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We study the nuclear magnetic resonance (NMR) spin-lattice relaxation rate 1/T1 in random one-dimensional
spin chains as a function of the temperature and disorder strength. In the zero temperature limit, the system
displays a disorder-induced quantum phase transition between a critical Tomonaga-Luttinger liquid (TLL)
phase and a localized Bose glass phase. The 1/T1 is investigated across this transition using large-scale
simulations based on matrix product state techniques. We find that this quantity can detect the transition
and probe the value of the dimensionless TLL parameter K . We also compute the NMR relaxation rate
distributions for each temperature and disorder strength considered. In particular, we discuss the applicability of
the stretched exponential fit to the return-to-equilibrium function to extract the 1/T1 experimentally. The results
presented here should provide valuable insights in regards of future NMR experiments in realistic disordered
spin compounds.
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I. INTRODUCTION

Understanding phase transitions is one of the cornerstones
of condensed matter physics. Among these, disorder-induced
quantum phase transitions can lead to fascinating phenomena
with exciting new phases of matter. A famous example is
the Anderson localization in the absence of interaction [1,2],
where the electronic wave function is spatially confined due
to impurities and resulting destructive quantum interferences.
Here the random environment — disorder — can completely
block the transport and drive a metal-to-insulator phase tran-
sition. The presence of interactions and its interplay with
disorder can qualitatively change the picture and lead to the
many-body localization (MBL) phenomenon. Whereas MBL
commonly refers to high energy properties of interacting dis-
ordered systems [3–8], low-energy physics is also concerned
with remaining open questions.

At zero temperature, this elusive quantum many-body lo-
calized phase of matter is known as Bose glass (BG), and first
appeared in the context of 4He in porous media [9,10]. While
no simple microscopic picture clearly emerges, the set of
properties defining this quantum phase of matter, describing
a bosonic fluid lacking superfluid coherence in a random
environment, is pretty well established: It has a finite com-
pressibility, its low-energy spectrum is gapless, correlations
are short-ranged, and there is no global phase coherence.
Besides helium-4 in random media, the phase has been re-
ported in various experimental systems such as amorphous
indium oxide films with a transition from a superconducting to
insulator phase [11–13]. It has also been observed in an array
of quasi-one-dimensional samples of 39K cold atoms, subject
to a quasiperiodic optical lattice [14]. Another type of system
in which the Bose glass phase has been investigated are an-
tiferromagnetic Mott insulators [15–18] such as the spin-1/2
ladder compound (CH3)2CHNH3Cu(ClxBr1−x )3 [19] and the

Br-doped spin-1 system Ni(Cl1−xBrx )2-4SC(NH2)2 [20–27]
to cite but a few [28,29].

In one dimension, the microscopic mechanisms driving
the superfluid-to-Bose-glass transition are still controversial
[30–38]. Even in the absence of disorder, in one-dimensional
systems, quantum fluctuations prevent the emergence of a
global phase coherence that would result from the sponta-
neous breaking of a continuous symmetry. At best, one can
expect a critical Tomonaga Luttinger liquid (TLL) phase
with a finite superfluid density and quasi-long-range order
characterized by power-law decaying transverse correlations
∝r−1/2K at large distance r, where K is the so-called TLL
parameter [39]. In the presence of disorder, the TLL phase is
expected to be unstable towards a Bose glass phase, unless
K > 3/2. In the latter case, a critical disorder strength is
required to drive the system from a superfluid to a many-
body-localized phase. Giamarchi and Schulz showed in their
seminal work that this transition belongs to the Berezinskii-
Kosterlitz-Thouless (BKT) universality class [40–42] with
K ≡ Kc taking a finite value at criticality [43,44]. The TLL pa-
rameter might take the universal value Kc = 3/2 at weak dis-
order (compared to the bandwidth) [33,37] but the extension
of this weak disorder regime remains unclear and other ap-
proaches [30–32,34–36,38] based on strong disorder analysis
suggest a nonuniversal value. Only recently a numerical study
attempted to clarify the different scenarios proposed and to
precisely define the weak versus strong disorder regimes [45].

Spin compounds are one of the best candidates to address
these open issues experimentally. For instance, the nuclear
magnetic resonance (NMR) spin-lattice relaxation rate 1/T1

has proven to be a formidable probe for one-dimensional
physics in Mott insulators [46] and might be very well suited
for the purpose. The 1/T1 in a TLL phase is expected to
diverge algebraically ∝T 1/2K−1 at low temperature [47–50].
This prediction has been perfectly checked against numerics
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in paradigmatic (clean) S = 1/2 XXZ spin chains [51,52] for
T/J � 10, where J is the antiferromagnetic exchange cou-
pling. Moreover, the parameter K has been reliably extracted
by fitting experimental 1/T1 measurements versus T in vari-
ous quasi-one-dimensional spin compounds, such as the spin-
1/2 Heisenberg antiferromagnetic ladder (C7H10N)2CuBr4

(DIMPY) [53–55]. The effect of inherent (albeit weak) three-
dimensional couplings J3D on the 1/T1 in spin materials has
also been recently studied in Ref. [56] where the authors
properly defined a temperature window J3D/100 � T � J/10
for observing genuine one-dimensional physics. Therefore,
this quantity might provide a final experimental answer to
the disputed issue of Kc. Indeed, strong-leg ladders subject
to an external magnetic field can realize a TLL with K >

3/2 [39,57,58] and numerous examples of observation of
the BG phase have been given above, making us confident
that, eventually, an ideal spin compound combining a strong
enough attractive regime and controllable chemical disorder
will be experimentally available in the future.

In this work, using large-scale simulations based on matrix
product state, we study the 1/T1 across the superfluid-Bose
glass transition in paradigmatic one-dimensional XXZ spin-
1/2 chains with a negative Ising anisotropy and subject to a
random magnetic field, as a function of the temperature and
disorder strength. The results presented here should provide
valuable insights in regards of future NMR experiments.

The rest of the paper is organized as follows. In Sec. II, we
provide an overview of the studied model, the definition of the
NMR spin-lattice relaxation rate 1/T1, and briefly present the
numerical techniques. Results are then discussed in Sec. III.
Finally, we summarize our conclusions in Sec. IV.

II. MODEL, DEFINITIONS, AND METHODS

A. Model

We consider the spin-1/2 XXZ chain in a random magnetic
field described by the following Hamiltonian:

H = J
∑

i

[
1

2
(S+

i S−
i+1 + H.c.) + �Sz

i Sz
i+1 + hiS

z
i

]
, (1)

with i labeling the lattice sites, J the overall energy coupling,
set to unity in the following, and � ∈ (−1, 1] is the Ising
anisotropy. The random variables hi are drawn independently
from a uniform distribution ∈ [−h, h] where h characterizes
the disorder strength.

In the clean (h = 0) case, it is well known that in the low-
energy limit, the model (1) can be described as a Tomonaga-
Luttinger liquid [39] with algebraically decaying correlations
and a finite superfluid density (spin stiffness). This descrip-
tion only relies on two phenomenological parameters: u, the
propagation velocity of the excitations in the system and
K , the dimensionless TLL parameter governing for instance
the decay of correlations. Here, u and K can be related to
the microscopic parameter � from Bethe ansatz equations
[59]. Through a Matsubara-Matsuda transformation [60], the
spin Hamiltonian (1) can be mapped exactly to a hard-core
bosons (HCB) model with � controlling the nearest-neighbor
HCB interaction. Precisely, � < 0 (K > 1) corresponds to an
attractive interaction between the bosons and this part of the
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FIG. 1. Schematic zero temperature “disorder strength h versus
Ising anisotropy �” phase diagram of the Hamiltonian (1). For h = 0
(no disorder) the model is in a critical Tomonaga-Luttinger liquid
phase for � ∈ (−1, 1] (red stripes). From this line, any amount of
disorder drives the system to a localized Bose glass phase for � >

−0.5. For smaller Ising anisotropies, a finite amount of disorder is
required to induce a quantum phase transition (plain black line). The
maximum of the dome is around � = −0.75 with a critical disorder
strength hc � 0.37 [45]. This work focuses on the � = −0.75 line of
the phase diagram (dotted black line) for various disorder strengths
and temperatures.

phase diagram is often referred to as the attractive regime.
In the presence of disorder (h > 0), the critical TLL phase
is expected to be unstable towards a localized Bose glass
phase with exponentially decaying correlations and a vanish-
ing superfluid density. However, for strong enough attractive
interaction, K > 3/2 (� < −0.5), a finite disorder strength hc

is necessary to drive the system from a TLL to a Bose glass
phase, with the TLL parameter Kc(�, hc) taking a finite value
at the transition [43,44]. A schematic phase diagram of model
(1) is shown in Fig. 1.

In this work, we focus on � = −0.75 and vary the disorder
strength h from zero to 1/2, covering the TLL and Bose
glass phases with the transition happening at hc � 0.37 [45].
Importantly, the temperature will be a parameter to be as
close as possible to realistic experimental setups. Although
the model (1) is unrealistic to describe spin materials because
of the random fields with no reasonable origin, the essential
ingredients are: (i) in the low-energy limit and in the clean
case, a TLL description of the spin compound with a TLL
parameter K > 3/2, (ii) disorder whose microscopic origin is
likely compound-dependent but which drives the system to a
localized phase if sufficiently strong.

B. NMR spin-lattice relaxation rate 1/T1

In experiments, the NMR spin-lattice relaxation rate 1/T1

is the inverse characteristic time that the targeted nuclear
spins, polarized through a static external magnetic field, take
to relax back to their thermodynamic equilibrium after a per-
turbation by an electromagnetic pulse of frequency ω0, chang-
ing their polarization [61–63]. The return-to-equilibrium pro-
cess can be described as function of time t as

1 − M(t ) ∝ e−t/T1 , (2)
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where M(t ) is the component of the nuclear spins along
the static magnetic field. One can show that 1/T1 provides
information on the electronic spins Si = (Sx

i , Sy
i , Sz

i ), i.e.,
those described by the Hamiltonian (1), through the following
expression,

1

T1
= γ

2

∑
a,b∈[x,y,z]

A2
ab

∫ +∞

−∞
dt eitω0Ca,b(t ), (3)

with γ the gyromagnetic ratio, Aab the hyperfine coupling con-
stant describing the interaction between nuclear and electronic
spins and Ca,b(t ) the dynamical correlation function

Ca,b(t ) = 〈
Sa

i (t )Sb
i (0)

〉 − 〈
Sa

i (t )
〉〈

Sb
i (0)

〉
, (4)

which is a local quantity because it is measured on the same
site i for both operators. Here 〈〉 indicates the thermal average
and Sa

i (t ) = eiHt Sa
i e−iHt is the time-dependent spin operator

in the Heisenberg picture. It is theoretically justified to take
the limit ω0 = 0 since the NMR frequency is usually the
smallest energy scale of the problem [64]. Moreover, due to
the U(1) symmetry of the Hamiltonian (1), the 1/T1 can be
reduced to the components (a, b) = (±,∓) and (z, z), where
the x and y spin components have been expressed using the
raising and lowering operators [65]. The definition (3) now
reads

1

T1
= γ

∫ +∞

0
dt

{
A2

±∓ Re[C±,∓(t )] + A2
zz Re[Cz,z(t )]

}
, (5)

where the first and second terms of Eq. (5) can be labeled as
transverse and longitudinal contributions, respectively. In the
following, we only focus on the transverse contribution which
dominates over the longitudinal one from intermediate to
low temperatures and set the experiment-dependent prefactor
γ A2

±∓ to unity. For a TLL, the transverse contribution to the
NMR relaxation rate has been found for ω0/T 
 1 in the
form [47–50]

1

T1
= A cos

(
π

4K

)
B
(

1
4K , 1 − 1

2K

)
u

(
2πT

u

) 1
2K −1

, (6)

with B(x, y) the Euler beta function, u and K the TLL pa-
rameters, and A the prefactor of the static correlation function
〈S±

r (0)S∓
0 (0)〉 at zero temperature. The prediction (6) per-

fectly checks against numerics at low temperature, T/J � 10,
without any adjustable parameter [51,52].

C. Numerical methods

1. Finite temperature

To compute the local dynamical correlation function (4)
at finite temperature, we use the matrix product state (MPS)
formalism [66]. Whereas a MPS represents a pure state, it can
also be used for mixed state through the purification method
[67]. The basic idea is to write the density matrix as a pure
state in an enlarged Hilbert space with half physical and half
auxiliary degrees of freedom (they can be taken as a copy
of the physical ones). From a practical point of view, the
corresponding infinite temperature pure state can be written
down exactly as a MPS of bond dimension m = 1: A product
state of maximally entangled pairs of physical and auxiliary
degrees of freedom. One can show that the pure state at

inverse temperature β = 1/T is obtained by time-evolving
the infinite temperature one with exp(−βH/2), where H
only acts on physical degrees of freedom [68]. We perform
the imaginary-time evolution using the time-evolving block
decimation (TEBD) algorithm [69] along with a fourth order
Trotter decomposition [70] and time-step δβ = 0.1.

2. Real-time evolution

When the desired finite temperature state is obtained, a
real-time evolution with exp(−iHt ) is carried out using the
same TEBD algorithm as for the imaginary-time evolution
(fourth order and time-step δt = 0.1). This is the most lim-
iting part since the real time evolution of a quantum state
produces a rapid growth of entanglement entropy [71] while
the efficiency of the MPS representation relies on low entan-
gled states. In practice, this limits the maximum time t one
can reach in the simulation. Some work-arounds have been
developed to push the limits further like the linear prediction
[72] or evolving the auxiliary degrees of freedom with −H
in real time [73]. We used the latter, which can be seen as a
local disentangling operation, of which the real time evolution
by −H is just one possibility [74]. In this work, the maximum
bond dimension of the MPS was set to m = 500. Furthermore,
the NMR relaxation rate being a local quantity, the dynamical
correlation (4) is computed in the middle of the chain to avoid
open boundary and finite-size effects. Indeed, at long time and
at finite temperature, the correlation decays exponentially over
time with a characteristic time τ (T, h) which makes the choice
of a sufficiently large system L(T, h) enough to consider
the results in the thermodynamic limit, i.e., u(T, h)τ (T, h) 

L(T, h) with u(T, h) some velocity accounting for the spread-
ing of the excitation S±

i in the chain. This is especially true in
regards of the definition (5) for the NMR relaxation rate as an
integral over time of this exponentially decaying correlation
function. This integration is performed numerically using the
standard Simpson’s rule.

3. Disorder sampling

In the following, the local dynamical correlation (4) is
computed over Ns ≈ 500 independent samples for each tem-
perature and disorder strength considered. Therefore, it is the
most demanding part numerically since the simulation of each
independent sample is already quite demanding itself.

III. RESULTS

A. Time dependence of the local spin-spin correlation function

We first look at the real part of the transverse dynamical
correlation function C±,∓(t ) defined in Eq. (4) and whose
integral over time gives the NMR spin-lattice relaxation rate
1/T1 according to Eq. (5).

It is instructive to consider the disorder-free h = 0 and
� = 0 case, which in the low-energy limit, also belongs to
the TLL phase. At this specific point of the phase diagram, an
expression for C±,∓(t ) can be derived exactly and expressed
as a Pfaffian [75,76]. In some cases, it can be brought into
a more explicit form, and one finds three distinct regions in
time. After a very short time of order ∼O(1) (region A),
the correlation shows a power-law decay (region B) before
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displaying an exponential decay ∝exp[−t/τ (T )] at longer
time (region C), where the decay time diverges algebraically
with temperature τ (T ) ∝ 1/T for T 
 J . It is also well
known that the thermal correlation length ξ (T ) diverges at low
temperature in the same way, ∝u/T with u the TLL velocity
[77], so that in the end, one can relate those characteristic
thermal time and space quantities through uτ (T ) ∼ ξ (T ).
The intermediate power-law region grows larger and larger
as the temperature is reduced to eventually take over the
long time exponential decay at zero temperature, with no
characteristic length scale in this limit, the system being
critical. We note τ∗(T ) the crossover time between regions B
and C.

Away from the � = 0 point, no exact expression is avail-
able, but no major qualitative difference is expected at low
temperature, with a finite thermal correlation length ξ (T ) ∝
u/T and the existence of a characteristic thermal time scale
τ (T ): It is still expected to follow ∝1/T [77], which we
verified numerically at h = 0 for βJ � 5 (data not shown). At
high temperature, however, and as pointed out in Ref. [76], it
might not be as simple to relate the two quantities, displaying
different temperature dependencies: For instance at infinite
temperature ξ (∞) is zero while τ (∞) remains finite. In any
case there exists, for the transverse dynamical correlation
function in the TLL regime, characteristic thermal length,
and time scales in the temperature window considered in
this work. More generally, they also depend on the disorder
strength, i.e., ξ (T, h), τ (T, h), τ∗(T, h), and correspond in
that case to the disorder averaged quantity.

Plugging in disorder, the position of the crossover time
scale τ∗(T, h) becomes more manifest with the decay time
τ (T, h) being shorter as the disorder strength and temper-
ature are increased. This results in a steepest slope of the
long-time exponential decay, as visible in all three panels of
Fig. 2. By increasing these parameters, one expects quantum
coherence to be generally weaker over time, hence the shorter
characteristic and crossover times τ (T, h) and τ∗(T, h). In the
localized regime shown in Fig. 2(c) for h = 0.5, the width
of the intermediate power-law region should be bounded,
not only by thermal, but also by localization effects. Indeed,
taken separately, both effects induce a finite length scale
in the system: A thermal length ξth(T, h) or a localization
length ξloc(T = 0, h �= 0). The dominant effect will be asso-
ciated to the smallest of the two length scales. Deep in the
localized regime, the disorder averaged localization length
follows ξloc(T = 0, h �= 0) ∝ h2/(2K−3) [43,44] and it diverges
exponentially when approaching the transition from the local-
ized phase h → hc, expected behavior for a BKT transition
[40–42].

Finally, the NMR spin-lattice relaxation rate is the integral
over time of the real part of the dynamical correlation function
displayed in Fig. 2. Because it decays exponentially with time,
reaching a finite maximum time tmax is actually sufficient
numerically to get an accurate estimate of the 1/T1.

B. NMR spin-lattice relaxation rate distributions

Computing the dynamical correlation (4) for independent
disorder samples (Ns ≈ 500) allows us to establish the corre-
sponding distribution fo the NMR relaxation rate P(1/T1) for
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FIG. 2. (a) Average value of the real part of the dynamical
correlation function 〈S+

L/2(t )S−
L/2(0)〉 versus time for various values

of disorder strengths h at fixed inverse temperature βJ = 10.0 and
(b) for various inverse temperatures βJ at fixed disorder strengths
h = 0.2 and (c) h = 0.5. The average is performed over Ns ≈ 500
independent samples, except for βJ � 5 at h = 0.2 where only
Ns ≈ 200 samples are available. The legend is the same for (b) and
(c). The dynamical correlation is measured in the middle of open
chains of length L(T, h). The integral of this quantity gives the
NMR spin-lattice relaxation rate 1/T1 according to Eq. (5). After
a very short time tJ ∼ O(1) (region A), the average real part of
the dynamical correlation displays an intermediate power-law regime
(region B) before undergoing an exponential suppression over time
(region C). The crossover time between regions B and C is τ∗(T, h)
and the decay time of region C is τ (T, h).

each temperature and disorder strength, covering both TLL
and BG phases as shown in Fig. 3. Overall, it is at high
temperature that the distributions seem to be the narrower,
independently of the disorder strength. With a very short
thermal correlation length ξ (T/J � 1, h) 
 1, one expects
the effect of temperature to be dominant over disorder sur-
rounding the site i on which the local dynamical correlation
function is being computed.

Interestingly, in the BG phase, see Fig. 3(d), the 1/T1

distributions for βJ � 10 seem to be double-peaked. This
can be understood as a competition between thermal and
localization effects. At fixed temperature and for a given
disordered sample, the relevant characteristic length ξ (h, T )
surrounding the local site from which the 1/T1 is computed,
is either going to be ξth or ξloc, whichever is the shortest
one. The distribution of ξ (h, T ) over many samples is going
to be a weighted combination of the respective distributions
of thermal and localization lengths, leading to a bimodal
structure of the overall distribution. As discussed previously,
a finite length scale induces a finite time scale, either through

205147-4



NUMERICAL STUDY OF THE TEMPERATURE DEPENDENCE … PHYSICAL REVIEW B 99, 205147 (2019)

0.1 1 10

P
(1

/
T
1
)

0.1 1 10

1/T1

0.1 1 10 0.1 1 10

h = 0.2 h = 0.3 h = 0.4 h = 0.5

βJ = 0.2
βJ = 0.5

βJ = 1.0

βJ = 5.0

βJ = 10.0
βJ = 16.0

(b) (c)(a) (d)

Δ = −3/4

βJ = 2.0
βJ = 3.0

FIG. 3. Probability distribution P(1/T1) of the NMR spin-lattice relaxation rate for various disorder strengths: (a) h = 0.2, (b) h = 0.3,
(c) h = 0.4, and (d) h = 0.5. Note the log scale for the x axis. The different colors correspond to different inverse temperatures βJ , as specified
in (c). The data have been shifted vertically for visibility. At zero temperature, the disorder-induced quantum phase transition between the TLL
and Bose glass phases happens at hc � 0.37 [45], see Fig. 1. Each distribution is made of Ns ≈ 500 independent disordered samples, except
for h = 0.2 and βJ � 5 with only Ns ≈ 200 available.

the decay time τ (T, h) or the crossover time τ∗(T, h), in the
local dynamical correlation function, which will be reflected
on the 1/T1 distributions by also displaying a double-peaks
structure. In Fig. 3(d) for βJ = 16, we do not observe two
modes anymore because localization is dominant at that tem-
perature. For h = 0.4, see Fig. 3(c), no double-peaks structure
clearly emerges despite being in the localized BG phase. This
is because we are very close to the transition, hc � 0.37 [45],
with the localization length diverging exponentially, making
it way larger than the thermal length.

Experimentally, one does not have access to the 1/T1

distributions but, for a disordered system to the average value
of the return-to-equilibrium function M(t ) of Eq. (2),

1 − M(t ) ∝ e−t/T1 =
∫ +∞

0
dT −1

1 P
(
T −1

1

)
e−t/T1 , (7)

from which the average NMR spin-lattice relaxation rate 1/T1

cannot be readily obtained. To access it, one usually makes
the assumption that the sum of exp(−t/T1) originating from
the disorder averaging in Eq. (7) can be approximated by a
stretched exponential [78],

exp(−t/T1) � exp[−(t/τstr )
θ ], (8)

with θ and τstr two parameters fitted against the experimental
data. One then considers that τstr ≡ T1, which is exact in the
disorder-free case where θ = 1. Under the stretched exponen-
tial assumption, the distribution P(1/T1) corresponds to the
stretched exponential one [78]. It is clear that the distribu-
tions displayed in Fig. 3 do not correspond to pure stretched
exponential distributions defined on the semi-infinite interval
[0,+∞]. For the disorder strengths considered, we do not
observe rare events in the 1/T1 value leading to very broad
distributions, over orders of magnitudes, as it was for instance
observed in spin chains with random exchange couplings
[79]. Here, the NMR spin-lattice relaxation rate seems to be
bounded by its clean value at h = 0. Moreover the stretched
exponential distribution would not capture the double peaks at

high temperature in the BG phase. Yet, surprisingly, the value
of 1/τstr extracted from the approximation (8) is very close to
the average 1/T1 value, as discussed in the following.

C. Temperature dependence of the NMR spin-lattice
relaxation rate 1/T1

In the TLL regime, the NMR spin-lattice relaxation
rate 1/T1 takes the form (6) in the low temperature limit,
with no free parameter. This expression has been perfectly
checked against numerics in clean XXZ chains for various
� anisotropies and for T/J � 10 [51,52]. For completeness,
we display the disorder-free case at � = −0.75 in Fig. 4(a),
where the crossover towards genuine the TLL physics with
1/T1 ∝ T 1/2K−1 is indeed recovered at low temperature. In the
presence of disorder, but below the critical disorder strength
hc � 0.37 [45], we still expect a TLL phase and the algebraic
temperature dependent expression in Eq. (6) should still apply.
However, for h �= 0, there is no exact expression for the TLL
parameters K, u or the prefactor A of the static transverse
correlation function at zero temperature, and they must be
computed numerically. These values are reported in Table I
for h = 0, 0.2 and 0.3. The technical details for their determi-
nation are explained in the Appendix.

We first focus on the average 1/T1 value, which for βJ �
16 agrees with the TLL prediction combining Eq. (6) and
the parameters of Table I. The crossover towards the TLL
regime in the presence of disorder happens at slightly smaller
temperatures than the clean case. This can be explained by the
behavior of τ∗(T, h �= 0) and τ (T, h �= 0): They both decrease
with disorder strength, making the dynamical correlation drop
much faster than in the clean case, see Fig. 2(a). Nonetheless,
the parameter-free TLL prediction makes it possible to pre-
cisely define the crossover temperature, even in the disordered
TLL regime, and this should be a key element to be computed
in a more realistically experimental model in order to interpret
carefully experimental measurements.
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FIG. 4. Legend displayed in panel (c). (a) Log-log scale. Tem-
perature dependence of the average (circle symbol), median (cross
symbol), and stretched exponential (plus symbol) values of the
NMR spin-lattice relaxation rate, versus temperature T/J for various
disorder strengths h = 0.0 (clean case, no disorder), 0.2, 0.3, 0.4,
and 0.5. At zero temperature, the disorder-induced quantum phase
transition between the TLL and Bose glass phases happens at hc �
0.37 [45], see Fig. 1. The purely algebraic temperature dependence
of the TLL prediction, valid in the “low-energy limit,” is displayed by
the bold straight line according to Eq. (6) and the parameter shown
in Table I. (b) Stretched exponential exponent θ versus the temper-
ature. (c) Temperature dependence of the gradient of the average

value, −∂ ln(T −1
1 )/∂ ln T , versus temperature T/J . The gradient is

computed numerically. The transition between the TLL and Bose
glass phases is marked by a change in the slope of the gradient.
In the TLL regime T −1

1 ∝ T 1/2K−1 with K the TLL parameter, this
quantity should saturate to 1 − 1/2K . This is verified for the clean
case with 1 − 1/2K (� = −0.75, h = 0) � 0.77. In the presence of
disorder (h = 0.2, 0.3) the necessity to go to lower temperatures to
observe genuine TLL physics makes the gradient not converged yet
to the expected value of K reported in Table I.

As we cross the TLL to BG transition at hc � 0.37 [45],
the gradient of the average value of the NMR spin lattice
relaxation, plotted in Fig. 4(c), displays a change of slope
at lower temperature and is a signature of the transition. In
the TLL phase, the gradient saturates to 1 − 1/2K , as visible
for the clean case with 1 − 1/2K (� = −0.75, h = 0) � 0.77
(one would need to access lower temperatures to observe the
saturation for h = 0.2 and 0.3), while it decreases in the BG
phase for h = 0.4 and 0.5.

In all cases, the average 1/T1, as previously discussed, is
not directly accessible in experiments where a stretched ex-
ponential fit to the return-to-equilibrium function M(t ), as in
Eq. (8), is usually used and the parameter 1/τstr interpreted as

TABLE I. Tomonaga-Luttinger liquid parameters u and K as
well as the prefactor A of the static transverse correlation function
〈S±

r (0)S∓
0 (0)〉 at zero temperature. For the first line, corresponding

to the clean case, the parameters are known exactly [59,80,81]. In
presence of disorder, for h = 0.2 and h = 0.3, the value of the param-
eters is determined numerically using density-matrix renormalization
group (DMRG) and quantum Monte Carlo (QMC). See the Appendix
for technical details.

h A (DMRG) u/J (QMC) K (QMC, DMRG)

0.0 (exact) 0.159572 0.429535 2.173408
0.2 0.13084(4) 0.419(2) 2.094(8), 2.0899(6)
0.3 0.12448(7) 0.404(2) 1.958(9), 1.953(2)

the “relevant” 1/T1. Numerically, for each disordered sample,
we can compute M(t ) and fit its disorder averaged value M(t )
against a stretched exponential, as it would be done in exper-
iments. The parameters 1/τstr and θ are reported in Figs. 4(a)
and 4(b), respectively. Although it is clear that the distribu-
tions P(1/T1) shown in Fig. 3 are not those corresponding to a
stretched exponential M(t ), the value of 1/τstr is in very good
agreement with the exact average 1/T1 value, in both the TLL
and BG phases. Yet, we can note that a discrepancy seem to
appear as we go deeper in the BG phase. For comparison, this
is in sharp contrast with the results in spin−1/2 Heisenberg
chains with random exchange couplings, which realize in the
low-energy limit the so-called random singlet phase [79]: At
low temperature, it was for instance found that the average
1/T1 diverges while the stretched exponential estimate was
found to go to zero as the temperature was decreased. In
that case, the authors found that the stretched exponential
did not capture the average value but rather the typical value
of the NMR spin-lattice relaxation rate, characterized by the
median value of the distribution. We report the median value
med(1/T1) in Fig. 4(a) which behaves similarly to the aver-
age and the stretched exponential estimates. As thoroughly
discussed in Ref. [78], the physical interpretations of the
stretching exponent θ are not straightforward, although it is
commonly related to the width of the 1/T1 distribution. The
value of θ displayed in Fig. 4(b) decreases with the disorder
strength and seem to decrease with the temperature in the BG
phase while it remains roughly constant with temperature in
the TLL phase.

IV. SUMMARY AND CONCLUSION

Using large-scale simulations based on matrix product
state techniques, we computed the NMR spin-lattice relax-
ation rate 1/T1 in random spin chains displaying a disorder-
induced phase transition in the low temperature limit between
a critical Tomonaga-Luttinger liquid phase and a many-body
localized phase, known as Bose glass. We provided numerical
evidences that this quantity versus temperature detect the
transition and that it should be able to address the still con-
troversial value of the TLL parameter K at criticality, which
might be universal [33,37]. One indeed expects at low temper-
ature that 1/T1 ∝ T 1/2K−1, where a clear identification of the
crossover temperature below which this algebraic dependence
becomes valid was possible.
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We were also able to access quantities which are not
experimentally, such as the 1/T1 distributions for different
temperatures and disorder strengths in both phases. From this,
we discussed the applicability of approximating the disor-
der averaged return-to-equilibrium function M(t ) (the only
quantity accessible in such NMR experiments) as a stretched
exponential ∝exp[−(t/τstr )θ ]. Through this approximation,
1/τstr is usually referred as the “relevant” NMR spin-lattice
relaxation rate but there is no guarantee that it is equal (or
simply related) to the actual disorder averaged value of 1/T1.
To emphasize this difference between 1/T1 and 1/τstr , it was
found that for spin-1/2 Heisenberg chains with random ex-
change couplings [79], 1/T1 diverges at low temperature while
the stretched exponential estimate goes to zero. Here, we show
that they both behave in a very similar way: A decisive point
for experiments to reliably extract K from 1/τstr (T ).

In the weak disorder regime (not considered in this work,
corresponding to the TLL phase close to � ∼ −1/2), there
might be a multiplicative logarithm correction to the 1/T1

expression (6) in the TLL phase since the static correlations
have also been found to display such a correction in presence
of disorder [82]. This would be qualitatively similar to the one
appearing in the better-known isotropic � = 1 (and clean, h =
0) case [49,52,83]. However, its effect in presence of disorder
would probably be way smaller since it arises with a log at the
exponent 2/9 in the static correlations, very difficult to capture
numerically. For instance, there is no mention of including this
correction to fit the static correlations in Ref. [45].

It would be interesting to consider next the dynamical
spin structure factor S(q, ω), measured in inelastic neutron
scattering experiments. Though it would be much more chal-
lenging numerically because involving dynamical correlations
at all distances to compute the Fourier transform from real
to momentum space. In comparison, the study carried out
in Ref. [79] on the dynamical properties of the random
singlet phase, was performed in the canonical ensemble (im-
posing Sz

tot = 0), more amenable with the MPS techniques
[84]. One possibility would be to use quantum Monte Carlo
with analytic continuation, where the disorder average could
be done before doing the continuation. For the Bose glass
phase, the equivalent to the dynamical structure factor in the
context of cold atom experiments and Bragg spectroscopy
has been investigated at zero temperature in Ref. [85], but
the nature of the excitations in this phase remains an open
question.
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APPENDIX: DETERMINING THE
TOMONAGA-LUTTINGER LIQUID PARAMETERS

NUMERICALLY

The TLL parameters u and K , as well as the prefactor A
of the static correlation function 〈S±

r (0)S∓
0 (0)〉 at zero tem-

perature have no exact expression at finite disorder strength
and have to be determined numerically. The parameters u and
K can be related through the hydrodynamic relations to the
uniform susceptibility χ and the spin stiffness ρs [39],

K = π
√

ρsχ and u =
√

ρs/χ, (A1)

which are both readily computed in quantum Monte Carlo
(QMC) through the stochastic series expansion algorithm
[87,88]. We compute these quantities for Ns ≈ 103 inde-
pendent random systems of size L = 256 with periodic
boundary conditions at inverse temperature βJ = 211 using
the β-doubling scheme [89]. The temperature is sufficiently
low to consider that the QMC algorithm is only probing
the ground state. Moreover, these quantities do not show
strong finite-size effects for the disorder strengths considered
here, hence L = 256 can be taken as the thermodynamic
limit result. Similar simulation parameters have been used
in Ref. [45], providing very satisfactory results. The aver-
age of ρs and χ over the Ns samples is then computed to
extract the values of K and u according to Eq. (A1). The
values for h = 0.2 and h = 0.3 are reported in Table I in the
main text.

Independently, simulations were also carried out on sys-
tems of size L = 256 with open boundary conditions using
the variational density-matrix renormalization group (DMRG)
algorithm [90,91] at exactly zero temperature, and enforcing
Sz

tot = 0. Here, the susceptibility and the spin stiffness are
not as easily computed but one can compute the transverse
static correlation function 〈S±

i (0)S∓
j (0)〉 versus the distance

r = |i − j|. It has been computed for Ns ≈ 103 indepen-
dent samples and the average value has been fitted to the
form,

F (i, j, L) = 2A

[
f (i + j, 2L) f (i − j, 2L)

2
√

f (2i, 2L) f (2 j, 2L)

]− 1
2K

, (A2)

with f (i, L) = L| sin(π i/L)|/π . This corresponds to the ex-
pected form of |〈S±

i (0)S∓
j (0)〉| in a finite system with open

boundary conditions, with i and j far enough from the bound-
aries, and with |i − j| large enough [92]. In practice, we
only consider |i − L| > L/4, | j − L| < 3L/4 with i < j and
|i − j| > 10. The fitted values of K and A are reported in
Table I in the main text for h = 0.2 and h = 0.3. The values
of K extracted from the QMC and the DMRG agree well with
each others.
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Disorder-Induced Bose-Einstein Condensate in a Quantum Spin
Material at High Magnetic Fields, Phys. Rev. Lett. 121, 177202
(2018).

[28] F. Yamada, H. Tanaka, T. Ono, and H. Nojiri, Transition from
Bose glass to a condensate of triplons in Tl1−xKxCuCl3, Phys.
Rev. B 83, 020409(R) (2011).

[29] G. Kamieniarz, R. Matysiak, P. Gegenwart, A. Ochiai, and F.
Steglich, Bose glass behavior in (Yb1−xLux )4As3 representing
randomly diluted quantum spin- 1

2 chains, Phys. Rev. B 94,
100403(R) (2016).

[30] E. Altman, Y. Kafri, A. Polkovnikov, and G. Refael, Phase
Transition in a System of One-Dimensional Bosons with Strong
Disorder, Phys. Rev. Lett. 93, 150402 (2004).

[31] E. Altman, Y. Kafri, A. Polkovnikov, and G. Refael, Insulating
Phases and Superfluid-Insulator Transition of Disordered Boson
Chains, Phys. Rev. Lett. 100, 170402 (2008).

[32] E. Altman, Y. Kafri, A. Polkovnikov, and G. Refael, Superfluid-
insulator transition of disordered bosons in one dimension,
Phys. Rev. B 81, 174528 (2010).
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