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Emergent reflection symmetry from nonrelativistic composite fermions
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A recent experimental study [Pan ef al., arXiv:1902.10262] has shown that fractional quantum Hall effect gaps
are essentially consistent with particle-hole symmetry in the lowest Landau level. Motivated by this result, we
consider a clean two-dimensional electron system from the viewpoint of composite fermion mean-field theory.
In this paper, we show that while the experiment is manifestly consistent with a Dirac composite fermion theory
proposed recently by Son, it can equally well be explained within the framework of nonrelativistic composite

fermions, first put forward by Halperin, Lee, and Read.
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I. INTRODUCTION

In the limit of an infinitely strong perpendicular magnetic
field, the dynamics of a two-dimensional electron system
(2DES) is governed entirely by the lowest Landau level
(LLL) [1,2]. In the absence of disorder, it is well known
that electrons in the LLL interacting with Coulomb forces
explicitly satisfy particle-hole symmetry [3,4]. For example,
the properties of fractional quantum Hall states at filling
fraction v are identical to those at filling fraction 1 — v,
since both are particle-hole conjugates of one another. To
the extent that particle-hole symmetry breaking effects, such
as quenched disorder and Landau level mixing are weak,
particle-hole symmetric response can be observed directly in
an experiment.

In a recent study [5], magnetotransport measurements of
a high-mobility 2DES have directly verified the expectation
of particle-hole symmetry. The 2DES was studied at a fixed
external magnetic field, while the chemical potential was
tuned (through electrostatic gating), enabling a comparative
study of fractional quantum Hall states at v and 1 — v at the
same magnetic field. The authors reported that gaps at v =
1/3 and v = 2/3, extracted from the temperature dependence
of the longitudinal resistance, were nearly identical. Similar
observations occur between particle-hole conjugate states at v
and 1 — v, forv =2/5,3/7,4/9. In addition, the experiments
in Ref. [5] also display a reflection symmetry in the con-
ductivity tensor about v = 1/2, which implies particle-hole
symmetric electromagnetic response within the LLL.

While the existence of particle-hole symmetry is well un-
derstood from microscopic physics in the lowest Landau level,
its realization in low-energy effective descriptions is challeng-
ing. A prominent such theory involves emergent fermionic
particles known as composite fermions, which roughly cor-
respond to electrons bound to two flux quanta [6,7]. Such
theories have successfully explained the phenomenon of a
gapless Fermi-liquid-like state at v = 1/2. At filling fraction
v = 1/2, composite fermions encounter, on average, zero net
magnetic field and fill up a Fermi sea. Neighboring fractional
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quantum Hall states away from v = 1/2 correspond to integer
quantum Hall states of composite fermions. This way, much
of the phenomenology of the quantum Hall effect can be
captured qualitatively by composite fermion descriptions [8].
One remaining challenge, which has been the focus of a great
deal of recent work [9-19], amounts to determining how the
constraint of particle-hole symmetry can be incorporated in
composite fermion-based theories [20].

In this paper, we consider the observation of particle-
hole symmetric fractional quantum Hall states within various
composite fermion descriptions. We consider a nonrelativistic
theory [21] of composite fermions first studied by Halperin,
Lee, and Read (HLR). While the HLR Lagrangian appears
to violate particle-hole symmetry, we show how nevertheless
the theory is perfectly capable of exhibiting particle-hole
symmetric electromagnetic response.

II. STATEMENT OF THE PROBLEM

In this section, we phrase the constraint of the experiments
in Ref. [5]. Electrons in the lowest Landau level are described
by a Lagrangian density of the form

L=YKy+ply +.... (1)
where K4 = iDg + ﬁﬁi, DZ =0, —iA,, n e {t,x,y}, and

the ... are crucial interactions that lift the extensive Landau
level degeneracy, giving rise to the fractional quantum Hall ef-
fect. At filling fraction v, the chemical potential u is adjusted
such that

(&10) = Vﬁs B =0,A, — ayAx~ (2
2 ’

The composite fermion framework gets around the challenge
of contending with the degeneracy, by making an exact map-
ping to a system of composite fermions coupled to both the
external gauge field, and a dynamical U (1) gauge field with a
Chern-Simons (CS) term:

- A 1
‘C:f[Ka+A+M]f+gada+"', 3)
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where ada = €,,,4a,0,a,, and the --- now also include a
Maxwell term for a and less relevant couplings. The above
theory is as difficult to analyze as the electron theory; its
advantage, however, is that it motivates a simple mean-field
approximation that enables us to capture the essence of the
relevant physics. We will restrict our analysis exclusively
to a mean-field treatment of the composite fermion system.
Moreover, since our interest here is only in the gapped frac-
tional quantum Halls states, such mean-field approximations
provide leading-order terms of a series with finite radius of
convergence.

Having disposed of such caveats, let us focus on the issue
of particle-hole symmetry. From the equation of motion of a,
namely,

= b
<ff>+E:07 bzaxay_ayax (4)
and since the composite fermions and electrons are at the same
density,

(V)= (ff)=2vB+b=0. &)
The significance of the above expression is that since
the composite fermions couple to a+ A, the net mag-
netic field experienced by composite fermions in mean-field
theory is b+ B. At v = 1/2, this field vanishes, and the
mean-field ground state is a filled Fermi sea of composite
fermions.

Let us define a composite fermion filling fraction v, as the
ratio of the density of composite fermions and the flux density
of the total field b + B. From the expressions above, it follows,

(ff) v
of =2 —— = . 6
A R Yy ©
Thus, while v =1/3 corresponds to v,y =1, the particle-
hole conjugate state v = 2/3 corresponds to v,y = —2. Since

the vy = 1 and v,y = —2 states are not related by any ob-
vious underlying symmetry, it seems impossible for these
two states to make equivalent predictions for the elec-
tronic systems, unless there is significant fine tuning at
play. It would seem, therefore, that the HLR theory can-
not make contact with the experiment described above.
Such a hasty declaration, however, is false, as we describe
next.

III. RESOLUTION OF THE PROBLEM

A careful analysis of the equations of motion of Eq. (3)
leads to a natural resolution of the puzzle posed in the previous
section. Consider the following thought experiment. Let us
start with the chemical potential u tuned such that v = 1/2,
and the density of electrons and composite fermions is n,, =
B/4m. Next, to access nearby fractional quantum Hall states,
we vary u. One must be careful to note, however, that as
we vary u, we change the density of composite fermions,
which in turn affects the density of flux b + B encountered
by composite fermions. To be explicit, let u — u + V, where
V is the change in the gate voltage. Within linear response, the
corresponding change in the density of composite fermions is
related to the change in chemical potential via the compress-

ibility x = m/2m of composite fermions [22],

b

(ff) = _+ZVZ_E’ @)

where we used the equation of motion of @, in the second
equality above. Therefore, we may relate the shift in the
chemical potential to an effective magnetic field

B+b

V:_W' ®)

We can then incorporate this constraint in Eq. (8) and write
the HLR Lagrangian in the presence of V as
b+ B 1
L=f|Ria+n———|f+-—adat.... (9
2m 8
Observing again that the composite fermions only couple to
the sum a + A, we may shift the dynamical field a — a — A,
and rewrite the above Lagrangian as

N b 1
£=f|:Ka+,bL—%:|f+8—n(d—A)d(d—A)+....
(10)

In a mean-field approximation, the first term above describes
a noninteracting particle in a magnetic field b = 9.a, — dya,
with an additional Zeeman-like coupling —ﬁ ff. The corre-
sponding Landau level spectrum is

b 1
E,,:U(H%), n=0,1,2,... (D

m

and where ¢ = sgn(b) depends on the sign of the compos-
ite fermion magnetic field, which, in the original electron
coordinates, determines whether the electron filling fraction is
being increased or decreased from v = 1/2. The key observa-
tion to make above is that with a fixed u, the number of filled
composite fermion Landau levels depends on ¢ = sgn(b): if p
Landau levels are filled for ¢ = 1, then p + 1 Landau levels
are filled for the same p when ¢ = —1. This mismatch of one
Landau level precisely corrects the discrepancy discussed in
the previous section.

To see how this comes about, imagine that the chemical
potential is tuned to a fractional quantum Hall plateau, with
some integer p of composite fermion Landau levels being
filled for ¢ = 1. Then, upon integrating out the composite
fermions, we find
1-¢

+
P75 da+ ... (2

47

where ... now refer to subleading corrections that are sup-
pressed by the fractional quantum Hall energy gaps. Gathering
both terms in Eq. (10), we find
P+ 5 1
= g —2% ada+ —(a—A)d(a—A)+ (13)

- b
fI:Ka+:u_ﬁi|f=

To obtain the electromagnetlc response, we integrate out a and
obtain

1
o= ——L _pqa, v=_2L
4 2p+1 2p+1
1 1 1
o L P pa w2 P (14)
4r 2p+1 2p+1
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From this, we see that the transformation b — —b is equiv-
alent to v — 1 — v: particle-hole symmetry is equivalent to
flipping the sign of the magnetic field of composite fermions.
But for the zero modes, which are present only when b < 0,
there is a spectral equivalence between the nonzero energy
Landau levels under this transformation. Hence, we may
expect that the corresponding observables are identical in both
cases.

IV. COMPARISON WITH DIRAC COMPOSITE FERMIONS

Next, we compare the results obtained in the previous
section with the predictions of Son’s Dirac composite fermion
theory [9] and show that at the level of mean-field theory con-
sidered here, they are identical. To motivate the Dirac compos-
ite fermion theory, let us, for the sake of amusement, consider
the problem of a single two-component Dirac electron in the
lowest Landau level. The corresponding Lagrangian is

L=iyPsp — %AdA + (15)

The second term above comes from the parity anomaly [23].
In a simple lattice regulated theory, there is a doubler fermion,
which in this case is necessarily massive (since by assumption
we have a single, light two-component Dirac electron), and
upon integrating it out, we obtain a level-half Chern-Simons
term for A. We motivate the Dirac composite fermion theory
by following the usual procedure of flux attachment used in
the nonrelativistic case: we attach two flux quanta by replac-
ing in the Lagrangian L[A] — L[A + a], with a,, a dynamical
U (1) gauge field, and add a level-1/2 Chern-Simons term for
a:

Les

1 1
iXDatax — E(A +a)dA+a)+ gada 4.
1

1
= ifDPux — —ada+ —(a—A)d@a—A) +--- .
kY4 8

(16)

In the last line above, we again shifted a, — a, — A, as
before. This Lagrangian was postulated by Son to describe
a particle-hole symmetric lowest Landau level. The form
written above enables us to compare directly the predictions
of the HLR theory in the previous section with those of the
Dirac theory. The second term above can be interpreted as
the contribution from a massive Dirac partner whose mass
is much larger than the energy scales of interest. For the
remaining massless fermion, when we tune away from v =
1/2, we fill (p + 1/2) Landau levels for either sign of field.
The “1/2” comes from the zero mode, which is always half-
filled. Thus,

+1 1 1
Lla, Al = {p 2ada + —(a—A)d(a—A) — —ada
4 8w {7
1—
(+5) o
={——%ada+ —(a—A)da—-A). (17)
4 8

Consequently, the Dirac theory and the HLR theory de-
scribed in the previous section have the same response prop-
erties. The massive partner effectively adds another half-filled
Landau level that, in conjunction with the Landau levels of the

b<0
E
ol —— —%ada - ﬁiﬁ
— 0t ——
b>0
E
of —— ——%ada - " ﬁiﬁ
— 0
(a) (b)

FIG. 1. (a) A schematic for the response of Dirac composite
fermion theory to an applied gate voltage. Energy levels shown with
green, red, and blue colors represent negative, positive, and zero
energy Landau levels, respectively. The number of filled Landau
levels is p + % for either sign of the effective magnetic field. Taking
into account the contribution of the massive Dirac partner, one gets
p filled Landau levels for » > 0 and p 4+ 1 Landau levels for b < 0.
This is identical to the response of the HLR theory depicted in (b) as
explained in Sec. III.

massless Dirac fermion, precisely reproduces the nonrelativis-
tic spectrum of Landau levels of HLR theory and both satisfy
the expectations of particle-hole symmetric electromagnetic
response. This is summarized in Fig. 1.

V. GENERALIZATION TO EVEN DENOMINATOR
FILLINGS v = 5,

Similar experiments to the one in Ref. [5] can be performed
in the neighborhood of even denominator fractions at v =
1/2q. Although such states lack particle-hole symmetry [24],
they may exhibit an emergent reflection symmetry in the
conductivity tensor [25,26]. We can generalize our description
of v = 1/2to such states. At v = 1/2g, the composite fermion
Lagrangian is

L= fRyiaf + %]iada. (18)
The above theory can be viewed as arising from
L= fRyraraf + —ia/da/ + liaala. (19)
2(q—1)4n 24m

This can easily be seen by noting that the combination a — @’
can be integrated out, since it does not couple to the fermions.
The second form of the Lagrangian is more convenient, as
it enables us to view the physics of v = 1/2¢g as a half-
filled Landau level of composite fermions, which see zero net
magnetic field at v = 1/2(q — 1).

We proceed as follows. In mean-field theory, we neglect
fluctuations of both a and &' (again this neglect is justified
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here by our interest in only the gapped phases in the vicinity
of v = 1/2¢q). Defining

a=A+d, (20)

o (@a—Ad@—-A 11
L=fKarof + ————— + z—ada, (21
TRl i T 2dn @D
and we can now repeat the argument above for v = 1/2
mutatis mutandis. Let us start at v = 1/2¢, with electron and
composite fermion densities set to

(22)

where b = Oy — 0yd,. The second equality above follows
directly from analyzing the equations of motion of @ and a’
in Eq. (18). Now, let us vary the chemical potential slightly
away from v = 1/2q. Defining i = 124 + V, the composite
fermion density changes from n, 5, = b/4m to

- b m b
(ff)—”1/2q+XV—4n+2nV— s (23)
Notice that in deriving this equation, we have assumed that
b is kept fixed. This is so because we associate the reflection
symmetry at v = 1/2q with the particle-hole symmetry of the
composite fermions constructed by attaching 2(g — 1) flux
quanta to electrons. Experimentally, this requires changing the
external magnetic field in proportion to the gate voltage so as
to keep b constant.
From Eq. (23), we infer V = —(b + b)/2m. Thus, with
nonzero V, the Lagrangian in Eq. (21) is modified to

. b (@—A)d@—A)
E_f[K“_%}f“L 2(q — Dan
+ %%(a —a)d(a —a), 24)

where we shifted a — a — a. Note that the first two terms
above are precisely of the form discussed in the context of v =
1/2. Consequently, defining ¢ = sgn(b), if p Landau levels
are filled for ¢ = 1, then p + 1 Landau levels are filled for
¢ = —1. In such a situation, we may integrate out the gapped
fermions in Eq. (24) to obtain

P+ 5t (@—A)d(@—A)
E M A
11 _ _
+ EE(G — a)d(a — a). (25)

Proceeding as before, we may integrate out a and also a, and
obtain

1
AL BV

4 2qp + 1

1 1
eff _ P+ AdA, (26)

b<0 " 4 2g(p+ 1) — 1

in direct generalization of the analysis for v = 1/2(g = 1).
Precisely the same predictions are obtained from recent Dirac
composite fermion theories [27,28] for v = 1/2q (see also
Ref. [29]). In the literature, such a property, which generalizes
particle-hole symmetry for ¢ = 1, is referred to as reflec-
tion symmetry. Exactly as in Dirac-based composite fermion
theories, the nonrelativistic fermions exhibit such reflection
symmetry.

VI. DISCUSSION

In this paper, we have looked at the response of the
half-filled Landau level to a changing chemical potential at
a fixed magnetic field. We found that the HLR theory of
composite fermions gives rise to a Jain sequence of fractional
quantum Hall states that satisfy particle-hole symmetry. The
same conclusion would be obtained from a theory of Dirac
composite fermions. We generalized it to explain the reflec-
tion symmetry observed around the compressible states at
v = 1/2q in terms of nonrelativistic composite fermions. It
is interesting to note that in an alternate situation, where the
electron density is kept fixed and the external magnetic field
is made variable, HLR and Dirac-type theories again produce
equivalent response [19].

The observations above are, in retrospect, not surprising,
if we recall that the properties of free nonrelativistic fermions
and those of free Dirac fermions in the lowest Landau level are
identical. Both have identical wave functions, and the Dirac
spinor of the lowest Landau level has nonzero support only in
one of the two components: this why it behaves essentially as
a spinless nonrelativistic electron. Imparting flux attachment
to both systems should in this case be equivalent. The con-
clusions drawn from both ought to be the same, as we have
shown. It is far less clear whether these conclusions remain
true in the presence of interactions among the particles.
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