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A simple position operator for periodic systems
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We present a position operator that is compatible with periodic boundary conditions (PBCs). It is a one-body
operator that can be applied in calculations of correlated materials by simply replacing the traditional position
vector by the new definition. We show that it satisfies important fundamental as well as practical constraints. To
illustrate the usefulness of the PBC position operator, we apply it to the localization tensor, a key quantity that
is able to differentiate metallic from insulating states. In particular, we show that the localization tensor given
in terms of the PBC position operator yields the correct expression in the thermodynamic limit. Moreover, we
show that it correctly distinguishes between finite precursors of metals and insulators.
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I. INTRODUCTION

Expectation values that involve the position operator r̂ play
a prominent role in both molecular and condensed-matter
physics. Many important quantities are expressed in terms of
r̂, e.g., the multipole moments and the localization tensor.
The latter quantity was introduced by Resta et al. [1–3],
following an idea of Kohn [4] that information about electron
localization could be obtained from the ground-state wave
function (see also Ref. [5]). The localization tensor is able
to distinguish between conductors and insulators. When the
number of electrons tends to infinity, it diverges in the case of
a conductor, while it remains finite in the case of an insulator.
It has been applied to study the metallic behavior of clusters
[6–14] and has recently also been used to investigate Wigner
localization [15].

In its standard definition, the position operator r̂ is simply
defined as the multiplication with the position vector r. How-
ever, this definition is not compatible with periodic boundary
conditions (PBCs), since r is not a periodic function. This
is a problem, since many quantities of interest are related to
the solid state, which are conveniently described using PBC.
Therefore, it is of great interest to search for a position opera-
tor that is compatible with PBC while reducing to the position
vector r in the appropriate limit. We will provide such a
definition of the position operator in this paper. For notational
convenience, we will mainly focus on one dimension in the
remainder of this paper. All our findings can be generalized to
higher dimensions. In particular, our main results, i.e., Eqs. (2)
and (7), can be generalized to three dimensions by replacing
x with r. We use Hartree atomic units (h̄ = 1, e = 1, me = 1,
4πε0 = 1).
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We study a system of length L whose electronic many-body
wave function � satisfies PBC, i.e., for each xi the following
condition holds:

�(x1, · · · , xi, · · · , xN ) = �(x1, · · · , xi + L, · · · , xN ), (1)

where N is the number of electrons. We are looking for a
position operator that is compatible with PBC. We denote
such an operator as q̂.

Let us summarize important criteria that q̂ should satisfy:
(1) q̂ should be invariant with respect to a translation L. (2) q̂
should reduce to the standard position operator x̂ = x for finite
systems described within PBC, i.e., in a supercell approach
(L → ∞ for fixed N) [16] one should obtain results that co-
incide with those obtained within open-boundary conditions
(OBC). (3) The distance defined in terms of q̂ should be
real and gauge-invariant, i.e., it should be independent of the
choice of the origin. This criterium is important since the
main purpose of a position operator is to yield the correct
distance between two spatial coordinates. Finally, we add a
fourth criterium: (4) For a system of many particles, q̂ should
be a one-body operator, as is x̂. Although the last criterium is
not a fundamental one, it is crucial if we want to apply the
new operator to realistic systems.

In a seminal work, Resta proposed a definition for the
expectation value of the total position operator X̂ = ∑N

i=1 xi

that is compatible with PBC [17]. Following a similar strategy,
Resta et al. also proposed an expression for the localization
tensor that is compatible with PBC [1,2]. Despite the im-
portant progress made in these works, there are also several
shortcomings to this approach. (1) They provide definitions
for expectation values but not a definition for the position
operator itself. (2) the operators are N-body, which make
them unpractical for the calculation of expectation values of
real correlated systems with many electrons. Finally, we note
that their approach can yield diverging localization tensors for
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systems with a finite number of electrons; namely, for those
systems that become metallic in the thermodynamic limit.

Instead, in this paper we propose a definition for the po-
sition operator itself. We will demonstrate that it satisfies the
four criteria mentioned above. Moreover, we will explicitly
show that it yields a useful expression for the localization
tensor. The latter gives finite values at finite N and L while
yielding the correct values in the thermodynamic limit.

The paper is organized as follows. We start by giving an
introduction in Sec. I. In Sec. II, we present a position operator
that is compatible with PBC and we show how it can be used
to define a PBC localization tensor. We also briefly discuss
the polarizability. In Sec. III, we report results obtained for
uncorrelated and correlated model systems. Finally, in Sec. IV
we draw our conclusions.

II. A POSITION OPERATOR COMPATIBLE WITH
PERIODIC BOUNDARY CONDITIONS

To treat PBC systems, we associate to the electron position
x the complex position qL(x), defined as

qL(x) = L

2π i

[
exp

(
2π i

L
x

)
− 1

]
, (2)

with i the imaginary unit. The complex position qL(x) is
a continuous and infinitely differentiable function of x. In
complete analogy with the quantum treatment of the position
operator x̂, we define the action of the complex position
operator q̂ as the multiplication with qL(x).

Let us review the criteria mentioned above with respect to
qL(x). (1) qL(x) is trivially invariant under a translation, i.e.,
qL(x + L) = qL(x). Therefore, the complex position qL(x),
unlike the ordinary position x, satisfies the PBC constraint.
(2) qL(x) reduces to the standard position operator x in the
limit L → ∞, in the sense of a supercell approach mentioned
above. This can be shown by expanding the exponential func-
tion: exp ( 2π i

L x) = 1 + 2π i
L x + O(1/L2)[18]. (3) the distance

|qL(x2) − qL(x1)| is real and gauge independent. By defin-
ing the difference qL,x0 (x2, x1) = qL(x2 − x0) − qL(x1 − x0),
where x0 is the (arbitrary) origin, it can be verified that

qL,x0 (x2, x1) = L

2π i
e− 2π i

L x0
[
e

2π i
L x2 − e

2π i
L x1

]
. (3)

Therefore, the distance

|qL(x2) − qL(x1)| =
√

q∗
L,x0

(x2, x1)qL,x0 (x2, x1)

= L

2π

√
2 − 2 cos

[
2π

L
(x2 − x1)

]
(4)

is real and independent of x0, as it should be [19]. (4) qL(x) is
a one-body operator.

A. The localization tensor

Let us now demonstrate how the complex position in
Eq. (2) yields a useful expression for the localization tensor
within PBC using an approach that is completely analogous
to the OBC case. The localization tensor λ is defined as the
total position spread (TPS) per electron where the TPS is
a one-body operator that is defined as the second cumulant

moment of the total position operator X̂ = ∑N
i=1 xi[21]:

λ(N ) = 1

N
[〈�|X̂ 2|�〉 − 〈�|X̂ |�〉2]. (5)

The second term in the square brackets ensures gauge invari-
ance with respect to the choice of the origin of the coordinate
system. The localization tensor is translationally invariant.

In complete analogy with the OBC definition, within PBC
we replace the position of a particle xi by its complex position
qL(xi ). In such a way, the complex total position operator is
still a one-body operator, defined as

Q̂L =
N∑

i=1

q̂L(xi ). (6)

The localization tensor within PBC λL is also a real quan-
tity, like λ. It is defined as the second cumulant moment of the
complex total position operator per electron,

λL(N ) = 1

N
[〈�|Q̂†

LQ̂L|�〉 − 〈�|Q̂†
L|�〉〈�|Q̂L|�〉], (7)

in complete analogy with the OBC definition in Eq. (5).
Equation (7), together with Eq. (2), is the main result of
this paper. The simple expression is completely general, it
can be applied to correlated many-body wave functions and
is valid for both finite systems and infinite systems, e.g.,
by taking the thermodynamic limit. In the special case of a
single-determinant wave function, it can be shown that the
expression in Eq. (7) coincides with the result obtained in
Ref. [2] in the thermodynamic limit. The proof is given in the
Appendix.

B. The polarizability

The polarization has been related to the position operator
[17,22]. However, since the current operator is compatible
with PBC, variations of the polarization can also be calculated
as a time integral of the current density. Instead, the expression
for the polarization itself proposed in Ref. [23] is not gauge
invariant and cannot be written as an expectation value of
any operator; it requires the calculation of a Berry-phase
expression [22–25].

Instead of the current density, we focus here on a related
quantity, namely the polarizability, i.e., the variation of the
current due to a perturbing field. For one-dimensional chains,
the polarizability can also be related to the macroscopic
polarization in the thermodynamic limit [26].

The static polarizability α for OBC can be written as

α(N ) = 2〈�0|x(Ĥ − E0)−1
⊥ x|�0〉, (8)

where �0 is the ground-state wave function and (Ĥ − E0)−1
⊥

is the reduced resolvent of the Hamiltonian in the orthogonal
complement to �0 [27]. Therefore, in complete analogy with
the OBC definition above, we define the PBC polarizability
αL(N ) as

αL(N ) = 2〈�0|q†
L(x)(Ĥ − E0)−1

⊥ qL(x)|�0〉, (9)

205144-2



A SIMPLE POSITION OPERATOR FOR PERIODIC SYSTEMS PHYSICAL REVIEW B 99, 205144 (2019)

III. RESULTS

We will now demonstrate that the PBC localization tensor
given by Eq. (7) can differentiate between metals and insu-
lators and that it can be applied to both finite and infinite
systems. To do so, we will apply it to model systems.

A. Noninteracting electrons

First, we will treat the simple case of N noninteracting
electrons in a one-dimensional box of length L. This model
system can be seen as a prototype of a conductor. For this
reason, it is particularly important that the formalism we
propose in this paper can be applied to such a system. In
analogy to the OBC case [3], one expects that the localization
tensor λL(N ), diverges in the thermodynamic limit.

We consider N = 2m + 1 noninteracting electrons where
m is a non-negative integer. For the sake of simplicity, we
assume that the particles are spinless. In the case of particles
with spin, the final result can be trivially obtained by multi-
plying the spinless-particle result by the spin multiplicity of a
single particle. The eigenfunctions of the Hamiltonian of this
system are periodic orbitals given by

φn(x) = 1√
L

exp

(
i
2πn

L
x

)
, (10)

where n is an integer. Since the particles do not interact,
the ground-state wave function is a single Slater determinant
of the occupied orbitals, given by |�0〉 = |φ−m · · · φm〉. The
corresponding localization tensor reads

λL(N ) = L2

4π2N

[
〈�0|

N∑
i=1

e− 2π i
L xi

N∑
j=1

e
2π i
L x j |�0〉

− 〈�0|
N∑

i=1

e− 2π i
L xi |�0〉〈�0|

N∑
j=1

e
2π i
L x j |�0〉

]
. (11)

Inserting a complete set of states in the first term in the square
brackets yields

λL(N ) = L2

4π2N

∑
I 	=0

N∑
i, j=1

〈�0|e−i 2π
L xi |�I〉〈�I |ei 2π

L x j |�0〉 (12)

= L2

4π2N

∑
|p|�m

∑
|l|>m

〈φp|e−i 2π
L x|φl〉〈φl |ei 2π

L x|φp〉, (13)

where in the last step we used the Slater-Condon rules for
one-electron operators [28]. Inserting Eq. (10) into the above
expression leads to the following expression for the matrix
element 〈φp|e−i 2π

L x|φl〉:
1

L

∫
L

exp

(
i
2π (l − p − 1)

L
x

)
dx = δl−p−1. (14)

Therefore, there is only one nonzero contribution in the dou-
ble summation over p and l in Eq. (13), namely when p = m
and l = m + 1. We can write the final result as

λL(N ) = L2

N2

N

4π2
, (15)

from which we can deduce the behavior of the localization
tensor in the thermodynamic limit. Since, in this limit, N/L
remains constant, the localization tensor diverges linearly with
N , as one would expect for a measure of conductivity applied
to a perfect conductor.

B. A tight-binding model

We now consider a dimerized chain containing 4m + 2
atoms at half filling, i.e., N = 4m + 2, in a tight-binding
model. The Hamiltonian is given by, for OBC and PBC,
respectively,

ĤOBC =
N−1∑
i=1

−ti(â
†
i âi+1 + â†

i+1âi ), (16)

ĤPBC =
N−1∑
i=1

−ti(â
†
i âi+1 + â†

i+1âi ) − tN (â†
N â1 + â†

1âN ), (17)

where â†
i (âi) is a creation (annihilation) operator and the hop-

ping parameter ti = 1 − (−1)iδ with 0 � δ � 1. This means
that the dimerization is at its maximum when δ = 1 while
there is no dimerization when δ = 0. The latter system can
be interpreted as a precursor of a metal since in the thermody-
namic limit this system becomes metallic. It is convenient to
express the Hamiltonian in the site basis. Upon diagonaliza-
tion, we thus obtain the eigenfunctions which, when inserted
in Eqs. (5) and (7), yield the OBC and PBC localization
tensors of the dimerized chain.

In Fig. 1, we report λ(N ), as defined in Eq. (5) for OBC,
as well as λL(N ), as defined in Eq. (7) for PBC, as a function
of the number of electrons for various values of δ. The length
of the unit cell has been set to unity and we have set L = N
such that the density N/L = 1. First of all, we see that the
PBC localization tensor is well-defined for finite N also for the
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δ=0.5
δ=1

1 10 100 1000
0

0.5

1

1.5

1.565

0.63125

0.15625
0.125

∞
∞
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FIG. 1. The OBC localization tensor λ(N ) (solid lines) and the
PBC localization tensor λL (N ) (dashed lines) as a function of the
number of electrons N for various values of the dimerization pa-
rameter δ in a tight-binding model [see Eqs. (16) and (17)]. The
dots and numbers next to each curve are the values of the PBC
localization tensor in the thermodynamic limit. They were obtained
from Eq. (22). Inset: λ(L)(N ) for δ = 0.04 and δ = 0.1 for large N .
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“metallic” chain (δ = 0). Second, as expected, the OBC and
PBC localization tensors, λ(N ) and λL(N ), respectively, differ
for finite N , since they describe different systems. Instead, in
the thermodynamic limit, both localization tensors describe
the same system and indeed we obtain the same values in that
limit.

The advantage of the PBC localization tensor is that the
thermodynamic limit can be obtained without extrapolating
results for finite N and L. Instead, at least for single-particle
Hamiltonians, one can obtain an expression involving infor-
mation of a single unit cell.

In the case of the dimerized chain, one can derive an
analytical expression for the localization tensor in the ther-
modynamic limit. The unit cell of length d contains two sites
separated by d/2 with one electron per site. In the site basis,
the Hamiltonian Ĥκ , which corresponds to the periodic part of
the wave function, is then given by (d = 1)

Hκ,11 = Hκ,22 = 0, (18)

Hκ,12 = H∗
κ,21 = −(1 + δ)e

−π i
κn + (1 − δ)e

π i
κn , (19)

where κ = 0, 1, 2, . . . , n − 1 is an integer and n is the number
of cells. The eigenvectors of the matrix Hκ are the periodic
part of the Bloch functions φik . There is one occupied valence
state φvk and one unoccupied conduction state φck . They are
given by

φik (x) = 1√
n

eikxuik (x) (i = v, c), (20)

where x is the coordinate along the chain, k = 2πκ/L is the
wave vector and uik (x) is a periodic function that is normalized
over a single cell. To obtain the localization tensor, we use a
similar strategy to that used for the system of noninteracting
electrons, i.e., we insert a complete set of states in Eq. (7)
and use the Slater-Condon rules. This yields the following
expression [9]:

λL(N ) = L2

4π2

n−1∑
κ=0

〈φvk|e−i 2π
L x|φck′ 〉〈φck′ |ei 2π

L x|φvk〉, (21)

with k′ = k + 2π/L. In the thermodynamic limit, the variable
κ becomes continuous and the summation over κ can be
replaced with an integral over k. We finally obtain

λ∞ ≡ lim
N,L→∞

λL(N ) = 1 + δ2

16|δ| . (22)

As expected, for a periodic system, λ∞ is an even function
of δ. We note that λ∞ goes to infinity as 1/|δ| when δ tends
to zero, i.e., when we go from an insulator (δ 	= 0) to a
metal (δ = 0). We reported the limiting values obtained with
Eq. (22) in Fig. 1.

Finally, in Fig. 2 we report the static polarizability per
electron ᾱ(N ) = α(N )/N and ᾱL(N ) = αL(N )/N as a func-
tion of the number of electrons for various values of δ. As
before, the length of the unit cell has been set to unity and
we have set L = N such that the density N/L = 1. As was the
case for the PBC localization tensor, the PBC polarizability
is well-defined for finite N for the “metallic” chain (δ = 0).
We note that, while the localization tensor diverges linearly
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1.3365
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∞ ∞
8.2993

1.3365

FIG. 2. The OBC polarizability ᾱ(N ) (solid lines) and the PBC
polarizability ᾱL (N ) (dashed lines) as a function of the number of
electrons N for various values of the dimerization parameter δ in
a tight-binding model. The dots and numbers next to each curve are
the values of the PBC localization tensor in the thermodynamic limit.
They were obtained from Eq. (24). Inset: ᾱ(N ) and ᾱ(L)(N ) for δ =
0.04 and δ = 0.1 for large N .

for this chain, the polarizability per electron diverges quadrat-
ically. Most importantly, in the thermodynamic limit, ᾱ(N )
and ᾱL(N ) tend to the same values, as they should.

In the thermodynamic limit, we can obtain an analytical
expression for the PBC polarizability ᾱL of the tight-binding
model in a similar way as that employed for the localization
tensor, which is described in the paper. The PBC polarizability
ᾱL can be rewritten as

ᾱL(N ) = L2

4π2

n−1∑
κ=0

〈φvk|e−i 2π
L x|φck′ 〉〈φck′ |ei 2π

L x|φvk〉
εck′ − εvk

, (23)

where εvk (εck′) is the orbital energy of a valence (conduction)
state. In the thermodynamic limit, the variable κ becomes
continuous and the summation over κ can be replaced with

0 1000 2000 3000 40000

20

40

60

80

100

120

140

160
γ=0
γ=0.001
γ=0.01
γ=0.1
γ=1

FIG. 3. The PBC localization tensor λL (N ) as a function of the
number of electrons N for various values of the electronegativity
difference γ for a square lattice in a tight-binding model.
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an integral over k. We finally obtain

ᾱ∞ ≡ lim
N,L→∞

αL(N ) = 2(1 + δ2)E (1 − δ2) − δ2K (1 − δ2)

48πδ2
,

(24)
where K and E are the complete elliptic integrals of the first
and second kinds, respectively:

K (x) =
∫ π/2

0
(1 − x sin2 θ )−1/2dθ, (25)

E (x) =
∫ π/2

0
(1 − x sin2 θ )1/2dθ. (26)

We reported the limiting values obtained with Eq. (24) in
Fig. 2.

C. Square lattice

To demonstrate that our approach is not limited to one
dimension, we consider a two-dimensional square lattice with
the following tight-binding Hamiltonian,

Ĥ = −
∑
〈i,k〉

∑
j

a†
i, jak, j −

∑
i

∑
〈 j,k〉

a†
i, jai,k

+ γ

2

∑
i, j

(−1)i+ ja+
i, jai, j, (27)

where the notation 〈i, k〉 indicates that i and k are nearest
neighbors. The Hamiltonian in Eq. (27) describes a nondimer-
ized bipartite lattice with nearest-neighbor hopping t = 1.
We can obtain the band structure that corresponds to this
Hamiltonian in the thermodynamic limit. It is given by

ε±(kx, ky) = 1
2 [γ ± γ 2 + 16(1 + cos(kx ) + cos(ky)

+ cos(kx ) cos(ky)]1/2. (28)

The minimum gap between the two eigenvalues is γ , and it
is reached for either kx = ±π or ky = ±π (or both). This
means that the system is an insulator when it is bipartite,
i.e., if γ 	= 0, while it becomes a metal when all the sites are
equivalent, i.e., γ = 0. The parameter γ can be interpreted as

0 1000 2000 3000 4000
0

5×104

1×105

2×105

2×105

γ=0
γ=0.0001
γ=0.001
γ=0.01
γ=1

FIG. 4. The PBC polarizability ᾱL (N ) as a function of the
number of electrons N for various values of the electronegativity
difference γ for a square lattice in a tight-binding model.

the difference in electronegativity between neighboring sites.
Therefore, the Hamiltonian in Eq. (27) represents a model for
a single layer of NaCl when γ 	= 0 and a single layer of the
simple-cubic polonium crystal for γ = 0. We computed the
eigenvalues of the localization tensor and the polarizability of
this system for various values of γ . Because of the symmetry,
the diagonal components are identical, while the off-diagonal
components vanish. For this reason, we report only the xx
component in the following.

In Fig. 3, we report the localization tensor as a function of
N for various values of γ . For γ 	= 0, the localization tensor is
a monotonous increasing function that saturates to a constant
in the limit N → ∞. On the other hand, for γ = 0, the local-
ization tensor is linear in N , so it diverges linearly for N →
∞. In Fig. 4, the corresponding polarizability per electron are
reported. The behavior is very similar to that of the localiza-
tion tensor. The main difference is that for γ = 0, the polariz-
ability diverges quadratically as a function of N for large N .

D. A Heisenberg model

Finally, we calculate the spin localization tensor for a
correlated Heisenberg model. We study the following Hamil-
tonians, for OBC and PBC, respectively:

ĤOBC = 2J
N−1∑
i=1

(1 − (−1)iδ)�̂Si �̂Si+1, (29)

ĤPBC = 2J
N−1∑
i=1

{(1 − (−1)iδ)�̂Si �̂Si+1} + 2J (1 − δ)�̂S1�̂SN , (30)

where �̂Si is the spin vector of site i, J is the coupling con-
stant, and 0 � δ � 1 is the dimerization parameter, i.e., the
dimerization is at its maximum when δ = 1 while there is no
dimerization when δ = 0. Furthermore, we assume that N � 4
and N is even.

Since the electron positions are fixed in this model, the lo-
calization tensor vanishes for all N . However, the localization
tensor can be split into four spin contributions [13,14,29],

λ(N ) = λ↑↑(N ) + λ↓↓(N ) + λ↑↓(N ) + λ↓↑(N ), (31)

where λ↑↑(N ) [λ↓↓(N )] is a measure of the localization of ↑
(↓) spins, and λ↑↓(N ) and λ↓↑(N ) are the couplings between
↑ and ↓ spins. In the following, we will focus on the spin
localization tensor λS (N ) = λ↑↑(N ) + λ↓↓(N ) obtained from
the ground state for an antiferromagnetic ordering (J = −1).

In Fig. 5, we report the OBC spin localization tensor
λS (N ) as well as the PBC spin localization tensor λS

L(N )
as a function of the number of electrons for various values
of δ. The length of the unit cell has been set to unity and
we have set L = N such that the density N/L = 1. Because
of the correlation, the numerical solution of the problem is
much more computationally demanding than the uncorrelated
calculations discussed in the paper. For this reason, the largest
number of electrons we were able to treat is N = 16.

Nevertheless, the same conclusions drawn for the uncor-
related tight-binding model discussed in the paper also apply
to the correlated Heisenberg model: (1) for the metallic chain
(δ = 0), the PBC localization tensor is well-defined for finite
N and it diverges linearly with N as does the OBC localization
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FIG. 5. The OBC spin localization tensor λS (N ) (solid lines) and
the PBC spin localization tensor λS

L (N ) (dashed lines) as a function
of the number of electrons N for various values of the dimerization
parameter δ in a Heisenberg model.

tensor; (2) the OBC and PBC localization tensors, λ(N ) and
λL(N ), respectively, differ for finite N , since they describe
different systems; (3) in the thermodynamic limit, both local-
ization tensors describe the same system and the localization
tensors tend to the same value in that limit. The last conclusion
can only be verified numerically for δ � 1 since, for smaller
values of δ, the convergence with respect to N is not fast
enough to be visible in the range 4 � N � 16.

IV. CONCLUSION

We have presented a simple one-body position operator
that is compatible with PBC. We have shown that this operator
meets several important fundamental constraints, e.g., it is
translationally invariant, it reduces to the common position
operator r̂ = r in the appropriate limit, and the distance
expressed in terms of the operator is gauge independent.
Moreover, we have demonstrated its usefulness when applied
to the localization tensor. In particular, we have shown that it
yields the correct expression in the thermodynamic limit and
correctly distinguishes between finite precursors of insulators
and metals.

Finally, we note that this paper opens the road for the
calculation of various other properties of interest for which the
corresponding operators involve the position operator. In par-
ticular, our definition of position could reconcile the Coulomb
potential with PBC since the distance remains well-defined
[see Eq. (4)]. Preliminary investigations in this direction,
both on the quantum (ab initio treatment of the electron gas)
and classical level (Madelung sums) are in progress. In the
end, this could, for example, enhance the convergence to the
thermodynamic limit of Monte Carlo calculations of periodic
systems [30].
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APPENDIX: PROOF OF EQUIVALENCE WITH THE
LOCALIZATION TENSOR OF REF. [2] IN THE

THERMODYNAMIC LIMIT FOR A SINGLE SLATER
DETERMINANT

In this Appendix, we proof that our definition of the local-
ization tensor in Eq. (7) of the paper reduces to the localization
tensor proposed in Ref. [2] in the thermodynamic limit in the
special case of a wave function that can be expressed as a
single Slater determinant.

For a single Slater determinant, we can rewrite Eq. (7) of
the paper according to

λL(N ) = L2

4π2

∑
v,c

n−1∑
κ=0

〈φvk|e−i 2π
L x|φck′ 〉〈φck′ |ei 2π

L x|φvk〉, (A1)

= L2

4π2

∑
v,c

n−1∑
κ=0

〈uvk|uck′ 〉〈uck′ |uvk〉, (A2)

where k′ = k + 2π
L and n is the number of cells. For large L,

we can rewrite uck′ , which is the periodic part of φck′ , as

uck′ (x) = uck (x) + 2π

L
∂kuck (x) + O(1/L2). (A3)

Therefore, the localization tensor in the thermodynamic limit
becomes

lim
N,L→∞

λL(N ) =
∑
v,c

∫
dk〈uvk|∂kuck〉〈∂kuck|uvk〉 (A4)

=
∑
v,c

∫
dk〈∂kuvk|uck〉〈uck|∂kuvk〉. (A5)

Using the completeness relation
∑

v〈uv|uv〉 + ∑
c〈uc|uc〉 = 1

we can rewrite this as

lim
N,L→∞

λL(N ) =
∑

v

∫
dk〈∂kuvk|∂kuvk〉 (A6)

−
∑
v,v′

∫
dk〈∂kuvk|uv′k〉〈uv′k|∂kuvk〉, (A7)

which is the expression proposed in Ref. [2]. This completes
the proof.
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