
its boundary is the compactified space-time S3+1, i.e., ∂D =
S3+1. The existence of the smooth vector field (3.25c) obeying
conditions (3.25d) and (3.25e) is guaranteed from the identity
π3+1(S3+2) = ∅.

D. Phase diagrams

In this section, we discuss the phase diagrams of models
(3.24) and (3.21), in this order. We then discuss the phase
diagram of a cubic lattice model that realizes the π -flux
phase in the noninteracting limit and, upon switching on local
fermionic interactions with O(3) × O(3) symmetry, can be
described by the effective field theory (3.21) in the low-energy
limit.

With regard to the NLSM (3.24), we need to review the
RG flow of NLSMs on Riemannian manifolds with positive
curvature at zero temperature when space has dimension d �
2 (i.e., space-time has dimension greater than or equal to 3).
In the absence of a topological term, there are two phases
as shown in Fig. 10(a). (1) There is a long-range ordered
phase with spontaneous breaking of a continuous symmetry
when g < gc. (2) There is a symmetric quantum disordered
gapped phase when g > gc. (3) The quantum critical point
g = gc realizes a continuous phase transition between these
two phases of matter. Adding a topological term does not
modify the perturbative RG flow when g � gc. However, it
does change the nature of the fixed point of the RG flow when
g > gc, as this fixed point now describes a symmetric gapless
phase, as is indicated in Fig. 10(b).

With regard to the model (3.21), we conjecture that its
phase diagram at zero temperature can be deduced from the
phase diagram in Figs. 10(a) and 10(b) as follows. Let

�U := UAF − UVB

2
(3.26a)

measure the anisotropy in the relative strength between the
coupling UAF � 0 of the interaction favoring Neel order and
the coupling UVB � 0 of the interaction favoring dimer order.
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g

Deconfined
critical point

Free Dirac
fermion

symmetric
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SSB2

SSB1

SSB

(b) With topological term

U

ΔU

g

First order
phase transition

Free Dirac
fermion

symmetric
gapped phase

SSB2

SSB1

SSB

(a) Without topological term

U

ΔU

FIG. 10. Renormalization-group (RG) flows for the NLSM with O(6) symmetry in (3 + 1)-dimensional space-time (a) without any
topological term and (b) with a Wess-Zumino term. (c), (d) Show RG flows for Dirac fermions perturbed by O(3) × O(3) symmetric
interactions in (3 + 1)-dimensional space-time, assuming that bosonization in their Mott insulating phases delivers the RG flows in (a) and (b),
respectively, when the interactions are fine tuned to an O(6) symmetric interaction.

We denote with

U := UAF + UVB

2
(3.26b)

the mean value of UAF � 0 and UVB � 0. The isotropic case
is defined by

�U = 0, U = UAF = UVB. (3.26c)

We consider the isotropic case (3.26c) first, in which case
the O(3) × O(3) symmetry of the anisotropic quartic contact
fermionic interaction (3.22a) becomes the O(6) symmetry of
the isotropic contact fermionic interaction

m2 U

2

6∑
a=1

(ψ̄ �a ψ )2

= −m2 U

2

[
3∑

a=1

(
ψ†βAF

a ψ
)2 +

3∑
a=1

(
ψ†βVB

a ψ
)2

]
. (3.27)

Since any point-contact interaction for Dirac fermions at half-
filling is irrelevant within perturbative RG when the dimen-
sionality d of space is larger than one (d > 1), the ground state
for small U is adiabatically connected to that in the noninter-
acting limit U = 0. Upon increasing the coupling U above
some critical value Uc, a single-particle gap opens, long-range
order is established, and the mapping to an effective NLSM
becomes a good approximation at low energies. Since the bare
coupling g in the NLSM and the bare fermionic coupling U
have the relationship g ∼ U , we expect a long-range ordered
phase for intermediate values of U , and a symmetric phase
for larger values of U that is either gapped in the absence of
a topological term [Fig. 10(c) with �U = 0] or gapless in the
presence of a topological term [Fig. 10(d) with �U = 0].

If we break the O(6) symmetry of the quartic interaction
(3.27) by assuming that �U 	= 0 in

UAF = U + �U, UVB = U − �U, (3.28)

we infer the phase diagrams in Figs. 10(c) and 10(d) de-
pending on the absence or presence of dual topological point

defects, respectively. Indeed, the choice U � Uc with �U > 0
selects the mean field order parameter N̄ = (n̄, d̄ ) aligned
along the antiferromagnetic direction (n̄, 0). The choice U �
Uc with �U < 0 selects the mean field order parameter N̄ =
(n̄, d̄ ) aligned along the direction of (0, d̄ ). These two ordered
phases are separated by a first-order phase transition point
in the NLSM perturbed by a symmetry-breaking term in
the absence of a topological term as shown in Fig. 10(c)
(we have ignored the case of a phase with coexisting orders
for simplicity). However, in the presence of a topological
term, the segment Uc < U < U� and �U = 0 should instead
be governed by a quantum critical point (which is a d = 3
analog of the deconfined quantum critical point proposed
in Refs. [7–9] when d = 2) at U = U� and �U = 0 [see
Fig. 10(d)].

The phase diagram of a local fermionic lattice regular-
ization of the model (3.21) would then look as follows (see
Fig. 11). When both UAF and UVB are small, fermionic
interactions are irrelevant perturbations to the semimetallic
phase (the noninteracting π -flux phase). When UVB = 0 while
increasing UAF > 0 across the critical value U c

AF > 0, the
semimetallic phase is unstable to a Neel long-ranged ordered
antiferromagnetic (Mott) insulating phase. When UAF = 0
while increasing UVB across the critical value U c

VB > 0, the
semimetallic phase is unstable to a dimer long-ranged ordered
(Mott) insulating phase. Now, the π -flux phase on the square
lattice perturbed by local fermionic interactions with O(3) ×
O(2) symmetry shows the direct phase transition between
Neel and dimer phases for sufficiently large UAF = UVB. This
direct phase transition is governed by an unstable fixed point,
namely, the fixed point of the NLSM with a topological
term that describes a gapless symmetric phase with O(5)
symmetry [10,11,29]. Similarly, one possible scenario for
the π flux on the cubic lattice that is perturbed by local
fermionic interactions with O(3) × O(3) symmetry is that the
Neel and dimer phases are separated by a phase boundary that
is governed by a single unstable fixed point, namely, the fixed
point of the NLSM with a topological term that describes a
gapless symmetric phase with O(6) symmetry, as is shown
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FIG. 11. Two possible phase diagrams for interacting fermionic
tight-binding models at half-filling with an O(3) × O(3) symmetry
that realize the π -flux phase on the cubic lattice in the noninteracting
limit. (a) There exists a phase boundary between the Neel and
dimer (valence bond solid) phases that is governed by a continuous
quantum critical point at which the dual point defects of either phases
have simultaneously proliferated. (b) The Neel and dimer (valence
bond solid) phases do not touch. They are separated by a gapless
spin-liquid (SL) phase characterized by the dual point defects of
either phases being simultaneously deconfined.

in Fig. 11(a). However, working in d = 3 allows for another
scenario that is shown in Fig. 11(b). In three-dimensional
space, the antiferromagnetic and dimer dual point defects
might be simultaneously deconfined in an extended region of
coupling space instead of a single point in coupling space as
is the case in two-dimensional space [26]. If so, a gapless
spin-liquid (SL) phase, in which some putative matter fields
are coupled to Abelian gauge fields in a Coulomb-type phase,
could separate the Neel phase from the dimer long-range
ordered phases.

IV. SUMMARY

The phase diagram at vanishing temperature of the quan-
tum spin- 1

2 antiferromagnetic J1-J2 XYZ chain was studied
using both bosonization and numerical techniques. The sym-
metry group of the quantum spin- 1

2 J1-J2 XYZ chain obeying
periodic boundary conditions is generated by

G := Rα
π × Rβ

π × T × P × 	. (4.1a)

Here, Rα
π and Rβ

π denote any pair of distinct π rotations around
the α 	= β = x, y, z axis in spin space, T denotes a translation
by one lattice spacing, P denotes a site inversion, and 	

denotes reversal of time. It was shown that there are four
gapped long-ranged ordered phases consisting of three Neel
phases and one dimer phase. The corresponding patterns of
spontaneous symmetry breaking (SSB) are

G → GNα
:= Rα

π × P × (T 	) (4.1b)

for the Neelα phase with α = x, y, z and

G → GVBS := Rα
π × Rβ

π × 	 (4.1c)

for the dimer (VBS) phase. Because no pair of these resid-
ual symmetry groups obeys an ordering relation through the
inclusion, Landau’s theory of phase transitions precludes a
direct continuous phase transition between any pair of these
long-range ordered phases. Instead, Landau’s theory of phase
transitions predicts either coexistence or a direct first-order
phase transition. Contrary to this expectation, we have shown

that the three Neel phases and the dimer phase are separated
from each other by six planes of phase boundaries realizing
Gaussian criticality when 0 � J2/J1 < 1

2 . We also have shown
that each long-range ordered phase harbors topological point
defects (domain walls) that are dual to those across the phase
boundary in that a defect in one ordered phase locally binds
the other type of order around its core. The Landau-forbidden
continuous phase transitions are driven by the simultaneous
proliferation (deconfinement) of these dual topological point-
like defects.

We have also shown that a one-dimensional model of
interacting fermions with a suitable choice of interactions
can undergo a Landau-forbidden phase transition belonging to
the same Gaussian universality class as those in the quantum
spin- 1

2 antiferromagnetic J1-J2 XYZ chain. Moreover, the
mechanism at play here is not tied to the dimensionality of
space. This observation led us to consider a tight-binding
model on the cubic lattice that realizes a semimetallic phase
in the noninteracting limit (the π -flux phase). Upon lineariza-
tion of the noninteracting spectrum about the Fermi points
(Dirac points) and the addition of interactions displaying an
O(3) × O(3) symmetry in the continuum, sufficiently strong
interactions can stabilize two Mott phases. One Mott phase
supports collinear antiferromagnetic order. The other Mott
phase supports dimer long-range order on the lattice. Both
ordered phases were shown to support topological point de-
fects, hedgehogs, that are dual to each other in that a defect in
one ordered phase locally binds the other type of order around
its core. When the bare interaction strengths are fine tuned so
as to display the symmetry O(6) and assuming that the bare
interactions select a Mott insulating phase with the pattern
of symmetry breaking O(6) → O(5), functional bosonization
yields a nonlinear sigma model augmented by a Wess-Zumino
term. From this fact, we conjectured that the Mott insulating
phases are either separated by a phase boundary governed by
a quantum critical point or by a gapless spin-liquid phase,
both displaying an O(6) symmetry and simultaneous pro-
liferation of the dual hedgehogs. A lattice regularization of
the fermionic field theory could be amenable to sign-free
Monte Carlo simulations, as was done in Refs. [29,30] in
two-dimensional space.
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APPENDIX: MORE ON NUMERICS

1. The critical coupling Jc(L)

The finite-size critical couplings Jc(L), obtained from the
position as a function of 0 � J < 1

2 of the cusp singularity
of �E0(L) for given values of L, �y, and �z entering the
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quantum spin- 1
2 antiferromagnetic J1-J2 XYZ Hamiltonian

(2.1a), is extrapolated to its thermodynamic limit

Jc ≡ lim
L→∞

Jc(L) (A1a)

using the second-order polynomial in 1/L given by

Jc(L) = Jc + α1

L
+ α2

L2
. (A1b)

The fitting was done using the values of Jc(L) for L =
8, 10, . . . , 20 obtained from exact diagonalization as input
and taking Jc, α1, and α2 as free parameters. Figure 12 shows
the results for �z = 2.0 and �y = 0.5. The errors in Jc are
estimated from the difference between the extrapolated value
and Jc(L = 20). They are less than 0.4% of Jc. Incidentally,
the coefficient α1 is much smaller than Jc and α2 for all the
cases calculated: α1 is of the order 10−3 while Jc and α2 are
of the order 10−1. This suggests that α1 = 0 as was already
found for the quantum spin- 1

2 antiferromagnetic J1-J2 XXZ
chain [38].

2. DMRG

We performed the DMRG calculations for open chains
hosting up to L = 192 spins (L is chosen a multiple of four).
The maximum number of the states that were kept was χ =
160. We checked that the average of the weight of discarded
states at each step over the final DMRG sweep was smaller
than 6 × 10−11. We thereby confirmed that the DMRG data
are accurate enough for our analysis.

3. Entanglement entropy

We consider an open chain made hosting L spins with L
being a multiple of four. Let l � 1 be an integer smaller than
L. The entanglement entropy S (l ) is defined by

S (l ) := −
∑

j

ρl ( j) ln ρl ( j), (A2)

where ρl ( j) is the jth eigenvalue of the subdensity matrix
for the left l-site block in the ground state of the full open
chain. As seen from Fig. 6, S (l ) contains a sizable oscillating
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FIG. 12. Extrapolation of the critical coupling Jc(L) to its limit
Jc when L → ∞ for �z = 2.0 and �y = 0.5.
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(L) (unfilled symbols) and
OVBS(L) (filled symbols) for �z = 2.0 and �y = 0.5 as functions
of J .

component that arises from the use of open boundary con-
ditions. It was found numerically [51,52] that the oscillating
contribution to the entanglement entropy S (l ) that originates
from choosing open boundary conditions is proportional to the
oscillating component of the local bond-energy expectation
value

Eosc(l ) := Ebond(l ) − Euni, (A3a)

with

Ebond(l ) := J1

〈(
Sx

l Sx
l+1 + �y Sy

l Sy
l+1 + �z Sz

l Sz
l+1

)〉
L

+ J2

2

〈(
Sx

l−1 Sx
l+1 + �y Sy

l−1 Sy
l+1 + �z Sz

l−1 Sz
l+1

+ Sx
l Sx

l+2 + �y Sy
l Sy

l+2 + �z Sz
l Sz

l+2

)〉
L. (A3b)

The oscillating component Eosc(l ) enters S (l ) through

S (l ) = c

6
ln

[
f

(
l + 1

2

)]
+ αosc Eosc(l ) + S0. (A3c)

We have computed the local bond-energy expectation value
Ebond(l ) as well as the entanglement entropy S (l ) using the
DMRG method and obtained Eosc(l ) by subtracting

Euni := 1

2

[
Ebond

(
L

2

)
+ Ebond

(
L

2
+ 1

)]
(A3d)

from Ebond(l ). Then, we have performed the least-square
fitting of the data of S (l ) and Eosc(l ) to Eq. (A3c) taking c,
αosc, and S0 as fitting parameters. The data around the center
of an open chain (for 3L/8 � l � 5L/8) were used in the
fitting. We thereby determine the central charge c.

4. Long-range order from DMRG

We have measured the dimer and Neelz order parameters
using the DMRG method on each side of a continuous quan-
tum critical point reached by moving away from the value
Jc holding the anisotropies �y and �z fixed. Here, Jc was
identified by using methods based on exact diagonalization.

With regard to the dimer order, we calculated the local
order parameter OVBS(L) defined in Eq. (2.48). Whereas the
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FIG. 14. Panels (a), (b), (c), and (d) are the counterparts to Figs. 5(a), 13, 6(b), and 7(a), respectively, when �z = 3.0 and �y = 2.0. The
central charge c obtained in (c) (using the data for L = 192) is c = 0.994, and the exponent η obtained in (d) is η = 1.22.

two inequivalent dimer states are degenerate for finite chains
hosting an even number of spins and obeying periodic bound-
ary conditions, this is not true anymore when these chains
obey open boundary conditions, as translation symmetry is
broken by the two boundaries.

With regard to the Neelz order, the choice of open boundary
conditions for a chain hosting an even number of spins is
compatible with reversal of time, the operation that exchanges
the two inequivalent classical Neelz states. Hence, no sponta-
neous symmetry breaking of time-reversal symmetry occurs
for a chain hosting a finite and even number of spins. In order
to detect numerically Neelz order, we added to Hamiltonian
(2.1a) a symmetry-breaking term by coupling the first and
last spins to a staggered magnetic field, i.e., we added to
Hamiltonian (2.1a) the boundary energy cost

Hh := −h
[
Sz

1 − (−1)L Sz
L

]
(A4)

with h = 100 J1. By design, Hh lifts the degeneracy of the
classical Neelz states. We then calculated the local Neelz-order
parameter ONz

(L) defined by

ONz
(L) := 〈(

Sz
L
2 +1

− Sz
L
2

)〉
L. (A5)

We note that Hh is added only when we compute ONz
(L). We

set h = 0 for all other observables.
Figure 13 shows the dependence on J of the Neelz order

parameter ONz
(L) and of the dimer order parameter OVBS(L)

for �z = 2.0, �y = 0.5, and given L. These data suggest that
the model exhibits the Neelz long-range order for J < Jc and
the dimer long-range order for J > Jc. We have performed
the same analysis along all one-dimensional cuts with �z =
2.0 and the values of �y given in Fig. 5(b) for which a putative
Neelz long-range ordered phase is separated from a putative
dimer long-range ordered phase by a continuous quantum
critical point Jc as determined by exact diagonalization tech-
niques. For all cases, the long-range ordered phases are the
Neelz and dimer phases.

5. Scaling exponent η at quantum criticality

In order to estimate the exponent η at the Neelz-dimer
transition, we make the scaling ansatz

OVBS(L) = A L− 1
2η (A6)

taking η and A as fitting parameters. The estimate of η was
obtained from the fitting using the data of OVBS(L) for 64 �
L � 192 while the error in η was determined by the difference
between the estimate and η obtained using the data for 32 �
L � 192.

6. Complementary cuts

We have repeated our numerical analysis along the one-
dimensional cuts (2.46) with �y given in Fig. 5(b) for the three
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one-dimensional cuts

�z = 3.0, �y = 0.0, 0 � J < 0.5, (A7a)

�z = 3.0, �y = 0.5, 0 � J < 0.5, (A7b)

�z = 3.0, �y = 2.0, 0 � J < 0.5. (A7c)

Figure 14 shows the numerical data along the one-
dimensional cut (A7c). Hereto, the existence of a continuous
quantum critical point with central charge c = 1 separating
the Neelz phase from the dimer phase is confirmed. The same
is true for the one-dimensional cuts (A7a) and (A7b).
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