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Entanglement entropy and computational complexity of the periodically driven
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We study the growth of entanglement entropy and bond dimension with time in density matrix renormalization
group simulations of the periodically driven single-impurity Anderson model. The growth of entanglement
entropy is found to be related to the ordering of the bath orbitals and to the relation of the driving period T to the
convergence radius of the Floquet-Magnus expansion. Ordering the bath orbitals by their Floquet quasienergy is
found to reduce the exponential growth rate of the computation time at intermediate driving periods, suggesting
new ways to optimize matrix product state calculations of driven systems.
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I. INTRODUCTION

The control of strongly correlated electron systems via
laser-induced oscillating electric fields is an active area of cur-
rent research [1–5], raising fundamental questions related to
the dynamics of driven strongly correlated models, in particu-
lar the time evolution of systems with time-dependent Hamil-
tonian parameters. The Anderson impurity model (AIM) [6]
of a correlated orbital coupled to a noninteracting bath is of
fundamental physical interest as perhaps the simplest nontriv-
ial interacting electron model and is important as an auxiliary
model in the dynamical mean-field theory of correlated elec-
tron physics [7–9]. The development of efficient methods to
calculate the nonequilibrium properties of interacting electron
models such as the Anderson impurity model is a key chal-
lenge [10–13].

The density matrix renormalization group (DMRG)
[14–16] is widely used as a solver for the Anderson impurity
model [17–19]. In DMRG, the system’s wave function is
represented by a matrix product state (MPS), and the key
issue is the growth of entanglement entropy of the MPS
with simulation time. In a previous study [20] we introduced
a 4-MPS variant of DMRG to study the “quench” physics
of the Anderson model, i.e., the time evolution following
an instantaneous change of interaction and/or hybridization
parameters from one set of constant values to another. We
found that different arrangements of bath orbitals could dra-
matically affect the growth of entanglement entropy, and a
particular arrangement (the “star geometry” [19], associated
with a proper energy ordering of bath orbitals) led to a very
slow (logarithmic) growth of entanglement entropy, enabling
simulations of the long-time behavior at a computational cost
that grew only polynomially with the simulation time. In
this paper, we move beyond the quench physics to study the
real-time dynamics of the periodically driven single-impurity
Anderson model (SIAM).

We generalize the 4-MPS method introduced in our pre-
vious work [20]. In this method the system’s wave function
is represented as a sum of four terms, each of which is

the direct product of one of the four states of the impurity
(|0〉, |↑〉, |↓〉, |↑↓〉) and an MPS of the bath. We find that
there is a critical driving period Tc, namely, 2π over the
bandwidth of the bath density of states, such that if the driving
period T <Tc, the driven system is as easy to simulate as
a quenched SIAM, while if T > Tc, the simulations become
much more expensive. The period Tc is related to the conver-
gence radius of the Magnus expansion [21–24]. For driving
periods T >Tc, computations with standard orderings of the
bath orbitals lead to linear growth of entanglement entropy
with time, implying an exponential increase of computational
cost with simulation time. We find that an ordering of the
bath orbitals exists, which we call quasienergy ordering, such
that the asymptotic entanglement entropy growth is slow
(logarithmic in time, for the noninteracting model, and with
a small linear coefficient for the interacting model), enabling
in principle simulations out to very long times. However,
the initial transient growth of entropy for this bath ordering
can be very rapid before the asymptotic limit is reached,
which limits the maximum simulation times reachable in
practice.

The rest of the paper is organized as follows. Section II
describes the driven SIAM we solve and the application of
the 4-MPS method [20] to the driven model. Section III
presents results obtained for the driven noninteracting SIAM
to illustrate the asymptotics of entropy growth in different
parameter regimes and determine the complexity diagram.
In Sec. IV, we simulate the interacting SIAM, show some
physical results, and discuss entropy growth. Section V is a
conclusion and summary.

II. THEORY AND METHOD

We consider a SIAM with time-dependent model parame-
ters. The general form of the model Hamiltonian H (t ) is

H (t ) = Hd (t ) + Hbath(t ) + Hmix(t ), (1)
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with

Hd (t ) =
∑

σ

εd (t )ndσ + U (t )

(
nd↑ − 1

2

)(
nd↓ − 1

2

)
, (2)

Hbath(t ) =
∑
kσ

εk (t )c†
kσ

ckσ , (3)

Hmix(t ) =
∑
kσ

Vk (t ) d†
σ ckσ + H.c., (4)

where ndσ = d†
σ dσ and σ =↑,↓ is the spin label. We use the

interaction picture with respect to H0(t ) ≡ Hd (t ) + Hbath(t ),
so Hmix(t ) becomes

Ĥmix(t ) = U0(0, t )Hmix(t )U0(t, 0)

=
∑
kσ

Vk (t )d̂†
σ (t )ĉkσ (t ) + H.c., (5)

where U0(t, 0) = T e−i
∫ t

0 H0(t ′ )dt ′
is the time-ordered unitary

evolution from 0 to t due to H0(t ) and U0(0, t ) = [U0(t, 0)]†.
Since H0(t ) does not couple the d orbital to the bath, each bath
orbital evolves independently in the interaction picture:

ĉkσ (t ) = ckσ e−i
∫ t

0 εk (t ′ )dt ′
, (6a)

and the d orbital evolves according to

d̂σ (t ) = dσ e−i
∫ t

0 {εd (t ′ )+U (t ′ )[nd σ̄ −(1/2)]}dt ′
, (6b)

with σ̄ denoting the opposite spin of σ . Notice that n̂d σ̄ (t ) =
nd σ̄ does not evolve in the interaction picture of H0(t ) and that
nd σ̄ commutes with dσ , which together lead to Eq. (6b).

As in the 4-MPS scheme developed in our previous work
[20], the wave function |�(t )〉 is represented as

|�(t )〉 =
∑

i

ci(t )|i〉d ⊗ |�i(t )〉bath, (7)

where i sums over the four impurity states |0〉, |↑〉, |↓〉, and
|↑↓〉, and each |�i(t )〉bath is a matrix product state. The wave
function |�i(t )〉 is evolved according to

|�(t + �t )〉 ≈ e−iH̃mix[t+(�t/2)]�t|�(t )〉, (8)

with the exponential Taylor expanded to fourth order in �t to
ensure good unitarity. The time-averaged Hamiltonian H̃mix(t )
in a time step �t is

H̃mix(t ) ≡ 1

�t

∫ t+�t/2

t−�t/2
Ĥmix(t ′)dt ′

=
∑
kσ

Ṽkσ (t )d†
σ ckσ + H.c., (9)

with effective hybridization given by

Ṽkσ (t ) ≈ Vkei
∫ t

0 {εd (t ′ )+U (t ′ )[nd σ̄ −(1/2)]−εk (t ′ )}dt ′

× sinc

(
εd (t ) + U (t )(nd σ̄ − 1/2) − εk (t )

2
�t

)
.

(10)

FIG. 1. The density of states of the bath orbitals εk . We consider
a semicircle DOS with a half bandwidth E . The bath is initially half-
filled, and the d-orbital energy εd = ±|εd | oscillates between the two
values shown every half driving period T/2 across the Fermi level.

The Hamiltonian H̃mix(t ) is represented by a matrix product
operator with bond dimension 2 that acts on the wave function
in four MPSs [20].

We now specify the specific model we study. In the
Schrödinger picture, the N → ∞ bath orbitals have time-
independent energies εk (t ) = εk with a semicircular density of
states (DOS) shown in Fig. 1 and time-independent and equal
hybridization amplitudes Vk (t ) = V/

√
N to the impurity d

orbital. The Hubbard U on the d orbital is also fixed. The
only time-dependent quantity is the d-orbital energy, which
we take to have the square-wave form

εd (t ) =
{

−|εd |, 0 < t < T
2 ,

+|εd |, T
2 < t < T,

(11)

with driving period T . We choose a piecewise constant Hamil-
tonian for numerical reasons: in this case Eq. (8) can be made
exact by choosing �t such that T/2 is a multiple of �t . We
consider time evolution starting from a product state

|�(t = 0)〉 = |�0〉d ⊗ |FS〉bath, (12)

where |FS〉bath is a half-filled Fermi sea of the bath as shown
in Fig. 1. We will provide physical results that show the local
quantities on the d orbital and complexity results that show
the growth of entanglement entropy of the bath MPSs at the
maximum entropy bond, which is often the one closest to the
Fermi level.

III. NONINTERACTING RESULTS

We first present results obtained for the noninteract-
ing driven SIAM using a standard Slater-determinant-based
method. The time evolution of a Slater determinant by a
noninteracting Hamiltonian is numerically inexpensive and
is not limited by the growth of entanglement entropy. The
4-MPS method will be applied in Sec. IV to obtain results
for the interacting model. The impurity-bath coupling in this
section is V/E = 0.25, and we use N = 1000 orbitals. The
initial state is |0〉d ⊗ |FS〉bath, an empty d orbital and a half-
filled Fermi sea in Fig. 1. If εd is time independent, this
corresponds to studying the behavior after a quench of εd from
a very high value.
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FIG. 2. Comparison of time dependence of entanglement en-
tropy of quenched [lower (blue) curve] and driven [upper (red) curve]
Anderson impurity model. The driving period ET = 10, the Hubbard
U = 0, the bath is half-filled, and the impurity-bath coupling V/E =
0.25. Initially the impurity is empty. The entanglement entropy is
computed between the 500 bath orbitals below the Fermi level and
the rest of the system.

A. Energy-ordered bath

We use the von Neumann entropy Socc = −Tr(ρ ln ρ)
for the entanglement between the N/2 bath orbitals below
the Fermi level and the rest of the system to estimate the
maximum entanglement entropy that would be encountered
in an MPS-based simulation when the bath orbitals are energy
ordered. Figure 2 compares the growth of the entanglement
entropy in the quench case [lower (blue) curve] and the driven
case [upper (red) curve] for driving periods T > Tc longer
than the critical period Tc = π/E . We see that the entangle-
ment entropy in the quench case grows logarithmically in
time, consistent with previous results [20], but in the presence
of a periodic drive, the growth of entropy becomes linear in
time.

To understand the factors controlling the growth of en-
tanglement entropy in the driven SIAM, we plot in Fig. 3
the increase rate of entanglement entropy per driving period
against the dimensionless driving period ET for different
values of driving amplitude |εd |. The results are obtained at
long times after the simulation was started and represent the
steady-state growth of entanglement entropy. We see that for
ET < π (i.e., for driving frequency ωd = 2π/T greater than
the full bandwidth 2E ), there is no discernible steady-state
linear increase of entropy over one drive period. In other
words, the entropy grows more slowly than linearly (in fact, it
grows logarithmically) with time. For ET > π , the steady-
state growth rate of entanglement entropy is nonzero, and
depends on the driving period and amplitude in a complicated
way. The growth rate has a maximum at a drive frequency
that depends on the drive amplitude and is always within
the envelope shown as the dashed curve, which is obtained
by numerically maximizing the linear growth rate �ST /T of
entropy at fixed period T via tuning the amplitude |εd |.

The existence of the critical driving period may be under-
stood within Floquet-Magnus theory [21–24], which states

FIG. 3. Linear growth rate of entropy over a cycle of the drive in
steady state plotted against the driving period for various amplitudes
|εd |. Hubbard U = 0 and the impurity-bath coupling V/E = 0.25.

that at high driving frequency, periodically driven systems
with Hamiltonian H (t ) may be represented in terms of a time-
independent Hamiltonian H̄ with the parameters determined
by averages of parameters in H (t ) over one driving period.
Corrections to the high-frequency limit may be expressed as a
power series in the driving period T . If the series converges,
the physics of a system in which periodic drive is turned
on is in effect that of a quenched model. In the particular
case of the SIAM studied here, this would mean that the
entanglement entropy increases with time logarithmically. We
then interpret the critical period that marks the onset of linear
entropy growth as the radius of convergence of the Magnus
expansion.

For the noninteracting SIAM, the convergence radius of
the Magnus expansion can be determined from the Floquet
Hamiltonian HF , which is defined as the time-independent
Hamiltonian whose time evolution over a full period T repro-
duces the time evolution of the driven system over the same
period, i.e.,

e−iHF T ≡ T e−i
∫ T

0 H (t )dt . (13)

For the square-wave model in Eq. (11), the solution for
small driving amplitude |εd | can be resummed exactly to find
(details in the Appendix)

HF = H̄ + i|εd | tan

(
T

4
adH̄

)
nd + O(|εd |2), (14)

where H̄ = 1
T

∫ T
0 H (t )dt is the time-averaged Hamiltonian,

adH̄ = [H̄ , ·] is the adjoint representation of H̄ , and the
tan(·) function is defined by its formal power series. In the
noninteracting model, the spectral radius of adH̄ is 2E and
the expansion of the tan(·) fails when its argument is π/2,
reproducing the critical value shown in Fig. 3. We expect
that very similar considerations will apply to the interacting
SIAM.

The linear growth of entanglement entropy in the long-
period regime ET > π where the Magnus expansion breaks
down may be understood in an entropy pumping picture. The
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FIG. 4. The bath orbital energies εk of the Floquet Hamiltonian
HF for ET = 3 (blue) and ET = 4 (red). The orbital energies are
unaffected by the periodic driving if ET < π but get aliased to
quasienergies within [−π/T, π/T ] modulo 2π/T if ET > π .

up and down motion of the d orbital acts as an elevator that
transports electrons from occupied to unoccupied orbitals.
For small T this process does not affect the energy ordering
and does not lead to entropy increase. For T longer than the
convergence radius, the bath orbital energies are aliased to
[−π/T, π/T ] ⊂ [−E , E ], breaking the original ordering of
the bath orbitals and leading to entropy increase.

B. Quasienergy-ordered bath

The above analysis suggests that when the drive period
T > Tc, we should rearrange the bath orbitals in the MPS
in ascending order of quasienergy, i.e., εk modulo 2π/T to
within [−π/T, π/T ], as shown in Fig. 4, rather than energy.
To test this idea, we again calculate the entropy growth
using the Slater-determinant-based noninteracting simulation.
The initial state |0〉d ⊗ |FS〉bath in the star geometry remains
a product state (an MPS with bond dimension = 1). The
entanglement entropy SN/2 between the N/2 bath orbitals with
negative quasienergies (within [−π/T, 0)) and the rest of the
system will be used to estimate the maximum entanglement
entropy encountered in an MPS-based simulation when the
bath orbitals are quasienergy-ordered. The SN/2 defined here
becomes equivalent to the entanglement entropy Socc used in
the previous section if ET <π , when the bath orbitals are
energy ordered.

Figure 5 shows the same simulation as in Fig. 2 using
N = 1000 bath orbitals now ordered by their quasienergies
of ET = 10. The entropies of the energy-ordered simulation
in Fig. 2 (blue and red lines) are compared with the new
results (green and purple lines) in Fig. 5 and the time t is
put on logarithmic scale. When the bath orbitals are ordered
by quasienergy, the growth of SN/2 is logarithmic for both
the quenched and driven models. This is because the Floquet
Hamiltonian HF is now energy ordered, as opposed to the
aliased situation in Fig. 4. But the driven model is still harder
to simulate than the quenched model, because the slope of the
SN/2 vs ln t curve is greater for the driven model.

FIG. 5. The growth of entropy SN/2 for the driven and quenched
models with energy-ordered and quasienergy-ordered bath orbitals.
Hubbard U = 0 and impurity-bath coupling V/E = 0.25. Period
ET = 10.

For the quenched model, the steady-state slope of SN/2

vs ln t is unchanged when the bath orbitals are quasienergy-
ordered. Only the steady-state intercept is shifted up by a con-
stant �SN/2, which is found to be approximately proportional
to ln(T/Tc) [see Fig. 6(a)]. This is the price to pay for not
ordering the quenched bath by energy.

For the driven model, the driving period T changes the
slope of the SN/2 vs ln t curve. Figure 6(b) shows how the
slope increases from that of the quenched model (T → 0 at
fixed |εd | is equivalent to quench) to unboundedly large values
proportional to ln T . This indicates that the leading-order term
in the entropy SN/2 is

SN/2 ∼ c ln T ln t, (15)

where c depends on |εd | but is found to be bounded (see
Fig. 7). At very large driving amplitude |εd | � E , the co-
efficient c goes down. The large-|εd | behavior is related to
transient formation of bound states as the d-orbital energy
moves out of the band.

Equation (15) means that the bond dimension in an
MPS-based simulation using the quasienergy-ordered bath
arrangement is D ∼ eSN/2 ∼ t c ln T . The time complexity of the
singular value decomposition (SVD) step is then O(D3) =
O(t3c ln T ). Since the power of t for the quasienergy-ordered
method is unbounded for long driving periods T , the com-
plexity is still beyond polynomial time. Another drawback of
using quasienergy ordering is the delocalization of maximum
entanglement entropy throughout the MPS, while in energy-
ordered MPSs, the maximum entanglement entropy tends to
concentrate near the Fermi level. This gives the quasienergy-
ordered method a prefactor of the order of the bath size N .

IV. INTERACTING RESULTS

In the previous section, we estimated the growth of entan-
glement entropy in an MPS-based simulation using a Slater-
determinant-based code for the noninteracting SIAM. Now
we present MPS-based simulations of the interacting SIAM
using the 4-MPS method developed in Sec. II. We choose
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FIG. 6. (a) The upshift �SN/2 of entropy in the quenched SIAM
at |εd | = 0 when bath orbitals are ordered by quasienergy of driving
period T . (b) The slope of SN/2 vs ln t in the driven SIAM at |εd |/E =
0.1. Bath sizes for long periods need to reach N = 3000 to obtain
accurate data.

a fixed Hubbard U/E = 1 and the impurity-bath coupling
V/E = 0.25 is the same as in Sec. III. We use N = 30 bath
orbitals to fit the hybridization function of the continuum bath
DOS in Fig. 1 with good accuracy up to Et � 75 following

FIG. 7. The dependence of the coefficient c in Eq. (15) on the
driving amplitude |εd |. Hubbard U = 0 and impurity-bath coupling
V/E = 0.25.

FIG. 8. The d occupancy nd = 〈nd↑〉 + 〈nd↓〉 and double occu-
pancy D = 〈nd↑nd↓〉 of the quenched and driven SIAMs vs time
at Hubbard U/E = 1, impurity-bath coupling V/E = 0.25, driving
amplitude |εd |/E = 0.1, and period in (a) ET = 10 and (b) ET =
20. The dashed gray line is n2

d/4 of the quenched nd .

[20]. The SVD truncation error tolerance was 10−5. Noninter-
acting d occupancies are reproduced with two to three decimal
places as a benchmark.

A. Physical results

For short-drive periods ET <π , we find that the physical
results for the driven interacting SIAM are not significantly
different from those obtained for the quenched SIAM. So
we plot both Figs. 8 and 9 in the long-period regime of
ET > π . The energy-ordered and quasienergy-ordered algo-
rithms using the 4-MPS method give the same physical result,
only costing different CPU times, which will be discussed in
Sec. IV B. In Fig. 8, we compare the mean d occupancy nd

and the double occupancy D computed for the quenched and
driven systems. Also shown are the corresponding D values
for the noninteracting quenched model using a dashed gray
line. For period ET = 10, both nd [red line in Fig. 8(a)]
and the double occupancy D (purple line) oscillate approxi-
mately sinusoidally, even though the driving signal εd (t ) is a
square wave: as will be seen, the higher harmonics become
noticeable only for higher amplitude of the drive. When the
period increases to ET = 20, the wave forms approach a
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FIG. 9. (a) The d occupancy nd and double occupancy D of
the SIAM at driving amplitudes |εd |/E = 0, 0.1, . . . , 0.8 and period
ET = 10. Other parameters are the same as Fig. 8. The gray dashed
line is n2

d/4 of the quenched nd . (b) Amplitude �nd (1/2 of peak-to-
peak value) of nd and the time-averaged double occupancy D over a
full period.

relaxed oscillation [Fig. 8(b)]. The overshoots in every period
disappear in a noninteracting simulation (U = 0, not plotted),
which produces simple monotonic decays to the square-wave
levels.

When the driving amplitude |εd | is increased, the wave
form of nd distorts, and the relaxation to steady-state oscil-
lation slows down, as is shown in Fig. 9(a). Also, there is an
increase of double occupancy D. At |εd |/E = 0.8, the steady-
state wave form of D(t ) is above n2

d/4 almost the entire period.
To obtain Fig. 9(b), we used the centered moving average
method with period equal to the driving period T to obtain
the period-averaged quantities nd (t ) and D(t ). Then �nd is
taken to be half the peak-to-peak value of the oscillatory
part nd (t ) − nd (t ) of the d occupancy, and the steady-state
D is estimated from D(t ) based on an exponential tail fit.
The fit corrects the final value of double occupancy by a
non-negligible amount when |εd | is large and the relaxation
gets slow.

A possible explanation for the increase of double occu-
pancy D might be that the oscillating d-orbital energy is
like a phonon mode that induces an effective intra-d-orbital
attraction, which becomes greater than U when the amplitude
|εd | is big enough (|εd |/E � 0.6, at which D ≈ 1/4). Whether

FIG. 10. The maximum entanglement entropy Smax reached in
(a) and CPU time tCPU spent in (b) to run to different simulation
times Et . Parameter values U/E = 1, V/E = 0.25, |εd |/E = 0.1,
and ET = 6. The red curve in (a) is slightly concave upward as Et
approaches 100 when the period-ET oscillations are eliminated by
moving average.

this attractive interaction can lead to superconductivity is
interesting for further studies.

B. Complexity results

Obtaining results in Fig. 9 at medium to large driving
amplitudes required substantial computational resources, be-
cause of the slow relaxation to steady state and the rapid
growth of entanglement entropy in the ET >π regime. In
the energy-ordered simulation, the maximum entanglement
entropy grows with time linearly, so the maximum bond di-
mensions in the MPSs increase exponentially with the number
of periods simulated. In this section, we investigate whether
this exponential difficulty can be helped by reordering the bath
orbitals in the MPSs in quasienergy order.

While the entropy growth in the noninteracting SIAM
may be logarithmic in time t if the bath orbitals are ordered
by their Floquet quasienergy, as is shown in Sec. III B, the
entropy growth for the interacting SIAM is slightly faster than
logarithmic [see red curve in Fig. 10(a)]. We increase the
number of bath orbitals to N = 40 to reach Et = 100, and
then compare the energy-ordered and quasienergy-ordered
simulations in Fig. 10 under |εd |/E = 0.1, ET = 6. As shown
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FIG. 11. Crossing time of maximum entanglement entropies of
the energy-ordered and quasienergy-ordered simulations at various
driving periods T . Fixed parameter values U/E = 1, V/E = 0.25,
|εd |/E = 0.1. The red line is a smooth guideline of the data points in
blue dots.

in Fig. 10(b), the quasienergy-ordered 4-MPS simulation is
slower in the short run. The short-term growth of entropy, e.g.,
in the first few periods, is faster if the bath orbitals are not
energy ordered. In the long run, the quasienergy ordering is
more favorable. The entropy growth only slightly curves up in
the Smax vs ln t plot. The long-term growth rate of entropy and
ln tCPU vs t are clearly reduced. The difficulty in the ET > π

regime is beyond polynomial time using either method, but is
significantly reduced by the quasienergy ordering method.

Figure 11 shows the crossing time of the maximum
entanglement entropies Smax of the energy-ordered and
quasienergy-ordered simulations. In a wide range of driving
periods, the crossing time tcross of the entropies in Fig. 10
exists and is minimum at intermediate driving periods T at
which the linear growth rate of entropy Smax of the energy
ordering method is fastest. After the entropies cross, the
quasienergy-ordering method still needs to overcome two
more short-term drawbacks: (a) its maximum entanglement
entropy is widely spread over the MPS bonds, in contrast to
the energy ordering method, where the entanglement entropy
is concentrated near the Fermi level, and (b) the bigger entropy
in the first few periods, before the CPU times cross.

V. CONCLUSION

This paper presents a generalization of our previously de-
veloped 4-MPS method to time-dependent Hamiltonians and
uses the formalism to study the driven SIAM. We analyzed
the computational time complexity in the short-drive period
ET < π and the long-drive period ET > π regimes for both
the noninteracting (U = 0) and interacting (U > 0) models.
The behavior of the driven model in the ET < π regime,
where the Floquet-Magnus expansion converges, is not sig-
nificantly different from the quenched model, either in terms
of computational complexity (both requiring only polynomial
time) or physical results. However, in the ET > π regime, the
entropy grows linearly in the energy-ordered algorithm. The
long times (many periods) are therefore exponentially hard to

reach. Ordering the bath orbitals by quasienergy reduces the
entropy growth of the noninteracting model from linear to log-
arithmic, albeit with a coefficient of the logarithm that grows
unboundedly with the drive period T (proportional to ln T ).
For the interacting model, quasienergy ordering significantly
reduces the linear growth rate of entanglement entropy and
thus the exponential hardness grows with time more slowly in
the long run.

The Floquet Hamiltonian of an interacting lattice system
outside the convergence radius of the Floquet-Magnus ex-
pansion can exhibit highly rich and nontrivial behavior, as
is shown in [23,25]. The work presented here shows that the
growth of entanglement entropy depends strongly on basis. A
quasienergy ordering of bath orbitals in the MPS as motivated
by the Floquet Hamiltonian of the noninteracting SIAM can
reduce the computational complexity, but we have no reason
to believe the basis sets studied here are optimal. Further
research into the basis sets of the matrix product states based
on more refined analyses of the Floquet Hamiltonians for
driven interacting models could be an interesting direction for
future studies.
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APPENDIX: FLOQUET HAMILTONIAN

The Floquet Hamiltonian HF of a periodically driven sys-
tem H (t ) = H0 + εH1(t ) is given by

e−iHF T = T e−i
∫ T

0 dt[H0+εH1(t )]. (A1)

For small amplitudes we have ε → 0. We can take the deriva-
tive with respect to ε at ε = 0 to obtain

T e−i
∫ T

0 dt[H0+εH1(t )]

= e−iH0T − iε
∫ T

0
dt e−iH0 (T −t )H1(t )e−iH0t + O(ε2). (A2)

We define an expansion

HF = H0 + εδH (1)
F + O(ε2). (A3)

Then we have

e−iHF T = e−i(H0+εδH (1)
F )T + O(ε2)

= e−iH0T − iε
∫ T

0
dt e−iH0(T −t )δH (1)

F e−iH0t + O(ε2).

(A4)

Comparing Eqs. (A2) and (A4), we have from the first-order
terms of ε that∫ T

0
dt eiH0t H1(t )e−iH0t =

∫ T

0
dt eiH0tδH (1)

F e−iH0t , (A5)

where we have multiplied on both sides by eiH0T from the left.
Then we use the nested commutator expansion

eiH0t H1(t )e−iH0t =
∞∑

n=0

(it )n

n!
adn

H0
[H1(t )], (A6)
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where adH0 ≡ [H0, ·] is the adjoint representation of H0, and
adn

H0
[H1(t )] = [H0, adn−1

H0
[H1(t )]] is the n-fold nested commu-

tator of H0 with H1(t ). Using this formula on both sides of
Eq. (A5), and from the square-wave model

H1(t ) = H1 sgn

(
t − T

2

)
, 0 � t < T, (A7)

we obtain the series expansion

∞∑
n=0

(iT )n

(n + 1)!

(
1 − 1

2n

)
adn

H0
(H1)

=
∞∑

n=0

(iT )n

(n + 1)!
adn

H0

(
δH (1)

F

)
, (A8)

which can be resummed to yield

(ei(T/2)adH0 − 1)2

iT adH0

H1 = eiT adH0 − 1

iT adH0

δH (1)
F . (A9)

All functions of adH0 are defined using their power series
in Eq. (A8). We now apply the multiplicative inverse of the
power series of adH0 on the right-hand side to both sides and
after some algebra obtain

δH (1)
F = i tan

(
T

4
adH0

)
H1. (A10)

The formal solution in Eq. (A10) can be evaluated in the
eigenbasis of H0 as

〈m|δH (1)
F |n〉 = i〈m|H1|n〉 tan

(
Em − En

4
T

)
, (A11)

where |m〉 and |n〉 are eigenstates of H0 with eigen-energies
Em and En. In the case H1 = |εd |nd with nd ≡ ∑

σ d†
σ dσ ,

Eq. (14) in the main text is derived. Since no assumption is
made on H0 except it is time independent, Eqs. (A10), (A11),
and (14) hold for both the interacting and the noninteracting
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