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Pressure-induced metal-insulator transition in twisted bilayer graphene
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Recent experiments on twisted bilayer graphene (TBLG) have observed insulating states for two and three unit
charges per moiré supercell, whereas the quarter-filling state (QFS) remained metallic. Subsequent experiments
show that under hydrostatic pressure the QFS turns insulating for a certain window of pressure. In fact, the
resistivity of the 1/2-filling and 3/4-filling states are also enhanced in the same pressure-window. Using pressure-
dependent band structure calculations we compute the ratio of the potential to the kinetic energy, rs. We find a
window of pressure for which rs crosses the threshold for a triangular Wigner crystal, thereby corroborating our
previous work that the insulating states in TBLG are driven by Wigner physics, A key prediction of this work is
that the window for the onset of the hierarchy of Wigner states that obtains at commensurate fillings conforms
to a dome shape under pressure. We also predict the optimal condition for Wigner crystallization to be around
1.5 GPa. Consequently, TBLG provides a new platform for the exploration of Wigner physics and its relationship
with superconductivity.
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I. INTRODUCTION

Twisted bilayer graphene (TBLG) is a true example of
emergence. Electrons in single layers of graphene are free
while those in the composite—consisting of two layers
twisted close to the magic angle such that the electronic
bands are essentially flat—have almost no kinetic energy, EK .
In such cases, the physics is dominated by the interactions,
EU , between the electrons. The experimental observation of
correlated insulating phases and superconductivity is hence
not unexpected. As a result of these discoveries [1,2], TBLG
is largely viewed as a problem in strongly correlated physics
[3–19]. However, unlike conventional strongly correlated ma-
terials such as the cuprates or the heavy fermions, TBLG
offers an extremely tunable platform. Namely, through the
twist angle one can control the extent of strong correlation.

When two layers of graphene are rotated with respect to
each other, a so called moiré lattice emerges [20–23], which
is a triangular lattice with periodicity λs = a/(2 sin θ/2). Here
a = 2.46 Å is the lattice constant of pristine graphene layers.
This emergent lattice has an approximate SU(4) symmetry
due to the valley and spin degeneracies. Thus a moiré band
can hold up to four electrons. So if we consider a moiré
supercell of area As = √

3λ2
s /2, the superlattice density (ns)

can be fixed using Asns = 4. Consequently, it is convenient
to define the index ν = neAs which serves as the electron
filling factor. The initial experiments [1,2] in this regime
showed that insulating states can arise for ν = ±2, 3. Dop-
ing away from ν = −2 resulted in superconductivity with
a transition temperature of 1.5 K. These results were later
confirmed by various groups [24–29]. In particular, it was
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demonstrated [24] that hydrostatic pressure can also be used
to further tune the effects of twist angle. This gave way to
certain metal-insulator and insulator-metal transitions which
were not observed at ambient pressure. In this work we try to
address the mechanism behind these peculiar transitions.

At zero temperature, a measure of the degree of correlation
can be EU /EK ≡ rs. Starting from a two-dimensional ho-
mogenous gas of electrons (2DEG) one can drive the system
through different phases simply by tuning rs. This is true
because the energy of a many-body ground state, E0(rs), is
solely a function of rs. The two asymptotic phases one thus
obtains are a Fermi liquid phase for rs � 1 and a Wigner solid
phase [30] for rs � 37 [31]. Experimentally, in principle, one
can access these phases by changing the carrier density (ne) or
applying a magnetic field (B). However, in the case of TBLG,
rs can also be tuned by the twist angle (θ ) or hydrostatic
pressure (P). At ambient pressure, a single layer of graphene
[32] or a Bernal stacked bilayer of graphene [33,34] has rs � 1.
Twisting the layers towards a magic angle configuration in-
creases rs of this TBLG system, driving it towards a Wigner
phase [3]. This can simply be understood by the flattening of
the moiré bands. In fact, the proclivity of flat-band systems to
form Wigner crystals has not gone unnoticed [35]. However,
a natural question that arises is, how does pressure modulate
rs? To answer this question, we numerically compute rs of
TBLG as a function of θ, ne, P. With this we demonstrate that
the metal-insulator-metal transition mentioned above can be
understood as a melting of a Wigner solid phase; see Fig. 4.

This paper is organized in the following manner. In Sec. II
we first argue that the correlated insulators observed in TBLG
are Wigner, not Mott insulators. In Sec. III we discuss the
tight-binding Hamiltonian we use for computing the band
structure of TBLG. Pressure is then incorporated into comput-
ing the band structure in the presence of triangular warping,
and a pressure-dependent effective magic angle is obtained in
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Sec. IV. We then proceed to compute pressure dependence of
rs at various commensurate fillings in Sec. V. In Sec. VI we
discuss a few possible corrections to our estimation of rs. We
conclude our discussion in Sec. VII by commenting on a few
other aspects of TBLG in relation to Wigner crystals (WCs).

II. TBLG: MOTT VERSUS WIGNER PARADIGM

This paper addresses the pressure dependence of the in-
sulating states. Electronic band structure calculations [36–38]
as a function of pressure in TBLG offer immediate insight
into the physics at play. Hydrostatic pressure causes uni-
axial compression between the graphene layers [39], which
in turn increases the interlayer tunneling, thereby changing
the magic angle condition. However, an additional feature
also appears: the bandwidth shows a dome-like shape with
increasing pressure. Because the interactions remain fixed, the
ratio rs increases, favoring Wigner crystallization. Although,
simply from the bandwidth perspective, Mott insulation might
also seem favorable.

It is important then to determine what physics TBLG
exhibits that conforms to either scenario. Cao et al. as well
as others [11–14] attributed the insulating states at ν = ±2, 3
to Mott physics. Within this paradigm, insulating behavior
should exist whenever the band is partially filled. However,
metallic not insulating behavior exists at ν = 1 in the experi-
ments of [1,2]. This is a potential problem for the application
of the Mott scenario to TBLG. It is not surprising then
that the Mott criterion [40] n1/d

e a∗
0 ≈ O(1) is not satisfied in

TBLG near the magic angle. In fact, this is satisfied only for
θ − θmagic � 0.7.

Another key distinguishing feature between a Mott and a
pinned Wigner insulator is that the spatial symmetry of the
Mott state is always the same as that of the lattice. However,
a Wigner crystal, being an emergent lattice by itself, may or
may not adhere to the symmetries of the underlying lattice.
Within the Mott paradigm, the relevant question is how can
the electrons be placed in a moiré lattice without creating a
new electron lattice distinct from the underlying triangular
moiré lattice. That is, because of the Coulomb interaction,
the electrons must occupy spatially separated locations in
each moiré cell regardless of the underlying SU(4) symmetry.
Consequently, except, for ν = 1, any arrangement of the
electrons must create a lattice distinct from the triangular
lattice. The honeycomb (ν = 2) (also proposed previously as
a possible ground state [4,9]) and kagome (ν = 3) lattices are
examples of Wigner lattices as they all break the underlying
triangular symmetry [3]. While the most common instances
of Wigner crystal formation involve a magnetic field [41] that
quenches the kinetic energy, the situation in TBLG is not
very dissimilar because it is well known that a relative twist
between two layers of graphene generates [42] a non-Abelian
gauge pseudopotential [43] with a magnetic length equal to
the moiré lattice constant.

In the following sections we demonstrate that increasing
the pressure in TBLG leads to rs > 37, thereby resolving the
pressure-induced metal-insulator transition in TBLG. We map
out the phase diagram using realistic parameters for TBLG
and determine the regime where the ν = 1 state crosses the
crystallization threshold. We find that the quarter-filling state

in the new experiments [24] at 1.33 and 2.21 GPa are well
within the Wigner regime while those at ambient pressure
correspond to rs < 37. We also confirm the experimental trend
that hydrostatic pressure enhances the insulating states at ν =
2, 3.

III. THE TIGHT-BINDING HAMILTONIAN

We start by computing the pressure-dependent band struc-
ture and subsequently rs. In our discussion, we will focus ex-
plicitly on device D2 of [24]. Consider two layers of graphene,
each rotated by ±θ/2 around an axis passing through an A1B2

site, where the subscripts denote the layers, and A, B are sub-
lattice labels. When θ is small, the supercell consists of a large
number of atoms, ∼104, making ab initio methods [44] less
viable or reliable [45] than the tight-binding schemes [20,22].
Here, we follow the tight-binding scheme of [36], where the
tight-binding parameters are functions of pressure. Also, since
we work with a tight-binding model, unlike the case of a
continuum model, we limit our discussion to commensurate
structures obtained for twist angles [46],

θ = cos−1

[
m2 + 4mn + n2

2(m2 + mn + n2)

]
, m, n ∈ Z. (1)

The twist angle of the D2 sample is θ = 1.27◦, which is
not a commensurate angle. Because of the reasoning above,
we work with the nearest commensurate angle, θ ≈ 1.25◦,
obtained for (m, n) = (26, 27).

We denote the supercell vectors as R1 = ma1 + na2 and
R2 = −na1 + (m + n)a2, with a1, a2 being the lattice vectors
of original graphene layer, and each unit cell is |m − n|
(=1 for D2) times larger than the moiré periodicity, λs.
For commensurate structures, there is a well defined moiré
Brillouin zone (MBZ). The symmetry points of the MBZ will
be labeled as �̄ (zone center), M̄ (edge center), and K̄ (zone
corner). Since tunneling between two valleys is prevented in
a low-energy description (�1 eV) and as a result of the valley
degeneracy, our calculation only considers an MBZ formed
near the K (Dirac) point of the original lattice.

We begin with a simplified description, ignoring any an-
gular dependence of the hybridization or the orbital overlaps.
The generic noninteracting part of the Hamiltonian is

H = −
∑
i, j

t (Ri − R j )|Ri〉〈R j | + H.c., (2)

where Ri = ∑
x,y,z Ri

a ea is the atomic coordinate in the basis
of {ea}, and |Ri〉 is the wave function at site i. The tunneling
strength between sites i and j is measured by the tight-binding
parameter t (Ri − R j ). We can express this tight-binding pa-
rameter using a simple linear combination of pz orbitals as

t (R) = Vppπ (R) sin2 γ + Vppσ (R) cos2 γ , (3a)

R cos γ = R · ez. (3b)

Here R is the length of the vector R joining two atoms and
ez is the unit vector along the c axis. The overlap or transfer
integrals, V (R), can be expressed in terms of the Slater-Koster
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FIG. 1. Interlayer tunneling for different pressures as a function
of distance from the site of rotation. With increasing pressure,
the interlayer distance decreases causing the tunneling strength to
increase. Inset: The dominant contribution to t (r) comes from Vppσ

which leads to a simpler expression in Eq. (6).

parameters [47]

Vppπ (R) = −t0 exp

(
−R − a0

r0

)
, (4)

Vppσ (R) = t⊥ exp

(
−R − d⊥

r0

)
. (5)

r0 = 0.318 a0 is an isotropic decay length chosen [45] for
the transfer integrals so that the next-nearest in-plane overlap
becomes 0.1t0 [48]. t⊥ is the σ -bond (or interlayer coupling)
strength between the sp2 orbitals of the AB stacked bilay-
ers. At ambient pressure t⊥|P=0 ≡ t0

⊥ ≈ 0.31 eV. t0 ≈ 2.7 eV
is the in-plane π -bond strength of the two neighboring pz

orbitals (separated by a0 = a/
√

3 = 1.42 Å) in single-layer
graphene. We use d⊥ for the interlayer spacing at finite
pressure P (GPa) and d 0

⊥ = 3.35 Å is the spacing at ambient
pressure.

Since d⊥/a0 � 2, near the stacking center, the tunneling
parameter t (R) is largely dominated by the σ bond, and thus
the function t (R) can be approximated as

t (r) ≈ t⊥

(
1 − r2

d2
⊥

)
exp

(
− r2

2r0d⊥

)
. (6)

In the inset of Fig. 1, the behavior of Eq. (6) is juxtaposed
with the exact result from Eq. (3b), which shows an expo-
nential reduction of the tunneling strength for r � d⊥. This
also causes the Fourier transform to sharply decay for any
k � 1/d⊥. Thus, for a low-energy model, it is sufficient to
work with t⊥(K ) only and not include the higher modes, such
as t⊥(K + G), where G is a moiré reciprocal lattice vector.
One can perform a Fourier transform of t (r) computed above
to determine t⊥(K ), or, since we work in the θ ∼ 1◦ limit,
(for AB stacking) one can approximate t⊥(K )/A0 ≡ w = 1

3 t⊥.
Here A0 = √

3a2/2 is the area of the single-layer graphene
unit cell and the factor 3 takes into account that there are three
equivalent Dirac cones. One can use w as the input parameter
in the effective theories.

In concluding this section we note that, in our discussion,
t⊥ is the single energy parameter that is affected by pressure
[see Eq. (11)]. The in-plane energetics, controlled by in-plane
hopping, may change under very high pressure, especially in
the presence of a hexagonal boron nitride (hBN) substrate;
however, for the range of pressure relevant here, such effects
can be safely neglected [39].

IV. PRESSURE DEPENDENCE OF MAGIC ANGLE

In order to quantify the effect of pressure on t⊥ first we
need to obtain the relation between d⊥ and pressure. Ap-
plication of hydrostatic pressure can readily reduce d⊥ [39],
the experimental consequences of which have been studied
in [24]. This compression factor, denoted by δd , is related to
applied pressure through the Murnaghan equation of state [38]

1 − d⊥
d 0

⊥
≡ δd = 10.48 ln

(
1 + P

5.73

)
%. (7)

The numbers appearing here are fixed using density functional
theory [36]. An immediate consequence of a reduced d⊥ is an
enhanced magic angle, which we denote by θ eff

magic. In fact,
for experimentally accessible pressures, this mechanism can
enhance θ eff

magic up to 3◦. The primary advantage of a large

θ eff
magic is an enhanced Coulomb energy scale (EU ∼ λ−1

θ ∼ θ )
which could also result in an increased Tc [24].

In order to express t (R) as a function of δd (hence P), we
use Eq. (7) in Eq. (5) or (6) and rewrite the tight-binding
Hamiltonian. However, at finite pressure the Slater-Koster
approximation turns contentious as the overlap between
the Wannier orbitals develops a strong angular dependence
[36–38]. This is a result of the overlap of Wannier orbitals
with angular momentum, m = 3n, with n ∈ Z, where 3 ap-
pears due to the D3 point group symmetry of the underlying
lattice. We will denote the radial components of such over-
lap functions with V|m|(r), whereas the angular dependence
simply will be cos(mθ ). In this notation, Eq. (3b) can be
viewed simply as V0(r), which still is the leading contribution
to t⊥(r). In fact, we will only consider the overlaps from
the m = ±3,±6 orbitals since the effects from the overlap
of the higher-order orbitals are negligible [37]. A real space
expansion of t⊥(r) is thus written as [36–38]

t⊥(r) = V0(r) + V3(r)[cos(3θ12) + cos(3θ21)]

+V6(r)[cos(6θ12 + cos(6θ21)], (8)

where θi j are the angles between the vectors connecting the
ith site to the jth site and connecting the ith site to its nearest
neighbor. The radial functions V|m|(r) are given by

V0(r) = λ0e−ξ0 r̄2
cos(κ0r̄), (9a)

V3(r) = λ3r̄2e−ξ3(r̄−x3 )2
, (9b)

V6(r) = λ6e−ξ6(r̄−x6 )2
sin(κ6r̄). (9c)

Here r̄ = r/a. All the parameters appearing above, collec-
tively denoted by πi(δd ) where i = 1, 2, . . . 10, are fixed
[36] using density functional methods and are listed in the
Table I. Given the pressure range of interest, the functional
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TABLE I. Compression, δd , dependence of the ten parameters
appearing in Eq. (9). The coefficients, c(n)

i , appearing in Eq. (10)
are listed below (in eV units). The theory for determining these
coefficients was developed in Refs. [36,37].

i (πi ) c(0)
i c(1)

i c(2)
i

1 (λ0) 0.310 −1.882 7.741
2 (ξ0 ) 1.750 −1.618 1.848
3 (κ0 ) 1.990 1.007 2.427
4 (λ3) −0.068 0.399 −1.739
5 (ξ3) 3.286 −0.914 12.011
6 (x3) 0.500 0.322 0.908
7 (λ6) −0.008 0.046 −0.183
8 (ξ6) 2.272 −0.721 −4.414
9 (x6) 1.217 0.027 −0.658
10 (κ6) 1.562 −0.371 −0.134

dependence of πi(δd ) with δd is truncated to a quadratic fit,

πi(δd ) = c(0)
i − c(1)

i δd + c(2)
i δ2

d . (10)

For numerical accuracy, our band structure computations
are based on this full ten-parameter model (see Fig. 2);
however, for simplicity, henceforth we confine our discus-
sion to an effective one-parameter model. In Eq. (9) the
strongest contributions to the interlayer tunneling come from
the hybridization scales λi. The remaining parameters, the
length scales associated with the Wannier orbitals, are weakly
dependent on pressure. Thus, a simpler effective model could
be constructed by renormalizing these three parameters (first
row of Table I), where the renormalization essentially takes
into account the angular contributions coming from all the
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FIG. 2. Pressure-dependent band dispersion of TBLG for θ =
1.25◦. The parameters used in obtaining these are listed in the
Table I. With increasing pressure, the low energy bands become
flatter; however, beyond ∼1.45 ± 0.1 GPa, the bandwidth increases
subsequently. The reason behind such an optimal behavior can be
understood from Eq. (12).

FIG. 3. With increasing external pressure, the interlayer distance
decreases by δd % (blue curve or right axis) which is described in
Eq. (7). Reduced separation enhances interlayer tunneling, w ≈ t⊥/3
(green curve or top axis), as can be seen from Eq. (11). This causes
an increase (red curve or left axis) in the effective magic angle, θ eff

magic,
where the band become the flattest; see Eq. (12). The dots correspond
to the reported values of pressure where the measurements of [24]
were performed.

other parameters (the remaining nine rows in Table I). Such
an effective set of parameters was obtained in [36] by tallying
the bandwidth of the flat bands from the ten-parameter model
and an ab initio k · p model

t⊥(δd ) = t (0)
⊥ − t (1)

⊥ δd + t (2)
⊥ δ2

d ,

t (0,1,2)
⊥ � (0.31,−1.73, 7.12) eV. (11)

Again, the parameters t (i)
⊥ above, which marginally differ from

those listed in the first row of Table I, can be simply seen as
effective leading parameters after incorporating the angular
contributions. Note that the above t⊥, thus constructed, is the
single input to the tight-binding Hamiltonian of the previous
section. Now, however, it is dependent on pressure.

Using Eq. (11), we now obtain the pressure dependence of
θ eff

magic discussed before. Note that the magic angle is (roughly)
obtained by matching the quasiparticle kinetic energy, h̄v0Kθ ,
and the hybridization scale, t⊥. Here v0 = 106 m/s is the
speed of the electrons in pristine graphene and Kθ = 4π/3λs

is the size of the MBZ. This causes θ eff
magic ∼ t⊥, or, at ambi-

ent pressure, θmagic ∼ t (0)
⊥ . Thus, h̄v0Kθ = θ eff

magic(2t (0)
⊥ /θmagic).

Following [24,36,38], we set θmagic = 1.1◦. This gives rise to
the following expression for the effective magic angle:

θ eff
magic(P)

θmagic
= t⊥(P)

t0
⊥

= 1 + 5.584 δd + 22.97 δ2
d . (12)

Figure 3 displays the relevant parameters discussed above
as functions of external pressure. For a given device with a
fixed twist angle θ , which is larger than the ambient pres-
sure magic angle θmagic, as pressure increases one gradually
increases θ eff

magic. For θ = θ eff
magic, one defines the optimum

pressure for a particular system, Popt, which is also coincident
with the flat-band condition. Increasing the pressure further
will relatively tune the system away from the magic angle. The
optimal pressure for device D2, for instance, can be solved by
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demanding θ eff
magic = 1.27◦. From Eq. (12), we find that P �

1.55 GPa (δd = 2.5%). This explains why optimal behavior
is seen (among the two available data sets) around 1.33 GPa
(δd = 2.2%), as opposed to near 2.21 GPa (δd = 3.4%).

With the use of these parameters, we compute the band
structure. The most notable feature in Fig. 2 is that the
bandwidth shrinks as 1.33 GPa is approached and increases
beyond this pressure. It is this feature that gives rise to the
dome-like shape of the phase diagram of rs versus hydrostatic
pressure, thereby affecting the observed insulating behavior.
Note that, although here we used the tight-binding description,
one may also use the effective low energy descriptions de-
veloped for ambient pressure [13,15–18,23]; albeit the (tight-
binding or continuum) parameters must be fixed taking finite
pressure into account.

V. COMPUTATION OF rs

We now turn to the computation of rs. First we need to
estimate Coulomb energy for a TBLG system at θ angle,

EU = e2

εre
=

(
α

ε

)(
h̄v0

a

)(
a

re

)
. (13)

Since v0 is about 300 times smaller than the speed of light,
the effective fine structure constant of (suspended) graphene
is α ≈ 2.2. Also note that h̄v0/a = 2.135 eV. In the presence
of the hBN substrate, this is reduced by a factor of the ef-
fective dielectric constant, ε = 10.1 The average interparticle
distance can be obtained from πr2

e ne = 1. For a given fill-
ing fraction, re = √

As/πν ≈ 0.525 λs/
√

ν. Combining all of
these expressions, we find that EU ≈ (15 meV) θ ◦. In Sec. VI
we discuss some subtleties involved with a more realistic
estimation of EU in TBLG. The final expression for rs is

rs ≈ 15 meV
θ ◦

EK

√
ν

Device−−−→
D2

20 meV

EK (meV)

√
ν. (14)

In order to fix the kinetic energy above, we first relate the
carrier concentration to chemical potential, μ, and since EK �
μ, for a minimal (and hence conservative) estimate of rs

one can substitute EK with μ. In order to do so we start by
computing the density of states (DOS), ρ(ε), which can be
normalized in the following way. Since each moiré supercell
contains eight electrons at the most, integrating the DOS for
the bottom four bands must yield 8:

∫ �e

�h

ρ(ε)dε = 8. (15)

1The dielectric constant of TBLG is largely determined by the
encapsulating hBN layers with ε ∼ 6. Taking screening from the
higher bands into account, in the supplementary section of our earlier
paper [3] we estimated the renormalized ε within the random phase
approximation and obtained ε ∼ 10 near the magic angle. However,
since this scheme breaks down in the Wigner regime, the most
reliable method to estimate the Coulomb interaction is to use an
enhanced dielectric constant, as is customary in the experimental
works. A recent discussion on the issue of screening can be found
in Ref. [49].

FIG. 4. For the device D2 of [24], we compute rs (red dots along
with computational error associated with coarse graining of the k
space) of the quarter-filling state. The blue curve provides a guide
for the eye. Its dome-like behavior can explain a similar feature seen
in the conductance of the quarter-filling state in the experiment of
[24]. For the pressure window of ∼1–3 GPa the system enters the
Wigner crystallization regime, rs � 37. Similar behavior is obtained
for ne = ns/2 and 3ns/4.

Here, �e,h ∼ ±10 meV, respectively, provide the upper and
lower cutoffs for the bottom four bands. Integrating the nor-
malized DOS up to the chemical potential provides the carrier
concentration (in order to compare our results with those of
[24] we perform the integration only for the hole side):

ne(μ) =
∫ μ

�h

ρ(ε)dε. (16)

This is shown in Fig. 5(a). In obtaining rs for the ν/4 state
one can fix ne(μ) = ν ns/4 (e.g., see the gray line for ν = 1)
and obtain how μ evolves with pressure along that line. Note
the source of error here is the coarse graining of the energy
integral above.

In Fig. 4 [or Fig. 5(b)] we plot the behavior of rs as a
function of pressure, which is clearly dome-like. The key
aspect of this figure is the crossing of the Wigner threshold
for pressures in the range 0.75 < P < 3 GPa. The existence of

(a) (b)

FIG. 5. (a) The chemical potential dependence (smoothly fitted)
of the carrier concentration for various pressures, as obtained in
Eq. (16). (b) rs as a function of pressure obtained for ν = 2, 3 states.
Similar to the ν = 1 state discussed in the main text they also exhibit
dome-like behavior.
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this window for optimal insulating behavior of the ν = 1 state
can be tested experimentally. We find that Popt = 1.5 GPa,
which is close to the experimentally observed optimal pres-
sure, 1.33 GPa. Clearly further experiments are needed to
map out the nonmonotonic dependence of the metal-insulator
transition as a function of the uniaxial pressure. As can be
seen in Fig. 5(b), similar behavior is seen for the ν = 2, 3
states, which, as we showed previously [3], correspond to
honeycomb and kagome WCs.

VI. POSSIBLE SOURCES OF CORRECTIONS TO rs

There are several variables present in a realistic hBN-
TBLG system which might affect the exactness of our esti-
mated rs. In this section we list numerous such effects and
discuss their consequences. We argue that these variables do
not influence the order of our estimations significantly nor do
they alter our qualitative conclusions. Hence, for simplicity,
we have not considered them in our estimation.

Before turning to a discussion pertaining to TBLG we first
note that the critical value for Wigner crystallization used in
this work, rcrit

s = 37, though universal across all materials, is
somewhat approximate. The computational sources of error
are the finite-size effect (extrapolation of finite number of
electrons to the thermodynamic limit), and the fitting errors
in obtaining E0(rs). Cumulatively, they amount to an error
of magnitude δrcrit

s = 5 in [31]. Another important source
of uncertainty in rcrit

s is a methodical error arising from
the so-called fixed-node approximation used in the diffusion
Monte Carlo method [50] (that the actual and the trial wave
functions share the same nodal surface). An improved use
of this approximation was done in [51] by including Slater-
Jastrow-backflow wave functions [52]. This results in rcrit

s =
31 ± 1, which incidentally lowers (raises) the critical pressure
at which the metal to insulator (insulator to metal) transition
occurs; see Fig. 4. However, it should also be noted that the
transition in [51] is from a paramagnetic fluid to a triangular
antiferromagnetic crystal, as opposed to a transition from a
ferromagnetic fluid to the triangular ferromagnetic crystal as
reported in [31]. In view of all these uncertainties the phase
boundary in Fig. 4 remains intact.

In our work we have ignored any effects related to atomic
relaxation in TBLG. For instance, the optimal lattice configu-
ration of TBLG with twist angle � 2◦ is corrugated along the
c axis [53]. This causes the inter-layer separation d⊥ (or the
interlayer coupling w) to increase (reduce) in the AA-stacking
region and decrease (enhance) in the AB/BA-stacking region.
The consequences of such an effect on the band structure of
near-magic-angle TBLG is that [15,36] corrugation signifi-
cantly enhances the band gap between the moireé flat bands
and the higher-energy bands, albeit leaving the bandwidth
virtually unchanged. Thus, as the bandwidth sets the scale
for the kinetic energy as an input into the computation of
rs, the effect of out-of-plane relaxation is negligible in our
case. Enhancement of the band gap simply strengthens the
assumption of the flat bands being isolated.

In-plane relaxation effects often shrink the area of the
AA-stacking region, concomitantly facilitating formation of
a triangular domain structure with alternating AB- and BA-
stacking regions [54]. In this case as well, the band gap

increases; however, unlike the earlier case, in-plane relax-
ations cause the bandwidth to increase, though no more than
10% at ambient pressure. Naively this should also lower our
estimations of rs(P = 0) by a similar fraction. However, to the
best of our knowledge, the full inclusion of all the relaxation
effects (see [55]), let alone with pressure dependence, has
not yet been studied in detail. Thus, for simplicity we ignore
any such effects in this work, which can at most change our
estimates by 10%.

It must also be noted that most of the near-magic-angle
devices suffer from a twist angle inhomogeneity [25,56,57]
which often has dramatic consequences on the phase diagram
of TBLG [28]. In other words, the local modulation in the
twist angle could render rs to be a position-dependent func-
tion. Thus, it is perfectly possible that the sample as a whole
may not undergo crystallization transition but it could form
puddles of WCs, phase separated with other insulating or
metallic states. Such consideration often plays a key role in
experimental observation of WCs [58].

In all of our calculations, the presence of the hBN layer(s)
is accounted for only through the dielectric constant. How-
ever, the alignment or misalignment of the hBN substrate with
the adjacent graphene layer of TBLG could significantly in-
fluence the phase diagram. Most importantly, the appearance
or enhancement of a band gap near the Dirac point could
[59,60] primarily emerge from moiré patterns or strains in
the bilayer formed out of hBN/graphene [61]. Clearly, such
an effect mainly drives the physics near charge neutrality.
For instance, the appearance of a superconducting dome near
charge neutrality in [28] could possibly be attributed to the
physics of hBN/graphene bilayer. Thus, for the bulk of our
interest such an effect does not contribute to rs.

VII. CONCLUDING REMARKS

We have shown that the pressure dependence of the metal-
insulator transition has a natural explanation within the hi-
erarchy of Wigner crystals proposed recently for TBLG [3].
Should the dome-like phase diagram for the ν = 1 state be
confirmed experimentally, then this would add significant
substantiation to the claim that TBLG offers a playground for
observing WCs and the possible onset of superconductivity.

Our proposal that superconductivity lurks in the vicinity
of Wigner crystallization is rooted in the retardation effects
that are inherent to the strongly correlated regime. From the
potential of interaction of an electron in a Wigner crystal [62],

V (r) = −3

2

e2

a∗rs
+ 1

2

e2

(a∗rs)3
r2 = −3

2

e2

a∗rs
+ 1

2
ω2r2, (17)

increasing the electron density decreases the restoring fre-
quency, ω, thereby leading to a melting of a WC. However,
when a charge moves in a WC, it must dissociate from the
Coulomb or correlation hole that led to the formation of the
crystal in the first place. The size of this correlation hole
is re and hence is roughly 10,000 carbon atoms in TBLG
at the relevant magic angles. Such a correlation hole and
the electrons move on different timescales. Once the crystal
moves, the correlation hole left behind is now positively
charged and hence, on the timescale that it is vacated, it is
attractive to the electrons in its vicinity. Consequently, such
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charge retardation effects could mediate pairing. This is the
purely electron analog of the polaron effect and has been
proposed previously to mediate pairing in the vicinity of the
melting transition of Wigner crystals [62–64]. Of course the
form of the kinetic energy term will have to be modified for
TBLG but the content of the argument remains intact. We
hope to address this issue in greater detail in future work.

Regarding the spin dependence of the insulating states,
the ferromagnetic triangular WC is well known [31] to be
energetically favored for the ν = 1 state. The honeycomb WC
we proposed has explicitly two electrons residing in each
moiré cell and hence has S = 0. The spin structure of the
kagome lattice has no natural singlet correlations and hence
should be spin-polarized just as in the ν = 1 case. Hence,
we anticipate for ν = 3 the ground state is a ferromagnet,
as has been observed recently [27]. Previously, ferromagnetic
Wigner crystallization has been used to explain the 1/6-filling
state in graphyne [65]. Within a Mott scenario, it is difficult to
explain the spin dependence without at the same time invoking
sites for the spins which would make the resultant electron
lattice distinct from the underlying triangular moiré lattice.
Recall, a Mott insulator cannot break any underlying sym-
metries. In this regard, the 1/2-filled honeycomb structures
proffered [4,9] to explain the ν = 1/2 states are instances of
the WC we have proposed here. Consequently, all the features
of the novel insulating states in TBLG are captured by a
transition to WC.

It must also be noted that in our proposal, unlike the
case of GaAs/AlGaAs heterostructures [66] or that of liquid
helium [67], there is a WC pinned to the underlying moiré
lattice. This poses a unique set of experimental challenges in
distinguishing it from a Mott (or any other correlated) insu-
lator [68,69]. For instance, formation of a WC, particularly
adjacent to a gapped state, is often signaled by an instability
in the thermodynamic compressibility [70]. Thus far, similar
measurements in TBLG [71] observe phases with nondi-
verging and non-negative compressibility at commensurate
fillings. Although one cannot rule out the influence of (twist
or charge) disorder, strong pinning of the Wigner lattice to the
moiré lattice may also render the insulating states incompress-
ible [72]. Consequently, the precise conclusion to be drawn
from the compressibility experiments remains unclear at
present.
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