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We study the correspondence between boundary excitation distribution spectrum of nonchiral topological
orders on an open surface M with gapped boundaries and the entanglement spectrum in the bulk of gapped
topological orders on a closed surface. The closed surface is bipartitioned into two subsystems, one of which
has the same topology as M. Specifically, we focus on the case of generalized string-net models and discuss
the cases where M is a disk or a cylinder. When M has the topology of a cylinder, different combinations
of boundary conditions of the cylinder will correspond to different entanglement cuts on the torus. When both
boundaries are charge (smooth) boundaries, the entanglement spectrum can be identified with the boundary
excitation distribution spectrum at infinite temperature and constant fugacities. Examples of toric code, ZN

theories, and the simple non-Abelian case of doubled Fibonacci are demonstrated.
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I. INTRODUCTION

Entanglement spectrum is the spectrum of entanglement
Hamiltonian HE , defined from the reduced density matrix of
a bipartition of the system ρA = e−HE . It was introduced ten
years ago by Li and Haldane [1] as an identification of topo-
logical order in fractional quantum Hall states. They showed
that the state counting of low-lying entanglement spectrum of
the model, e.g.. those of the Laughlin and the Moore-Read
states, is identical to the counting of conformal field theory
modes describing low-energy boundary excitations.

Similar correspondence between bulk entanglement and
boundary spectra has been studied analytically in various
topological phases. For topological insulators, superconduc-
tors and general symmetry protected topological phases, de-
generacies of bulk entanglement spectrum correspond to gap-
less edge modes [2–4].

For fractional quantum hall systems, rigorous results on a
large class of trial wave functions have been obtained [5,6].
In Ref. [7], it was shown that the boundary conformal field
theory (BCFT) and the bulk CFT used to construct the ground-
state trial wave function are isomorphic up to a Wick rotation.
In general (2+1)d topological quantum systems possessing
edge states described by a chiral (1+1)d CFT, a cut-and-glue
method was applied in Ref. [8] to show that the reduced
density matrix of a subregion in the bulk topological state
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is a thermal density matrix of the chiral edge state CFT that
appear at the spatial boundary of the bulk subregion. Later a
geometric proof was proposed [9].

Above methods can only be applied to chiral topological
phases where there are chiral edge states appearing on the
boundaries of the system. There have been many discus-
sions on the entanglement properties of nonchiral topological
phases, for example in Refs. [10–14], but its correspondence
with the boundary theory is less explored. In Ref. [15], the Z2

spin liquid (toric code) model was discussed using free bound-
ary conditions on a cylinder. An exact correspondence was
found between the boundary and entanglement spectra. How-
ever, it is yet to be clear whether and how the three smooth-
rough, rough-rough, and smooth-smooth gapped boundary
conditions (in the sense of Ref. [16]) can be related to the
entanglement spectrum in the bulk. We would like to study
these possibilities and explore the nonchiral version of the
correspondence in generalized string-net models with bound-
aries.

String-net models [17] describe a large class nonchiral
(2+1)d topological phases, including all those whose low-
energy effective theories are discrete gauge or doubled Chern-
Simons theories. The model was first constructed for closed
surfaces but has been generalized to open surfaces for specific
cases [18,19] and then generally formulated using module
category [16,20]. Recently the explicit boundary Hamiltonian
has been worked out using Frobenius algebras [21,22]. We
will apply this formalism in the remaining of the paper,
because it allows for a more convenient way to solve the
spectrum and eigenstates.
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Entanglement properties of string-net models were first
discussed in Ref. [12] on a sphere. An universal constant
term subleading to the area law was found and named as
topological entanglement entropy. On nontrivial surfaces like
a torus, the entanglement entropy turns out to be more compli-
cated. In the case where the bipartition is done by cutting the
torus into two cylinders, Ref. [23] carried out the calculation
for toric code model, and subsequently defined the concept
of minimally entangled states. Reference [24] generalized
them to minimally entangled sectors, which are classes of
minimally entangled states that however be superposed, will
always give the same entanglement entropy.

In this work, we focus on the correspondence between
(1) boundary excitation spectrum of string-net model on a
open surface (2) the entanglement spectrum obtained from
bipartitioning a closed surface into two subsystems A and
B so that subsystem A has the same topology of the open
surface where the boundary excitation spectrum is calculated.
By boundary excitation spectrum, we mean not the usual
energy spectrum, but the excitation distribution spectrum. The
latter is insensitive to the detailed energy dispersion relations
and only contains the information of topological quantum
numbers, which makes it more robust for generalizations
beyond exactly solvable models. It is defined through the
following density matrix in the grand canonical ensemble,

ρ = ⊕n,{nα}ρn,{nα}, ρn,{nα} = e−β
∑

α nα (εα−μα ) 1. (1)

Here, n is the total number of excitations in the system,
consisting of nα of α-type excitation, nβ of β type excitation,
etc. 1 is an identity matrix of dimension degn,{nα}, which
counts the degeneracy of states given such a distribution of
excitations. εα is the energy needed to excite an excitation of
type α, and μα is the chemical potential. Using the concept
of fugacity zα = eβμα , we can rewrite the above expression as
ρn,{nα} = ∏

α (znα
α e−βnαεα )1. In the limits of high temperature

β → 0 and constant fugacity zα , the density matrix further
simplifies to

ρn,{nα} =
( ∏

α

znα

α

)
1. (2)

We will show that this density matrix matches with the re-
duced density matrix obtained from entanglement calculations
as long as we identify zα = dα , the ratio between quantum
dimension of excitation α and the total quantum dimension of
the system. These results are universal because the string-net
model, as a state sum topological field theory, is a fix-point
of the topological phase. For general systems that lie in the
same topological phase but deviate from the exactly solvable
string-net model, the details of the bulk entanglement and the
boundary excitation distribution spectra can vary, but the topo-
logical information encoded in the spectra remains invariant.

In Sec. II, we review the construction of string-net model
on open systems using Frobenius algebras. Section III demon-
strates the correspondence in the case of a boundary ex-
citation distribution spectrum for a disk and the entangle-
ment spectrum for a disk-shaped subsystem. Simple examples
of the toric code and the doubled Fibonacci models are
presented. Then in Sec. IV. we study the correspondence
for boundary excitation distribution spectrum on a cylinder
and entanglement spectrum for a torus bipartitioned into a

cylindrical subsystem A and the rest. The toric code [25]
case is discussed in Sec. IV B. Each of the three different
possible boundary conditions of the toric code model on a
cylinder correspond to an entanglement spectrum on a torus
with different entanglement cuts, made possible through the
introduction of minimally entangled sectors. ZN models are
also demonstrated. Then we generalize to the non-Abelian
cases in section IV C. Finally in Sec. V, we comment on
subtleties arising from the most general cases.

II. STRING-NET MODEL WITH BOUNDARIES

We briefly review the general theory of string-net model on
surfaces with boundaries. Typical examples will be presented
in the latter sections.

The input data {I, d, δ, G} in the bulk of string-net models
form a unitary fusion category C. The model is defined on
a trivalent graph on a closed oriented surface. Degrees of
freedom live on links of the graph. For each link, we assign
a string type j ∈ I = { j = 0, 1, . . . , N}, where I is called the
label set. In the case of lattice gauge theories, j’s label the
irreducible representations of a group. More generally, they
can label irreducible representations of quantum groups. The
Hilbert space is spanned by all configurations of the labels
on links. Each label j has a “conjugate” j∗ ∈ I , satisfying
j∗∗ = j. There is unique “vacuum” label j = 0 with 0∗ = 0.
We require the state to be the same if one reverses the direction
of one link and replaces the label j by j∗, which is a graphical
realization of time reversal symmetry.

We associate to each string type a number dj called quan-
tum dimension of j, and define the total quantum dimension to
be D = ∑

j∈I d2
j . We further assign to each three string types

a tensor δi jk which specifies the branching rules of a trivalent
graph. If for some i, j, k ∈ I one has δi jk = 1, then the three
string types are allowed to meet at a vertex. Otherwise their
meeting is not energetically favored, i.e., we will have charge
excitations on the corresponding vertex. (We will focus on the
multiplicity-free cases for convenience.)

Given the quantum dimensions and fusion rules, we define
the symmetrized 6 j symbols, often denoted as G. They are
complex numbers satisfying the following conditions [26]:

Gi jm
kln = Gmi j

nk∗l∗ = Gklm∗
i jn∗ = ιmιn Gj∗i∗m∗

l∗k∗n ,∑
n

dnGmlq
kp∗nGjip

mns∗Gjs∗n
lkr∗ = Gjip

q∗kr∗Griq∗
mls∗ , (3)

∑
n

dnGmlq
kp∗nGl∗m∗i∗

pk∗n = δiq

di
δmlqδk∗ip,

where the first condition specifies tetrahedral symmetry, the
second the pentagon identity, and the third orthogonality
condition. The number ι j is the Frobenius-Schur indicator.
In the example of lattice gauge theories, this indicator tells
whether the representation j is real, complex, or pseudoreal.
Then d j = ι jdim( j) with dim( j) being the corresponding
dimension of the space of the representation j; and the tensor
Gi jm

kln is the (symmetrized) Racah 6 j symbol for the group. In
this example, string-net model can be mapped to the Kitaev’s
quantum double model.
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Two types of local operators are needed to specify the
Hamiltonian. On every vertex v, we have Qv = δi jk that acts
on the labels of three edges incoming to the vertex v. On
every plaquette p, we have Bs

p with s ∈ I , which acts on the
boundary edges of the plaquette p. Its matrix elements on a
triangular plaquette is [26]

where v j = √
d j = 1

Gj∗ j0
0 0 j

. The same pattern for Bs
p applies

when the plaquette p is a quadrangle, a pentagon, etc..
Defining Bp = 1

D

∑
s dsBs

p, the operators Qv’s and Bp’s are
mutually commuting. Furthermore, they are also projectors:
Q2

v = Qv and B2
p = Bp. The Hamiltonian of the model is

Hbulk =
∑

v

(1 − Qv ) +
∑

p

(1 − Bp), (4)

where the sum runs over vertices v and plaquettes p of the
whole trivalent graph. Because of the commutative property
of Qv and Bp’s, the Hamiltonian is exactly soluble. Ground
states satisfies Qv = Bp = 1 for all v, p.

The bulk ground states are invariant under any composition
of the following elementary (dual) Pachner moves [27]:

The boundary theory of string-net models was first formu-
lated in an abstract language by Refs. [16,20], building on the
module category M of the input category C. An alternative
was developed in Refs. [21,22], where the Hamiltonian is
written explicitly in terms of input data and can be used to
solve for the spectrum and eigenstates. The basic object in this
formulation is a separable Frobenius algebra A constructed
from C and the boundary degrees of freedom form modules
of the algebra. These two formulations [16,21] are mathe-
matically equivalent due to a theorem: the category of right
modules over an algebra A is equivalent to the right module
category M over (unitary fusion) C [28].

A Frobenius algebra is the subset IA ⊂ I equipped with
a multiplication structure fi jk which describes the fusion of
open links i ⊗ j → k∗ and satisfies the following constraints:

association:
∑

c

fabc∗ fcde∗Gabc∗
de∗gvcvg = fage∗ fbdg∗ ,

nondegeneracy faa∗0 �= 0,∀a ∈ IA.
(5)

FIG. 1. Boundary is a wall carrying open links. Degrees of
freedom on the wall are labeled by l ∈ I and open links by a ∈ IA.

We choose to normalize as faa∗0 = 1∀a ∈ IA. There are two
types of boundary degrees of freedom: l ∈ I on the wall and
a ∈ IA on the open links, as indicated in Fig. 1.

The boundary Hamiltonian can then be defined using the
Frobenius algebra:

Hbdry =
∑

n

(1 − Qn) +
∑

n

(1 − Bn), (6)

with Qn acting on the open link n and projecting the boundary
degrees of freedom to IA:

(7)

Bn is a combination of B
t
n’s,

Bn = 1

dA

∑
t∈IA

B
t
n, dA =

∑
t∈IA

dt . (8)

The operator B
t
p fuses a string t to the boundary “half plaque-

tte” as follows:

(9)

FIG. 2. Types of entanglement cuts. (Left) Rough cut. The cut
(dotted line) intersects some link j. (Right) Smooth cut. There is no
intersection. The names “rough” and “smooth” are chosen to be the
same as the “rough” and “smooth” boundary conditions introduced
in Sec. II because of their similar shapes.
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One can easily check that the boundary plaquette operators
are mutual commuting projection operators and they commute
with the bulk operators. The full Hamiltonian of the system
will then be

H = Hbulk + εHbdry, (10)

with ε a positive number.
Similar to the elementary Pachner moves in the bulk (5),

one can use the Frobenius algebra A to define transformations
associated with on the boundaries of a graph. The ground
states of string-net models with boundaries are invariant under
the following elementary moves:

where ua = √
va.

For any input data in the bulk, there is always a trivial
Frobenius algebra A0 corresponding to IA = {0}. This is often
called the “smooth” boundary in literature, but we will use in-
stead the term “charge boundary” instead because in this case
the boundary Hamiltonian reduces to the charge term only,
H charge

bdry = −∑
n(1 − Qn). On the other hand, the “rough” or

“flux” boundaries IA = I are not guaranteed to exist for gen-
eral string-net models. However, they do appear in important
examples like the toric code and the doubled Fibonacci model,
which will be discussed in latter sections. When exist, the
Hamiltonian is simply Hflux

bdry = −∑
n(1 − Bn).

For the case of a disk, if a flux/rough boundary exist for
a set of input data, then the Bp terms reduce to Bn,n+1 where
the half plaquette Bp lies between the open links an and an+1.
Specifically, the matrix elements are given by

(11)

The ground state is GSDflux
D2 = tr(Bp

∏
n Bn,n+1) = 1.

III. THE CORRESPONDENCE FOR A DISK

A. Boundary spectrum on a disk

The ground state is always nondegenerate on a disk.
Throughout the paper we assume the parameter ε in Eq. (10)
is small, so that the bulk is always in its ground state. We
will comment on the relaxation of this assumption in the
discussion section. The nth excited state of the full system
then corresponds to n total boundary excitations created from
the ground state. If there are nα boundary excitations of type
α, nβ of type β etc., the degeneracy for this excited state
then includes the number of possible distributions of these
boundary excitations on these sites:

(
L

nα

)(
L − nα

nβ

)(
L − nα − nβ

nγ

)
· · ·

(
nζ + n0

nζ

)
,

where n0 is the number of boundary sites that are not occupied
by excitations. The set {nα} satisfies n = nα + nβ + . . . , n �
L. Since these excitations are created from the ground state,
they should conversely fuse into vacuum. Labeling the num-
ber of fusion channels as gn, the degeneracy of such distribu-
tion of excitations {nα} is

degn,{nα}(D
2) = L!

n0!nα!nβ!nγ ! · · · nζ !
gn. (12)

Specifically for a charge/smooth boundary, the boundary
excitations are all charges, while for a flux/rough boundary
(if exists), they are all fluxes.

In the grand canonical ensemble, one can define the bound-
ary spectrum with respect to a distribution of boundary exci-
tations: for each set of {nα}, there is a a diagonal matrix

ρn,{nα} =
(∏

α

d nα

α

)
1, (13)

where 1n,{nα} is an identity matrix with dimensions degn,{nα} ×
degn,{nα}. As introduced in (2), this is the density matrix at the
infinite-temperature and the constant-fugacity zα = dα limit.
The infinite temperature expression is possible to match with
the entanglement computation in the bulk because it allows
all the microstates on the boundary to occur with the equal
probability. We will see in the next section that in the bulk
entanglement computation, the reduced density matrix is a
projection operator, such that all probable pure states have
equal weights. The spectrum is sensitive to not only the total
energy n, but the numbers of all types of boundary excitations.

The identification zα = dα can be intuitively understood in
the following way. Consider a mixture of gases with different
types of particles labeled by α, β, . . . The fugacity zα then
describes the tendency for a gas of type α to escape or
expand, which is proportional to its pressure. Furthermore, the
pressure is proportional to the number of the corresponding
particles per volume. At high temperatures, all microstates
appear with equal probability, so the number of particles
nα is proportional to the number of linearly independent
microstates for each particle of type α. The latter is asymp-
totically dα at large nα [29].
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FIG. 3. Basic treelike configuration in a disk-shaped region A.

B. Entanglement spectrum for a disk subsystem

Now we turn to the reduced density matrix obtained from
putting a string-net ground state on S2, bipartitioning it into
two disks A, B, and tracing out one of them.1 For convenience,
we specify the cut to be of rough type, as shown in Fig. 2,
namely, the cut intersects links instead of passing through
vertices. The rough cut and the smooth cut are equivalent
in the computation of reduced density matrix because for a
rough cut, the open links in B are not free degrees of freedom:
they must match with those in A. Doing the partial trace in A
automatically leads to a partial trace in the open links of B,
which is the same as doing a smooth cut in the first place.

The remaining disk A can be smoothly deformed into the
following configuration in Fig. 3.

The resultant reduced density matrix was calculated in
Ref. [12] and is diagonal,

〈{a′, l ′}|ρA|{a, l}〉 = δ{a},{a′}δ{l},{l ′}D1−L
L∏

m=1

dam . (14)

To make a connection with the boundary quasiparticle
spectrum discussed in the last Sec. III A, one can recast
the above formula (14) using fiber fusion category language
developed in Ref. [24], as

ρA = DP0(α⊗L ), (15)

where α is a diagonal matrix with rank |I|, the number of
string types in the input category. The entries are α j = d j/D.
We define a product “⊗” for α as

α⊗2
k = (α ⊗ α)k = ⊕i, j∈I αiα jδ jik∗ . (16)

The resultant α⊗2 is again a diagonal matrix, and generally
one has

α⊗L
k = (α⊗(L−1) ⊗ α)k = ⊕i, j∈I α

⊗(L−1)
i α jδ

∗
i jk . (17)

Operator Pj projects onto the j component of the α⊗L matrix,
so that P0 implements the constraint that all open links should
fuse to vacuum.

Suppose the nontrivial open links with label a �= 0 appears
na times in the configuration {a1, a2, · · · , aL} of 3, so that
the total number of nontrivial open links is n = ∑

a �=0 na. The
diagonal reduced density matrix ρA in (15) then consists of
blocks of smaller diagonal matrices

ρA = ⊕n ρ(A,n) = ⊕n ⊕{an} ρA;n,{na}, (18)

with the direct sum over {an} subject to the constraint n =∑
a �=0 na. Then the dimension of each ρ(A,n) is exactly equal

1For general topological systems with finite correlation length,
we require the both subregions to be much larger compared to the
correlation length.

to the degeneracy of the nth excited state in the boundary
spectrum of a disk. Actually there is a more refined match: the
dimension of ρA;n,{na} equals degn,{na} in (12). Furthermore, the
value of each entry related to the distribution {nα} are the same
for the density matrix on the boundary (13) and the reduced
density matrix up to an overall factor,

ρA;n,{na} = D1−Lρn,{na}. (19)

This leads to the correspondence between the bulk entan-
glement spectrum and the boundary excitation distribution
spectrum.

In the above discussions, we have taken α to be a di-
agonal matrix with rank |I|, which implies that the corre-
sponding boundary theory is of charge/smooth type. Namely,
the boundary excitations nα, nβ, . . . , nζ are all charges. More
generally for a boundary theory with Frobenius algebra IA �

I , it is tempting to take α to be of rank |IA|, where each
α j = d j/dA has j ∈ IA. However at this moment it is not
clear what the physical meaning is, to constrain the open links
intersecting an entanglement cut to IA.

C. Examples

To be concrete, we discuss the two familiar examples of
toric code model and the doubled Fibonacci model.

For the toric code, the input data form the representation
category of the Z2 group. The label set I = {0, 1}, 0∗ = 0
and 1∗ = 1. The quantum dimensions are d0 = d1 = 1, the
nonzero fusion rules are δ000 = δ011 = δ101 = δ110 = 1, with
the G symbols being

Gi jm
kln = δi jmδklm∗δ jkn∗δinl . (20)

String-net model outputs four types anyons: {1, e, m, ε = e ⊕
m}, where e is a Z2 charge and m a Z2 flux.

There are two Frobenius algebras, i.e. boundary conditions
for this input data. One is the trivial A0 = 0, which de-
fines a charge boundary condition. Excitations on the charge
boundary are identified with 0 and 1 or equivalently 1 and
e. The other Frobenius algebra is A1 = 0 ⊕ 1, with IA = I .
This is a flux boundary condition. Boundary quasiparticles are
identified with 1 and m. For both types of boundaries, there is
only one type of nontrivial excitation,

degn(Z2; D2) =
(

L

n

)
gn, gn(Z2; D2) = 1. (21)

This is typical for models with Abelian fusion rules.
The simplest non-Abelian example is the doubled Fi-

bonacci model, where I = {0, 2} (sometimes also denoted
as {1, τ }) with 0∗ = 0, 2∗ = 2. Let φ = (1 + √

5)/2 be the
golden ratio, then the quantum dimensions are given by d0 =
1 and d2 = φ. The nonzero fusion rules are δ000 = δ022 =
δ202 = δ220 = δ222 = 1, and the independent G symbols are

G000
000 = 1, G022

022 = G022
222 = 1/φ,

G000
222 = 1/

√
φ, G222

222 = −1/φ2. (22)

The bulk quasiparticles are labeled by {00̄, 02̄, 20̄, 22̄}, or
sometimes {11̄, 1τ̄ , τ 1̄, τ τ̄ }. The above input category gives
rise to two Frobenius algebras: A0 = 0, which defines a
charge boundary condition and A1 = 0 ⊕ 2, giving a flux
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FIG. 4. Effective configuration of on a cylinder.

boundary condition. The latter leads to a nontrivial multipli-
cation f222 = φ−3/4. These two Frobenius algebras are Morita
equivalent, i.e., there is a map between all irreducible A0

modules and all irreducible A1 modules which preserves the
fusion rules. Being Morita equivalent to each other means that
the two Frobenius algebras give rise to the same boundary
condition [21].

The degeneracies are again characterized by
degn(dFib, D2) = (L

n)gn(dFib, D2), with

gn(dFib; D2) = Fn−1. (23)

Here, Fn the Fibonacci sequence satisfying F1 = F2 = 1, Fn =
Fn−1 + Fn−2 for n > 2.

IV. THE CORRESPONDENCE FOR A CYLINDER

A. Boundary theory on a cylinder

Different boundary conditions or Frobenius algebras A,B
can be chosen for the two boundaries A and B of a cylinder.
In the case without bulk excitations, one can deform the bulk
graph by (dual) Pachner moves so that the cylinder graph
shrinks to a ring with open links on both sides of the ring,
see, for example, Fig. 4

Both the ground-state degeneracy (GSD) and the topologi-
cal quasiparticles are classified by A − B bimodules. We refer
to Sec. 6 of Ref. [21] for its detailed mathematical structure.

If both boundaries are simply charge boundaries A = B =
A0, then the A0 − A0 bimodule is the entire label set I , so
that both the GSD and the quasiparticles on the cylinder are
labeled by the string types j ∈ I . Denote the total number
of sites as L = LA + LB, and again suppose the charge exci-
tations of type {α} have number {nα}, then the degeneracy
for such distribution of excitations will be of a familiar
form (12), for there is no need to distinguish the two bound-
aries. However, the factor gn should now take into account the
degenerate ground-state subspace on a cylinder. For Abelian
models this simply amounts to gn = GSD = |I|. For non-
Abelian cases, the multiple fusion channels and degenerate
ground states combine in a nontrivial way. Other kinds of
boundaries including the flux type need to be analyzed case by
case. The spectrum becomes more complicated with general
combinations of the two boundary conditions.

We can again define the boundary excitation distrubution
spectrum for a cylinder. For a distribution {nα, nβ} on the two
boundaries, the density matrix in the double limits is

ρn,{nα} =
⎛
⎝∏

α

znα

α

∏
β

znβ

β

⎞
⎠ 1, (24)

with 1 the identity matrix of dimensions degn,{nα,nβ } ×
degn,{nα,nβ }, and zα = dα, zβ = dβ . Only in the special cases
where the two boundary conditions are the same, we can
combine the two products. Generally the meaning of boundary
excitations for the two boundaries can be different.

For the toric code model, there are three possible boundary
conditions for the toric code model on a cylinder, labeled by
the different Frobenius algebras: (i) A = B = 0, both being
charge boundaries; (ii) A = 0, B = 0 ⊕ 1 or B = 0, A =
0 ⊕ 1, the mixed boundaries; and (iii) A = B = 0 ⊕ 1, both
being flux boundaries. Cases (i) and (iii) both give twofold
GSD, so that

gn(Z2; cylinder, charge) = gn(Z2; cylinder, flux)

=
{

2, 0 � n � L and n ∈ 2Z
0, else , (25)

where the n ∈ 2Z constraint arises from the pair creation
of Z2 excitations and L = LA + LB. Degeneracy of the nth
excited state is given by the usual

degn(Z2; cylinder, charge/flux) = gn

(
L

n

)
. (26)

So in these two cases, the counting behaves as if there is only
one boundary. By comparison, case (ii) leads to a nondegen-
erate ground-state subspace and

gn(Z2; cylinder, mixed) =
{

1, 0 � n < L
0, else . (27)

Now we need to distinguish the excitations on different
boundareis. The degeneracy of the nth excited state with
distribution {nα, nβ} is

degn,{nα,nβ }(Z2; cylinder, mixed) = gn

(
LA

nA

)(
LB

nB

)
. (28)

Summation of the above degeneracy over all possi-
ble distributions {nα, nβ} satisfying nα + nβ = n gives the
usual degeneracy of the nth excited state on a cylinder
degn(Z2; cylinder, mixed). Intuitively, the above three cases
can be understood in terms of the anyon condensation lan-
guage [30–41]. Case (i) corresponds to the fluxes m con-
densing on both boundaries and cannot be distinguished with
the vacuum 1, while the anyons with nontrivial charges e
and ε becomes excitations on the boundary. So the two GSD
correspond to 1 and m. For case (iii) the GSD is two again, but
is now labeled by 1 and e and correspond to the condensation
of e particles. Then case (ii) is that of the mixed boundaries.
The corresponding GSD is only one, since the m flux can be
distinguished from vacuum 1 on the flux boundary, while the
e charge can be distinguished from 1 on the charge boundary.
So all four degenerate ground states on the torus can be
distinguished on the boundaries. There is no n ∈ 2Z constraint
in gn in this case, because one can for example create a pair of
charges e, move one of them to boundary A and the other to B.
On one of these two boundaries, e is identified with vacuum
and thus gives no excitation energy. (We note that the above
intuitive understanding is helpful but not rigorous; the general
relationship between the Frobenius algebra formalism and the
anyon condensation picture of boundary theories is yet to be
derived.)
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FIG. 5. The entanglement cut generates LA and LB open links on
the two boundaries of the cylinder.

In a similar fashion, for ZN models we also have cases
(i) of two charge boundaries and (iii) of two flux boundaries
both with gn = N , and case (ii) of mixed charge and flux
boundaries with gn = 1. Additional boundary types other than
the charge and flux ones are also possible, giving rise to more
combinations.

For the simplest non-Abelian case of doubled Fibonacci,
there is only one type of boundary condition, as reviewed in
Sec. III C. Furthermore, there is only one type of nontrivial
boundary excitation. So the generalized density matrix con-
tains only one subscript,

ρn = φn1. (29)

Above 1 is an identity matrix of dimensions degn × degn. The
degeneracy is

degn(dFib; cylinder, charge) = Ln

(
L

n

)
, (30)

with Ln the Lucas sequence 2, 1, 3, 4, 7, 11, . . . The n = 0
case gives the twofold ground-state degeneracy.

B. Entanglement spectrum on a cylindrical subsystem

In this section, we discuss the entanglement properties of
the string-net model on a torus, where subsystem A will have
the topology of a cylinder. The focus will be on the Abelian
ZN models, especially the toric code Z2 case, and leave the
non-Abelian example to the next section.

For toric code model in the quasiparticle basis, a general
ground state can be written as |〉 = c1|1〉 + c2|m〉 + c3|e〉 +
c4|ε〉. Suppose the entanglement cut intersects LA + LB links
as in Fig. 5, the diagonalized reduced matrix then consists of
four blocks

ρA = 2−LA+1−LB+1

⎛
⎜⎜⎝

|c1|21
|c2|21

|c3|21
|c4|21

⎞
⎟⎟⎠,

(31)

where each 1 is an identity matrix of dimensions 2LA−1+LB−1 ×
2LA−1+LB−1. The number 2LA−1+LB−1 is the summation of
the degeneracies in the boundary excitation spectrum on a
cylinder from the last section:

2LA+LB =
LA+LB∑

n=0

degn(Z2; cylinder, mixed). (32)

(Since the model is Abelian with all quantum dimensions
dα = 1, the fugacities are trivial, and the boundary excitation
distribution spectrum is flat.)

On the entanglement side, degn is understood as the num-
ber of configurations in Fig. 4 with altogether n nontrivial
open links that intersect the entanglement cut. The difference

FIG. 6. The simplest graph on torus contains two vertices, three
links, and one plaquette. Links i and k winds the meridian of the
torus, while j and k winds the longitude.

factor of 4 between 2LA+LB and 2LA−1+LB−1 gives the topolog-
ical entanglement entropy, which can be easily read out from
the reduced density matrix as

S(Z2; cylinder) = (LA + LB) ln 2 − 2 ln 2

−
∑
J

|cJ |2 ln |cJ |2. (33)

The first term is the usual area law, while second term arises
from the topological entanglement entropy due to the two
boundaries of the cylinder as already observed in Ref. [23],
and the third term is the Shannon entropy from the combina-
tion of different J ’s.

For ZN models, this is similarly

S(ZN ; cylinder) = (LA + LB) ln N − 2 ln N

−
∑
J

|cJ |2 ln |cJ |2, (34)

with J running over the N2 quasiparticles of thte ZN model.
From Eq. (32), we have a correspondence between the

cylinder boundary excitation spectrum with mixed boundary
condition (27) and the entanglement spectrum. A natural
question, then, would be to understand how the other two
types of boundaries (i) and (iii) can be realized from the
entanglement side. To this end, we introduce the simplest
graph on a torus given by Fig. 6, with three links, two vertices
and one plaquette. All other more complicated graphs can be
obtained from this simplest graph through the (dual) Pachner
moves introduced in the first section.

A general ground state on the simplest graph can be written
as a superposition of different configurations |ik j〉. For our
toric code example, the relevant states are [42]

|1〉 = 1√
2

(|000〉 + |110〉), |m〉 = 1√
2

(|000〉 − |110〉),

|e〉 = 1√
2

(|011〉 + |101〉), |ε〉 = 1√
2

(|011〉 − |101〉).

(35)

If the entanglement cut splits the noncontractible loop labeled
by j, for example let i, k belong to subsystem A and j belong
to subsystem B, then A is topologically a “cylinder” while B
is a “disk,” for there is no noncontractible loop in the graph of
B. Then each of these four states (35) gives a trivial reduced
density matrix with zero entanglement entropy by itself, due
to the small number of total links in this graph. To obtain more
general results, we can do dual Pachner moves to complicate
the graph, but comply with one important constraint: we
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FIG. 7. Example of the “disk+cylinder” bipartition beyond the
simplest graph. The torus is constructed from a rectangle by gluing
both pairs of opposite edges. The blue shaded region is the subsystem
where the graph does not see any noncontractible loop, while the
unshaded region sees one noncontractible loop.

want subsystems A and B to stay as a cylinder and a disk,
respectively. One example is shown in Fig. 7.

Generally the reduced density matrix is [24]

ρA = 2L−1[(|c1|2 + |c2|2)1 ⊕ (|c3|2 + |c4|2)1],

with 1 a 2L−1 × 2L−1-dimensional identity matrix and L is the
total number of links intersecting the entanglement cut. The
entanglement entropy becomes

S(Z2, cylinder+disk)

= L ln 2− ln 2−
∑

j

(∑
J

|cJ |2MJ j

)
ln

(∑
J

|cJ |2MJ j

)
,

(36)

where the decomposition matrix M is 4 × 2-dimensional, with
the first subscript taking values from {1, m, e, ε}, i.e., the
output category, and the second subscript from {0, 1}, the
input category.2 Specifically,

M10 = Mm0 = 1, Me1 = Mε1 = 1, else = 0. (37)

The rows of 1, m are exactly the same, so that states |1〉 and
|m〉 are not distinguishable from the perspective of reduced
density matrix. Similar phenomenon happens for the states |e〉
and |ε〉: whatever relative weights we set for these two states,
the reduced density matrix and the entanglement entropy
are always the same. For this reason, three of the authors
generalized the concept of minimally entangled states in [23]
to that of the minimally entangled sectors [24]. States that
cannot be distinguished from the entanglement perspective are
understood to be in the same sector. In our example, there
are two sectors {|1〉, |m〉} and {|e〉, |ε〉}, which is illustrated
in Fig. 8. It is possible to reach the maximum entanglement
entropy or the minimum topological entanglement entropy
only when superposing two ground states J1 and J2 that come
from different sectors.

For ZN models beyond N = 2, the phenomenon is similar.
In the quasiparticle basis, there are N2 elementary ground

2The decomposition M similar to but different from the tunneling
matrix introduced in Ref. [30] in the range and meaning of the second
subscript. For details, see Ref. [24].

FIG. 8. The entanglement entropy is only sensitive to topo-
logical entanglement sectors. The horizontal direction denotes the
ratio |cJ1 |2/|cJ2 |2, while the vertical direction is the negative of
the topological entanglement entropy. (Left) Superposing ground
states in different minimally entangled sectors. J1 and J2 belong to
different sectors (for example, one can take J1 = 1,J2 = e). (Right)
Superposing ground states in the same minimally entangled sector.
J1 and J2 belong to the same sector (for example one can take
J1 = e,J2 = ε).

states labeled by J = (g, j), with g, j ∈ {0, 1, . . . , N − 1}
denoting fluxes and charges, respectively.

|(g, j)〉 = 1√
N

∑
i,k

e2π iig/Nδ jik∗ |ik j〉. (38)

One observes that the flux and charge degrees of freedom
are assigned to the two noncontractible loops i and j of
the torus (Fig. 6), respectively.3 These states are grouped
into N sectors with the decomposition matrix M(g,μ), j = δμ j .

Namely, those states that are labeled by the quasiparticles
with different fluxes but same charge numbers are in the
same sector. In other words, the fluxes are undetectable using
entanglement entropy. This is analogous to the situation in
the boundary excitation spectrum with two charge boundaries
[case (i)] of toric code discussed in the last section: there the
fluxes were also “condensed” and thus undetectable in the
energy spectrum. The ground-state degeneracy N on a genuine
cylinder is matched with the order of the minimally entangled
sector that contains |1〉, while degn on a genuine cylinder
is matched to the dimension of the block in the diagonal
reduced density matrix that contains n nontrivial open links.
We note that minimally entangled sectors is characteristic of
nonchiral topological ordered systems, and is not present in
chiral cases [43].

Back to the toric code example, the ground-state degener-
acy (27) is matched with the order of the minimally entangled
sector {|1〉, |m〉}, while the excited state degeneracy degn
in (26) is matched with the dimension of the specific block
in the reduced density matrix which contains configurations
with n nontrivial open links.

In the above, we split j loop in the graphs using the
entanglement cut and find the correspondence between bulk
entanglement and the boundary energy spectra of a cylinder
with two charge boundaries [case (i)]. Alternatively, we can
split the noncontractible loop labeled by i. One reads from
Eq. (35) that for the simplest graph, the minimally entangled

3We have used the bold i to denote the imaginary unit, in order to
distinguish it from the link i. The phase factor e2π iig/N is the half
braiding tensor in the sense of Refs. [17,26]. For the ZN case, it
translates the flux degree of freedom g to link degree of freedom i.
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TABLE I. Summary of the Z2 model. The Frobenius algebras
A,B specify the boundary conditions of the two boundaries on a
cylinder. On a torus there are two noncontractible loops labeled by
i (meridian) and j (longitudinal). Varying the entanglement cuts
changes structure of the reduced density matrix and gives rise to
different minimally entangled sectors. (The “cylinder+disk” is a
shorthand for taking the subsystems A and B to be cylinder and
disk, respectively.) Cardinality of the minimally entangled sector
that contains state 1 matches with the ground-state degeneracy on a
cylinder with corresponding boundary conditions. Furthermore, the
full entanglement spectrum matches with the boundary excitation
distribution spectrum.

Boundary Bulk entanglement

(i) charge boundaries cylinder+disk cut, split j loop
A = B = 0 {1, m}, {e, ε}
GSD = 2 |{1, m}| = 2

(ii) mixed boundaries cylinder+cylinder cut
A = 0,B = 0 ⊕ 1 {1}, {e}, {m}, {ε}

GSD = 1 |{1}| = 1

(iii) flux boundaries cylinder+disk cut, split i loop
A = B = 0 ⊕ 1 {1, e}, {m, ε}

GSD = 2 |{1, e}| = 2

sectors now change to {|1〉, |e〉} and {|m〉, |ε〉}. As long as
one keeps the subsystem A and B to be cylinder and disk
topologically, one can generate more complicated graphs and
obtain the same sectors. This new set of sectors appear as if
the charges are invisible to the entanglement spectrum, similar
to the “condensation” of charges in the boundary condition
(iii) for a genuine cylinder. The ground-state degeneracy of
the genuine cylinder again matches with the order of the
minimally entangled sector which contains 1, i.e., GSD =
|{|1〉, |e〉}| = 2. The story goes in parallel for ZN models.
Now the N2 states are regrouped into N sectors, and those
states whose corresponding quasiparticles have same flux but
different charges will be in the same sector.4 We summarize
the toric code results in the following Table I.

C. Non-Abelian case

We now extend the discussion to non-Abelian models. We
start with the doubled Fibonacci case. Since there is only one
type of boundary condition and one type of nontrivial bound-
ary excitation, the boundary excitation distribution spectrum
simply reduces to the boundary excitation spectrum. Hence,
similarly to the ZN case in IV B, the boundary spectrum
corresponds to doing entanglement cut by splitting the j loop,
and taking the subsystems A and B to be cylinder and disk,
respectively.

4If the cut splits the i loop, entanglement entropy will have an
additional term of ln D = ln N due to the Fourier transform between
flux degrees of freedom g and the string types i in (38).

On a simplest graph of a torus, the degenerate ground states
are

|00〉 = 1

1 + φ2
(|000〉 + φ|022〉);

|02〉 = 1

1 + φ2
(|202〉 + e4π i/5|220〉 −

√
φe2π i/5|222〉);

|20〉 = 1

1 + φ2
(|202〉 − eπ i/5|220〉 +

√
φe3π i/5|222〉);

|22〉 = 1

1 + φ2
(|000〉 − φ−1|022〉 + |202〉 + |220〉

+ φ−3/2|222〉). (39)

If the entanglement cut splits the j loop, the decomposition
matrix is given by

M00̄,0 = M22̄,0 = 1, M02̄,1 = M20̄,1 = M22̄,1 = 1. (40)

There are three minimally entangled sectors in this case: S1 =
{00̄}, S2 = {02̄, 20̄}, and S3 = {22̄}. The first two sectors give
the following entanglement entropies (where L is the total
number of links intersected by the entanglement cut):

SS1
A = aL − ln D, SS2

A = aL − ln D + ln φ. (41)

For the third sector, the reduced density matrix has the struc-
ture

ρ
S3
A = 1

φ2
ρ
S1
A ⊕ 1

φ
ρ
S2
A , (42)

so that we have

SS3
A = 1

φ2
SS1

A + 1

φ
SS2

A − 1

φ2
ln

1

φ2
− 1

φ
ln

1

φ
. (43)

For a general state |〉 = ∑
J cJ |J 〉, the properties are

the following. (i) Superposing states in the same sector does
not change the entanglement entropy. (ii) For general su-
perpositions among the three sectors, the maximal topolog-
ical entanglement entropy is reached when |cS1 |2 = 1 and
|cS2 |2 = |cS3 |2 = 0. Minimal topological entanglement en-
tropy is reached when |cS3 |2 = 1 and |cS1 |2 = |cS2 |2 = 0. (iii)
Specifically, superposing states in sectors S1 and S2, and
topological entanglement entropy decreases linearly from ln D
to ln D − ln φ as |cS2 |2/|cS1 |2 goes from zero to infinity. (iv)
Superposing sectors S1 and S3, the topological entanglement
entropy again decrease monotonically, from ln D to ln D −
( D
φ2 + 1

φ
) ln φ as the weight of S3 increases. (v) Similarly,

superposing S2 and S3 leads to monotonically decreasing
topological entanglement entropy as the weight of S3 in-
creases.

The entanglement spectrum again shares the same levels
and degeneracies with the boundary excitation (distribution)
spectrum (29) at infinite temperature and fixed fugacities. In
this correspondence, the boundary GSD is no longer simply
matched with the order of the minimally entangled sector
containing |1〉 = |00̄〉. A more precise criteria is that GSD on
the boundary = the number of J that has nontrivial entry
MJ 0 �= 0 in the decomposition matrix that appears in the bulk
entanglement spectrum. It reduces to the order of minimally
entangled sectors containing |1〉 = |00̄〉 for the ZN case. In
the doubled Fibonacci example, the two relevant states are
|00̄〉 and |22̄〉. For n � 1, we rewrite Ln in terms of the
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Fibonacci sequence Ln = 2Fn−1 + Fn, and notice that the first
Fn−1 term corresponds to the number of channels for fusing
n nontrivial charges to vacuum |00̄〉, while the remaining
Fn−1 + Fn corresponds the number of channels for fusing n
nontrivial charges to the other vacuum |22̄〉.

For general non-Abelian models, if both boundaries of
a cylinder are of charge type, then the boundary excitation
distribution spectrum can always be identified with the bulk
entanglement spectrum with a cylinder+disk cut,

ρn,{nα,nβ } = D1−LρA;n,{nα,nβ }. (44)

On the left-hand side, we have the generalized density matrix,
while on the right-hand side is the reduced density matrix. The
general expression for a cut that splits the j loop and separates
a cylindrical subsystem A from a disk B is,5 in the language of
Sec. III B

ρA =
∑
J

|cJ |2
{
⊕ j∈I MJ j

d j

dJ

[
D

dj
Pj (α

⊗L )

]}
. (45)

It again splits into blocks of ρA = ⊕n,{nα,nβ }ρA;n,{nα,nβ }.

V. DISCUSSION

We examine the relaxation of assumptions and the lim-
itation of our methods in this part. Comments on future
directions will also follow.

A. General boundary conditions

The charge and flux boundary cases have been discussed
in the above sections, however, for the most general bound-
ary conditions, there are certain subtleties. While the charge
boundary always exists, flux boundary may not. This happens
in many non-Abelian models, for example, the doubled Ising
case. So letting the entanglement cut split the i loop does not
always give rise to an entanglement spectrum that corresponds
to a meaningful boundary excitation distribution spectrum.
Additionally, one can have more complicated Frobenius al-
gebras or boundary conditions in addition to these two types.
For example, it was shown in Ref. [44] that for the Z4 model,
there are three different types of boundary conditions, which
will lead to six different combinations and thus energy spectra
for the two boundaries of a cylinder. It is unclear how one can
realize all the corresponding entanglement spectra from the
bulk.

The above defects are expected and inevitable because the
boundary-bulk correspondence is many-to-one, which already
happens in the chiral cases [45–47]. The same bulk theory
can share many different boundary theories, even gapless
ones [48]. Consequently, one cannot extract boundary data
purely from bulk information. If one hopes to realize all
types of boundary conditions from the entanglement point of
view, he/she is forced to add boundaries to the whole system
when doing the entanglement calculations. For example, one
can start from an cylinder with certain boundary conditions,
make a specific bipartition so that the boundaries of both
subsystems partially coincide with the boundaries of the open

5Equation (45) is the case L1 = L, L2 = 1 in Ref. [24].

surface (e.g., subsystem A is a vertical slit of the cylinder
that touches both boundaries of the cylinder, and B is the
rest). It was shown in the quantum double and the continuous
cases recently [49–51], that the corresponding entanglement
entropy is explicitly dependent on boundary conditions of
the cylinder. Within this setup, we expect to be able to
distinguish all different boundary conditions from the entan-
glement spectrum. In a similar spirit but from the information-
theoretical perspective, Ref. [52] argues that if the subsystem
A is chosen as the region around the physical boundary, then
the entanglement spectrum is equivalent to the spectrum of
an edge state living on the boundary. Reference [53] also
makes the subsystem touch the gapped boundaries and is able
to obtain boundary-dependent entanglement properties, using
the concept of information convex. These strategies, however,
unavoidably involves extra input than purely bulk data, and is
not chosen in this paper.

One future direction would be to look into more exotic
boundary conditions, such as those given by fermion conden-
sations [54,55]. Fermion condensation is expected to be de-
scribed by twisted Frobenius algebras [54] and may have sim-
ilar results for the correspondence. In addition, global sym-
metry will lead to more possibilities for boundary conditions
such as those constructed from symmetry extension [50,56].
It would be interesting to extend our discussion to symmetry
enriched topological phases and study the bulk-boundary cor-
respondence there.

B. The small constant ε

We have focused on the case where ε is a small positive
constant in the Hamiltonian (10). If one breaks the topological
invariance of the boundary theory by varying ε with positions
or by adding a generic perturbation, the above correspondence
will, in general, be lost. (The case of Z2 was discussed in
Ref. [15].) However, we argue that the correspondence still
holds if (i) ε stays as a constant but takes a larger value, or (ii)
ε remains small but becomes position-dependent.

(i) Previously ε was taken to be small because we would
like to focus on the boundary excitations only, and require
the bulk to be always in its ground state. Starting from the
ground state on a sphere S2, one can go beyond the bulk
ground-state subspace by creating a pair of quasiparticles
J , J̄ and move them to the two disk-shaped subsystems A,
Ā, respectively. The diagonalized reduced density matrix of
subsystem A is then ρA = ⊕ jMJ j

D
d j

Pj (α⊗L ). All entries are
products of quantum dimensions di1 , di2 , . . . , diL (up to some
power of D), which can again be organized according to the
number of nontrivial i �= 0’s as in (3.6), ρA = ⊕n,{nα}ρA;n,{nα}.

Above A is an abstract disk generated from the bipartition.
Alternatively, we can look at a physical disk D2 with a
charge boundary for convenience. Initially, both the bulk and
boundary of the disk are in their ground state. Then one
creates a pair of excitations J ′, J̄ ′ in the bulk and move one
of them J ′ to the boundary, so that the bulk has only one
excitation J̄ ′ left. On the boundary, J ′ decomposes according
to J ′ → ⊕ jMJ ′ j j. The degeneracy for the distribution {nα}
of boundary excitations is given by a generalization of (12),

degn,{nα}(D
2) =

∑
j

MJ ′ jg j;n,{nα}
L!

n0!nα! · · · nζ !
, (46)
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where g j;n,{nα} is the number of fusion channels for nα charges
α, nβ charges β etc. to fuse to charge j. This degn,{nα}(D

2) is
matched with the dimension of the above ρA;n,{nα} when J ′ =
J . Namely, there is still a correspondence between the energy
spectrum of a disk when there exists bulk excitations and the
entanglement spectrum of a sphere in its excited state, but this
correspondence requires the set of quasiparticles in these two
cases to be the same.

(ii) If ε = ε(n) > 0 is position-dependent, then the bound-
ary energy spectrum becomes disorganized at finite tempera-
tures. However, the boundary excitation distribution spectrum
is the same as before: n no longer labels the nth excited state,
but still labels the excited state with n boundary quasiparticles.
Furthermore, as we are interested in the high temperature limit
of the boundary spectrum, the changes to the energy levels are
irrelevant.

One can similarly vary the terms in the bulk Hamiltonian
along the entanglement cut. As long as ε(n) is small and
positive, the ground state remains the same, and the cor-
responding entanglement spectrum is the same. Hence the
correspondence between bulk entanglement spectrum and the
boundary excitation distribution spectrum is robust against
such variations.

C. The infinite-temperature and fixed-fugacity limit

In the infinite temperature limit, all excitations occur with
the same possibility. The only difference comes from the

chemical potential, or the fugacity. The importance of fugacity
is special for string-net models. For finite group cases, were
we in the group element basis as in Kitaev quantum double
models, the fugacities should all be trivial. For example, in
Ref. [57], the authors observe that the entanglement entropy in
Kitaev quantum double models is equal to the thermal entropy
of a 1d system at infinite temperature. In the string-net casess,
we are using the representation basis instead. This introduces
internal degrees of freedom in the open links intersectng the
entanglement cut. These degrees of freedom are related to
their quantum dimensions: the number of channels for nα

excitations of type α to fuse to vacuum grows asymptotically
like the nαth power of dα [29]. Consequently, the quantum
dimension dα can be viewed the asymptotic dimension of the
Hilbert space Hα containing one particle of type α. (This is
only “asymptotic” because the dimension of Hilbert space is
always an integer, while quantum dimensions can be noninte-
gral.) Then

∏
α dnα

α in (2) counts the asymptotic dimension of
a tensor product of Hilbert spaces ⊗αH⊗nα

α .

The identification of quantum dimension as fugacity gives
a hint to the statistical mechanical theory of anyonic systems.
We leave the full understanding to future work.
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