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Peculiar electronic states, symmetries, and Berry phases in irradiated α-T3 materials
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We have laid out the results of a rigorous theoretical investigation into the response of electron dressed states,
i.e., interacting Floquet states arising from the off-resonant coupling of Dirac pseudospin-1 electrons in α-T3

lattices, to external radiation with various polarizations. Specifically, we have examined the role played by the
hopping-scale parameter α that is a measure of the coupling strength with an additional atom at the center of
the honeycomb graphene lattice and which, when varied, continuously gives rise to different Berry phases. We
have found that the electronic properties of the α-T3 model (consisting of a flat band and two cones) could
be significantly modified depending on the polarization of the imposed irradiation. We have demonstrated that
under elliptically polarized light the low-energy band structure of such lattices will directly depend on the valley
index. We have obtained and analyzed the wave functions, their symmetries, and the corresponding Berry phases,
connections, and curvatures, and revealed that such field-modified geometry phases could be finite even for a dice
lattice, which has not been observed in the absence of an optical dressing field. These results lead to possible
radiation-induced band structure control and engineering, as well as experimental and technological realization
of such optoelectronic and integrated photonic devices.
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I. INTRODUCTION

The α-T3 model is considered to be the most recent and
promising member of two-dimensional (2D) materials. Their
low-energy dispersions are obtained from a pseudospin-1
Dirac-Weyl Hamiltonian [1,2] and they possess strong sim-
ilarity to graphene [3–5]. The atomic structure of the α-T3

model is represented by a honeycomb lattice with an addi-
tional site at the center (a hub atom) of each hexagon. The
model Hamiltonian depends on a hopping-scale parameter
α = tan φ which is a measure of the coupling strength with
the hub atom and depends on the ratio of the two hopping
coefficients for all hub-rim and rim-to-rim sites. Both α and
φ may be varied continuously and the Berry phase could
be expressed in terms of these two parameters and could
play a crucial role in controlling many of the electronic and
many-body properties of such two-dimensional (2D) lattice
structures.

The most encouraging technological opportunity for α-T3

is its applicability for tuning the value of the parameter α from
0 to 1. The results for graphene correspond to the α → 0
limit of this model, while the α → 1 limit is connected to a
class of available pseudospin-1 materials [1,6,7]. Such unique
tunability together with associated electron-state evolutions
have made studying various properties of these α-T3 materials
one of the most desirable directions in present-day condensed-
matter physics, chemistry, and technology.
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One of the latest advances in laser and microwave tech-
nologies has resulted in the possibility of an efficient con-
trol, as well as tunability of the basic electronic proper-
ties, low-energy band structures including band gap, and
corresponding spin- and valley-dependent electronic states,
by applying an off-resonant periodic field. Electron states
generated in such a way are referred to as either electron
(or optical) dressed states and represent a single quantum
object of strongly coupled light and matter. These dressed
states are further characterized by different polarizations of an
imposed field, as schematically displayed in Fig. 1. The effect
of such light-matter interaction on modifying key electronic
properties could vary substantially, depending on the type of
polarizations of incoming radiation. Most of the important
characteristics of such dressed states could be deduced from
conventional Floquet theory, which effectively describes an
extremely wide range of quantum-mechanical systems under
an external periodic field [8–11]. Based on these theories, re-
searchers have proposed and developed numerous techniques
to modify the existing electronic properties of condensed-
matter materials, which was subsequently referred to as “Flo-
quet engineering” of various nanostructures [12–14], espe-
cially for the low-dimensional Dirac-cone materials [15–22].
Considerable effort has been devoted to find a way to
present topological-insulator properties in such systems under
irradiation [12,23,24]. Optical dressing can also alter the
tunneling and conductance [25] properties of a topological
insulator, leading to tunable spin transport on their sur-
faces [26] or edges with potential applications in spintronics
and resulting in an optically stimulated Lifshitz transition as
well [27].
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FIG. 1. Schematics of an α-T3 lattice (in xy-plane) irradiated
with (a) elliptically and (b) linearly polarized off-resonance optical
dressing fields. In each case, E0 represents the amplitude of the
electric-field component of incident light.

Another important property of such electronic dressed sys-
tems for operating an optoelectronic device is the challenge
of confining these electron states within a specific spatial
region. This is directly related to the presence or absence of
the so-called Klein paradox [28] in α-T3 materials. Circularly
polarized radiation is known to open an energy gap in ini-
tially metallic graphene [15,29], leading to a suppression of
either electron transmission [30,31] or electronic trapping [32]
experimentally. For systems with a band gap, such as buck-
led honeycomb lattices, the modification of this energy gap
depends on its initial value and could be either increased
or decreased [16], which can affect all collective electronic
properties in a nontrivial way [33]. In contrast, radiation with
a linear polarization does not generate any band gaps but
can lead to a strong anisotropy in energy dispersions of α-T3

material [34]. Here, we would like to emphasize that the
right term in referring to the Floquet quasiparticles is the
quasienergy. Even though sometimes we still use the word
“energy” to mean the eigenvalues of a Hamiltonian equation,
the distinction is crucial and should be always recognized.
For such anisotropic massless fermions, a full head-on trans-
mission is replaced by asymmetric Klein tunneling [35] with
an important advance in electron technologies, i.e., electron
confinement in a 2D material. Interestingly, such unique Klein
tunneling within α-T3 materials [36] with α < 1 has been
shown to be different from both graphene (α = 0) and dice
lattice (α = 1) [37].

The principal focus of the present work is to develop a
formalism for investigating the properties of optical dressed
states for the α-T3 model corresponding to well-known po-
larizations of incoming radiation, i.e., elliptical (and circu-
lar as a special case) and linear. From a physics point of
view, elliptically polarized light has the combined effect of
opening two generally inequivalent band gaps, just as it was
shown for circularly polarized light. It also induces an in-
plane anisotropy, related to linear polarization. Therefore, one
can use elliptically polarized fields for tuning and control
of these optically induced modifications of the electronic
states. Contrary to recent work [2], we concentrate on deriv-
ing closed-form analytic approximations and the wave-vector
dependence of the energy dispersions around each valley, and

we determine and analyze the corresponding wave functions,
their symmetries, and the corresponding Berry phases which
are now significantly modified by electron-light coupling.

We have conducted a comprehensive investigation of the
way in which the Berry phase of α-T3 is modified in the
presence of irradiation. The procedure is significantly dif-
ferent from the study of the properties of dressed states for
various phases φ. These phases are not equivalent to the
Berry phases, even though they are directly and uniquely
related. We have found that the dice lattice could acquire a
finite Berry phase due specifically to the irradiation, while it
was zero initially. Generally, the Berry phases substantially
depend on the material parameter α and the electron-light
coupling λ0, as well as the polarization of the dressing field.
The Berry phase was proven to be connected to most phys-
ical properties of α-T3 lattices [38]. Researchers have found
that its orbital susceptibility will undergo a transition from
diamagnetic in graphene to paramagnetic in a dice mate-
rial [10,39], which was also demonstrated by using a tight-
binding model [40]. The same conclusion applies to magneto-
transport in α-T3 materials [41], where the calculated conduc-
tivities present several peaks, and each of these peaks will be
split if α is finite [42,43]. Therefore, one of our goals in this
paper is studying how the geometric Berry phase of α-T3

lattices is modified in the presence of an optical dressing field.
Our results can be verified by experimental measure-

ments, such as scanning tunneling microscopy [44], transmis-
sion electron microscopy [45], angle resolved photoemission
spectroscopy (ARPES), and scanning tunneling spectroscopy
(STS) applications [46]. Recently, the Floquet states, their
topological properties, and even the Berry curvatures have re-
ceived a great deal of attention by experimentalists, including
in Refs. [47,48].

The rest of this paper is organized in the following way.
In Sec. II, we provide a brief description of important elec-
tronic properties, including low-energy band structures in
the vicinity of the K and K ′ valleys, their corresponding
wave functions, and all their dependences on the geometry
phase parameter φ(α) as well. Following this, we present our
detailed derivations for off-resonance electron Floquet states
under elliptically, circularly, and linearly polarized irradiation.
Meanwhile, we also show corresponding eigenstates for such
dressed electrons and analyze their structure and symmetry
properties. Specifically, we examine how all our results de-
pend on φ(α) and on electron-field coupling λ0. We also
indicate some cases in which the band structures become
valley dependent. In Sec. III, we calculate Berry phases for
different eigenstates, provide analytical expressions for them,
and discuss their properties. Our concluding remarks are
provided in Sec. IV. In addition, detailed derivations of all
our major results are given in Appendixes A, B, and C.

II. ELECTRON DRESSED STATES

In this section, our goal is to obtain quasienergy disper-
sions and wave functions of quasiparticle dressed states by
incident light with elliptical, circular, and linear polarizations.
In calculating these quantities, we are mainly concerned with
elucidating the effect of Berry phase φ on these dressed states.
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To establish notations, we start with an overview
of the low-energy Hamiltonian of the α-T3 model, its
eigenfunctions, and energy dispersions. The eigenstates are
determined from the following φ-dependent pseudospin-1
Dirac-Weyl Hamiltonian [2],

Ĥ
φ

τ (k) = h̄vF

⎡
⎣ 0 kτ

− cos φ 0
kτ
+ cos φ 0 kτ

− sin φ

0 kτ
+ sin φ 0

⎤
⎦ , (1)

where k = (kx, ky) is a 2D wave vector and kτ
± = τkx ± iky

with τ = ± labeling two different valleys and vF denoting
the Fermi velocity. In Eq. (1), α = tan φ is a bonding-strength
parameter in Fig. 1, characterizing an α-T3 lattice. For α =
1 or φ = π/4, this Hamiltonian reduces to that of a dice
lattice [1]. Three energy bands of the Hamiltonian in Eq. (1)
are E (0)

γ (k) = γ h̄vF k, corresponding to valence (γ = −1),
conduction (γ = +1), and flat (γ = 0) bands of electrons.
These energy bands are degenerate with respect to τ and φ.
Their corresponding wave functions are

�
γ=±1
0 (k| τ, φ) = 1√

2

⎧⎨
⎩

τ cos φ e−iτθk

γ

τ sin φ eiτθk

⎫⎬
⎭ , (2)

where θk = arctan(ky/kx ) is the angle associated with the
wave vector k, and

�
γ=0
0 (k| τ, φ) =

⎧⎨
⎩

τ sin φ e−iτθk

0
−τ cos φ eiτθk

⎫⎬
⎭ . (3)

Unlike the degenerate electron dispersions E (0)
γ (k), the en-

ergy dispersion of dressed-state quasiparticles depends on the
Berry phase φ and valley τ .

A. Elliptically polarized radiation

The vector potential for elliptically polarized light will
depend on the direction of the major axis of the polarization
ellipse. By assuming that this major axis is collinear with the
x axis, the expression for such a vector potential takes the
form [16]

A(e)(t ) =
[

A(e)
x (t )

A(e)
y (t )

]
= E0

ω

[
cos(ωt )
β sin(ωt )

]
, (4)

where the superscript “(e)” stands for elliptical polarization
and β = sin �e �= 1 is the ratio of field strengths along the
two axes of the polarization ellipse. Equation (4) represents
the most general form of various polarization types, where
β → 1 corresponds to circularly polarized light with equal but
π/2 phase-shifted components and β → 0 describes linearly
polarized radiation, given by Eq. (23).

It is important to mention that as in previous studies [34] of
graphene, the dressed-state energy dispersions obtained with
a semiclassical time-dependent representation as in Eq. (4)
are found equivalent to that [15] derived from a quantum-field
theory in the limit of a large occupation number of photons.

By making use of the canonical substitution, kx,y → kx,y −
(e/h̄) A(e)

x,y(t ), the field-free Hamiltonian in Eq. (1) is changed
into

Ĥ
φ

τ (k) �⇒ Ĥ(e)(k, t | τ, φ) ≡ Ĥ
φ

τ (k) + Ĥ
(e)
A (t | τ, φ) , (5)

where the interaction term is given by

Ĥ
(e)
A (t |τ, φ)

= −τc0

⎧⎨
⎩
⎡
⎣0 e−iτβ (t ) cos φ 0

0 0 e−iτβ (t ) sin φ

0 0 0

⎤
⎦+ H.c.

⎫⎬
⎭ .

(6)

In Eq. (6), H.c. represents the Hermitian conjugate of the
preceding matrix and β (t ) = arctan [β tan(ωt )] turns into
(ωt) for circularly polarized light. The interaction strength,
c0 = eE0vF /ω, is the same for linearly polarized light. Apart
from c0, we also introduce another dimensionless coupling
constant λ0 = c0/h̄ω in our calculations. Since our stud-
ies aim at an off-resonant high-frequency irradiation with
E (0)

γ (k)/h̄ω 	 1, we can treat λ0 as a small parameter,1 and
therefore corresponding series expansions could be executed
with it.

If the field-free Hamiltonian is linear in k, which holds
true for nearly all Dirac and gapped Dirac structures, e.g.,
gapped or gapless graphene, buckled honeycomb lattices, and
transition-metal dichalcogenides, the corresponding Hamil-
tonian for dressed states can be obtained simply by adding
a single k-interaction term. However, the situation becomes
drastically different for phosphorene with a more complicated
anisotropic k dependence in its field-free Hamiltonian [17].

Mathematically, in order to solve the current eigenvalue
problem, we have to rely on a perturbation theory. More-
over, nearly all off-resonant systems, subjected to an external
periodic field with E (0)

γ (k) 	 h̄ω, could be effectively de-
scribed by a perturbative Floquet-Magnus expansion [8] of
the interaction Hamiltonian in powers of (1/h̄ω). Eventually,
this allows for an approximate solution whenever the exact
diagonalization of an interaction matrix becomes impossi-
ble [16] or at least it substantially simplifies a very lengthy
calculation [17].

The key idea for using the perturbation approach is the fol-
lowing. Once the interaction Hamiltonian term H(e)

A (t | τ, φ) is
expressed as

Ĥ
(e)
A (t | τ, φ) = P̂τ,φ e

iωt + P̂
†
τ,φ e

−iωt , (7)

where the operator P̂τ,φ and its Hermitian conjugate P̂
†
τ,φ are

time independent, the effective Hamiltonian representing our
dressed-state system becomes [8]

Ĥ(e)
eff (k, t |τ, φ) = Ĥ

φ

τ (k) + 1

h̄ω
[P̂ τ,φ, P̂

†
τ,φ]−

+ 1

2(h̄ω)2

{[[
P̂ τ,φ, Ĥ

φ

τ (k)
]
−, P̂

†
τ,φ

]
−

+ H.c.
} + · · · , (8)

where [Â, B̂]− ≡ ÂB̂ − B̂Â.

1The actual irradiation frequencies, suggested for the experimental
verification of our results, depend on the initial band gap of the
material considered. Specifically, since nonirradiated α-T3 does not
acquire an energy gap between the valence, conduction, and flat
bands, our predicted features could be verified in the THz frequency
range.
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FIG. 2. Band edges ε
(e)
d (k = 0| τ, φ) (at either K or K ′ point depending on valley index τ = ±1) calculated from Eqs. (11) and (12) for

dressed states in α-T3 lattices under elliptically polarized light as a function of φ = arctan(α) in panel (a) and α in panel (b). In each panel, the
conduction, valence, and “flat” band dispersions correspond to blue, green, and red curves, respectively. As usual, the band gap is still defined
as the energy separation between the valence and conduction bands. Here, the upper conduction band touches the middle “flat” band in both
panels and ε0 = τβ c2

0/h̄ω is the unit for energy bands.

For most situations, it is sufficient to retain the first two
terms of such a power series in Eq. (8). In our case, com-
bining with Eqs. (6) and (7), we obtain explicitly the time-
independent perturbation operator P̂ τ,φ as

P̂ τ,φ = −c0

2

⎡
⎣ 0 (τ − β ) cos φ 0

(τ + β ) cos φ 0 (τ − β ) sin φ

0 (τ + β ) sin φ 0

⎤
⎦.

(9)

This matrix is real, but clearly not Hermitian, as it always
occurs for all types of circularly polarized radiation, including
the general elliptical polarization with 0 � β < 1.

After evaluating the commutation relation in Eq. (8), we
arrive at the following expression for the effective perturbation
Hamiltonian up to the order of O(λ2

0):

Ĥ(e)
eff (k| τ, φ)

= Ĥ
φ

τ (k) − τβλ0c0

⎡
⎣cos2 φ 0 0

0 − cos(2φ) 0
0 0 − sin2 φ

⎤
⎦

− τ

4
h̄vF λ2

0

⎡
⎣ 0 h12(k| τ, φ) 0

h∗
12(k| τ, φ) 0 h23(k| τ, φ)

0 h∗
23(k| τ, φ) 0

⎤
⎦,

(10)

where h12(k| τ, φ) = cos φ[1 + 3 cos(2φ)](β2kx − iτky) and
h23(k| τ, φ) = sin φ[1 − 3 cos(2φ)](β2kx − iτky).

It is important to point out that the chirality kτ
± ≡ τkx ± iky

kept in the third term of Eq. (10) for β = 1 is the same as

that in Ĥ
φ

τ (k) given by Eq. (1). It is also interesting to check
the second term of Eq. (10), which is independent of k and
determines the dressed-state band edges ε

(e)
d (k = 0| τ, φ) at

the K point, i.e.,

ε
(e)
d (k = 0| τ, φ) = τβ

c2
0

h̄ω
×
⎧⎨
⎩

− cos2 φ

+ cos(2φ)
+ sin2 φ

= τβλ0c0 ×
⎧⎨
⎩

−1/(1 + α2)
(1 − α2)/(1 + α2) ,

α2/(1 + α2)
(11)

as well as the energy gap δ0(φ) between the valence and
conduction bands

δ0(φ) = β

2
λ0c0

×
{

cos(2φ) + cos2 φ , for 0 � φ < φ0

1 , for φ0 < φ � π/4 ,
(12)

where φ0 = 0.615 rad � 0.196 π or α0 = 1/
√

2 and the sub-
script “d” stands for dressed states. Hereafter, we will omit the
λ0 dependence in other expressions for simplicity.

The simple but important band-edge and band-gap results
in Eqs. (11) and (12) can be seen in Fig. 2. Each energy is
given in units of ε0 = τβ c2

0/h̄ω; i.e., its actual value depends
on the valley index τ , the ratio of the ellipse polarization
axes β, the electron-light interaction strength c0, and the di-
mensionless coupling constant λ0. The “flat” band is actually
not flat anymore, and all three bands are now distorted and
intersect with each other. Even for β = 1, the energy band
gap changes from λ0c0 for graphene to λ0c0/2 for a dice
lattice. It is intriguing to find that the band gap remains as
a constant in the region of φ > φ0 or α > α0. The band gap
of a dice lattice is the smallest and exactly half of that for
graphene (the largest). The α dependence of the band-edge
locations, presented in Fig. 2(b) for comparison, is similar but
not exactly identical to the corresponding dependence on φ.
Although analytical solutions for band dispersions at finite k
could be obtained from a third-power algebraic equation, the
expressions are too lengthy to be shown and analyzed.

Our numerical results for the energy dispersions
ε

(e)
d (k| τ, φ) for the elliptically polarized light are presented

in Fig. 3. Besides the simplest case with φ = π/4, which was
discussed above and presented in Fig. 3(a), we examine the
remaining ones and find that the initially flat band E (0)

0 (k) ≡ 0
acquires a k-dependent nonzero curvature and can sit either
above or below the zero line depending on the selection of
Berry phase φ as well as the valley index τ (not shown). The
valence and conduction band edges are shifted individually
in energies, and therefore we see no mirror symmetry with
respect to the zero line between valence and conduction
bands, as was noticed in Ref. [2]. However, a complete
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FIG. 3. Numerically calculated dressed-state energy dispersions
ε

(e)
d (k| τ, φ) based on Eq. (10) under elliptically polarized and off-

resonant irradiation with β = 0.8 as functions of kx for ky = 0.
All results are obtained in the vicinity of the K valley with τ =
1. Each plot involves dispersions for three bands, i.e., conduction
(γ = 1, blue), valence (γ = −1, green) and “flat” (γ = 0, red)
bands. Here, panel (a) presents results for a dice lattice (φ = π/4)
under circularly polarized irradiation (β = 1) with λ0 = 0.2 (solid),
0.4 (long-dashed), and 0.6 (short-dashed). Plots (c) and (e) on the
left correspond to Berry phase φ = 0.196 π with λ0 = 0.25 in plot
(c) and λ0 = 0.5 in plot (e), having closed the band gap between the
conduction and “flat” bands. Panels (b), (d), and (f) on the right are
for φ = π/6 at λ0 = 0.2 (b), 0.4 (d), and 0.6 (f). Here, the unit for
energy bands is ε0.

inversion symmetry for k → −k is still kept, which implies
that only even powers of wave-vector components kx and ky

will appear in the eigenvalue equation associated with the
Hamiltonian Ĥ(e)

eff (k, t | τ, φ) in Eq. (10). Apparently, the effect
from the imposed radiation on the flat band and its distortion
around the zero line become most visible near k = 0. We
would like to emphasize that such distortion behavior and β

dependence in these dispersions result from the anisotropy of
incident light and are absent for circularly polarized radiation
with β = 1.

Actually, not just the band edges and gaps from Eqs. (11)
and (12), but the whole k dispersions of energy bands in

FIG. 4. Numerically calculated valley-dependent dressed-state
quasienergies ε

(e)
d (k| τ, φ) based on Eq. (10) under an elliptically

polarized dressing field with β = 0.8. We plot ε
(e)
d (k| τ, φ) as func-

tions of kx for ky = 0. Panel (a) presents dispersions for φ = 0.196 π ,
while panel (b) shows plots for φ = π/6. In each plot, λ0 = 0.25,
where solid curves correspond to K valley with τ = 1, whereas
dashed ones to K ′ with τ = −1. Here, the “flat” band touches either
the conduction or the valence band in panel (a) for τ = 1 and τ =
−1, respectively, and the unit for energy bands is ε0.

Fig. 4 demonstrate their direct and substantial dependence
on valley index τ = ±1. Here, the location of each energy
band varies near the K and K ′ valleys, and this noticeable
difference is certainly not limited to just a sign switching,
in contrast to all situations studied before. As φ = 0.196 π

or α = 1/
√

2, either upper or lower band gap is closed,
depending on τ value. Consequently, we expect nonequivalent
density of electronic states in each low-energy (near K or
K ′) region. The contributions from these τ -dependent density
of electronic states will not be equal or simply opposite to
each other, leading directly to valley-dependent optical and
transport properties.

The ε
(e)
d (k| τ, φ) dispersions also display a striking resem-

blance to silicene, in which the electronic states with a given
spin σ = ±1 present two inequivalent band gaps �τ,σ =
|�SO − στ�z|, in which �SO is a constant intrinsic spin-orbit
gap and �z can be tuned continuously by an external per-
pendicular electrostatic field. Therefore, by varying the field
strength, one of the gaps between the conduction and valence
bands can be either opened or closed, and then such a buckled
honeycomb lattice would behave like a topological insulator,
valley-spin polarized metal, or just a conventional band insu-
lator. Here, the lower energy gap |�SO − �z|, which defines a
physical band gap between the valence and conduction bands,
changes into the upper one �SO + �z as either the valley in-
dex τ or the spin index σ switches its sign [49,50]. This unique
dependence gives rise to specific transport properties [51] and
many valleytronics applications [52], and more importantly it
could be realized by α-T3 lattice under elliptically polarized
irradiation.

As a comparison, for graphene with E (0)
γ (|k|) = γ h̄vF |k|

and interacting with circularly polarized radiation, we find
the dispersion relation for off-resonant dressed states can be
expressed as

ε
γ

d (k) = γ

√(
c2

0

h̄ω

)2

+
{

h̄vF k

[
1 − 2

( c0

h̄ω

)2
]}2

, (13)
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FIG. 5. Angular dependence of the valley-independent dressed-
state energy dispersions ε

(L)
d,γ (k| φ) from Eq. (26) for the case of lin-

early polarized radiation applied to an α-T3 lattice, as schematically
shown in panel (a) with θk = arctan (ky/kx ). Plot (b) demonstrates
how the angular function A(θk | φ), given by Eq. (27), depends
on hopping-scale parameter α at various angles θk, where curves
for θk = π/6 (red), π/4 (blue), and π/3 (green) are displayed for
λ0 = 0.5 in addition to the black line A(θk | φ) ≡ 1 for θk = 0. The
two lower polar plots (c) and (d) show θk dependence in Eq. (26)
for fixed ε

(L)
d,γ (k| φ)/EF ≡ 0.5, where λ0 = 0, 0.2, 0.4, and 0.6 are

selected for black, red, blue, and green curves.

which could be derived from the limit of vanishing anisotropy
for multilayer black phosphorus [17] or by setting all band
gaps to zero for transition metal dichalcogenides [16]. The
explicit expression in Eq. (13) is a result of expansion up to
the order of O[1/(h̄ω)2]. On the other hand, an exact solution
predicts [15] that the energy band gap is given by

2δd =
√

(h̄ω)2 + 4c2
0 − h̄ω � 2c2

0

h̄ω

[
1 −

( c0

h̄ω

)2
+ · · ·

]
.

(14)

Consequently, from Eq. (12) we know the field-induced en-
ergy bandgap in Eq. (14) for graphene is exactly twice as large
as that of a dice lattice (taking β = 1).

B. Symmetric band structure and wave function of a dice lattice

In this part, we would like to address spin-1 dice lattices
with α = 1 or φ = π/4 as a special case, in which all the
equations are greatly simplified and analytical expressions
can be obtained to gain a deeper insight into dressed-electron
dynamics. It is also interesting to notice that the effect of
irradiation becomes the smallest in this case for a given
dressing-field intensity, as we see by comparing Fig. 3(a) with
Figs. 3(b), 3(d) and 3(f). Moreover, this case has its own
significance in device applications since T3 spin-1 materials
could be possibly synthesized now.

In this case, the noninteracting Hamiltonian (1) for a dice
lattice takes the form

Ĥ
d
τ (k| τ ) = h̄vF√

2

⎡
⎣ 0 k−

τ 0
k+
τ 0 k−

τ

0 k+
τ 0

⎤
⎦ =

∑
α=±

k α
τ �̂(1)

α , (15)

where �̂
(1)
±1 = �̂(1)

x ± i�̂(1)
y are defined based on spin-1 matri-

ces in Appendix A. By expanding the Hamiltonian in Eq. (15)
up to the order of O[1/(h̄ω)2], the effective Hamiltonian in
Eq. (10) becomes

Ĥ(e)
eff (k| τ ) �

⎡
⎣−(τβ/4) λ0c0 G(k| τ ) 0

0 0 G(k| τ )
0 0 (τβ/4) λ0c0

⎤
⎦

+ H.c., (16)

where

G(k| τ ) = h̄vF√
2

[
τkx

(
1 + β2λ2

0

4

)
− iky

(
1 + λ2

0

4

)]
. (17)

Here, the significant simplification of Eq. (10) has been made
possible mainly due to the fact that h12(k| τ ) = h23(k| τ ) =
1/

√
2 (β2kx − iτky) at φ = π/4.

For the effective Hamiltonian in Eq. (16), the low-energy
band structure is symmetric with respect to electrons and
holes, given by one flat and two dispersive bands:

ε
(e)
d (k) = 0 and ε

(e)
d (k) = ±

√
S (k) , where

S (k) =
(

βλ0c0

4

)2

+(h̄vF )2

{
k2 + λ2

0

2

[
(βkx )2

(
1 + β2λ2

0

8

)

+ k2
y

(
1 + λ2

0

8

)]}
, (18)

which becomes independent of valley index τ . Only in this
case does the middle band stay flat for all wave vectors k,
while the dispersive valence and conduction bands remain
symmetric to γ = ±1 at the same time. From Eq. (18), we
know the opening of a finite band gap in this case is the same
as δ0 = βλ0c0/2 given by Eq. (12) at φ = π/4. It is clear
that the anisotropy of the energy bands comes solely from the
elliptical polarization of the dressing field and disappears for
β = 1. From now on, we will focus only on the latter case for
circularly polarized radiation. In this way, the energy index
γ = ±1 still labels a Dirac cone with a renormalized isotropic
Fermi velocity v̄F = vF (1 + λ2

0/4).
Now we can find the wave functions for dispersions (18).

The solutions, pertaining to the valence and conduction bands
γ = ±1, are

�
(E )

d (γ , τ | λ0, k) = 1√
N (γ )

⎧⎨
⎩

τ C (1) e−iτθk

C (2)

τ (h̄vF k)2 e+iτθk

⎫⎬
⎭ , (19)

where

C (1)(γ , τ |λ0, k)

= (h̄vF k)2 + 2
[
�2

(λ) − 2c0λ0 γ τ

√
(h̄vF k)2 + �2

(λ)

]
,
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C (2)(γ , τ | λ0, k)

=
√

2 γ (h̄vF k)
[√

(h̄vF k)2 + �2
(λ) − γ τ � (λ)

]
,

N (γ )(τ | λ0 	 1, k)

� 2 {2 (h̄vF k)4 − 5γ τ c0λ0(h̄vF k)3 + 9[c0λ0 (h̄vF k)]2 } .

(20)

Parameter � (λ) = 2λ0 c0/(4 + λ2
0) is not equivalent to the

actual energy band gap 2�0(β = 1, λ0) = λ0c0.
For the flat band, we obtain

�
(E )

d (γ = 0, τ | λ0, k)

= 1√
N (0)

⎧⎨
⎩

ke−iτθk

2
√

2 λ0
(
4 − λ2

0

)
c0/(h̄vF )

ke+iτθk

⎫⎬
⎭ , (21)

where

N (0)(λ0 	 1, k) � 2

[
k2 +

(
8λ0

c0

h̄vF

)2
]

+ · · · . (22)

Here, the middle component of wave function (21) is nonzero
only in the presence of circularly polarized irradiation. One
can easily verify that the wave functions (19) and (21) in
the limit of vanishing electron-light interaction λ0 → 0 agree
with the results in Eqs. (2) and (3).

Electronic states with a finite energy gap between the
valence, flat, and conduction bands are critical for electron
confinement, gate control, and the investigation of excitons in
our considered materials. The latter notion becomes extremely
important, since pursuant to our results, one should now
be able to construct an excitonic state and analyze its col-
lective properties, such as Bose-Einstein condensation [53],
depending on various lattice and electron-light interaction
parameters. In fact, excitons simply do not exist without a
band gap, and we believe that our work indeed paves a route
to pursue this type of research in α-T3.

C. Linear polarization of the incoming radiation

We now turn our attention to an alternative situation in
which linearly polarized radiation will be incorporated into
the α-T3 model Hamiltonian. Being essentially anisotropic,
such optical fields are known to transform the Dirac cone into
an asymmetric elliptical cone without creating an energy gap
between the valence and conduction bands [34]. Whereas for
anisotropic phosphorene the direction of the linear polariza-
tion is important [17], for the isotropic energy dispersions in
α-T3 lattices we can assume the field polarization lies along
the x axis without loss of any generality, yielding

A(L)(t ) =
[

A(L)
x (t )
0

]
= E0

ω

[
cos(ωt )

0

]
. (23)

Assuming a linear k dependence to the field-free Hamilto-

nian Ĥ
φ

τ (k), we find the total Hamiltonian Ĥ(L)(k, t | τ, φ) for
dressed particles only acquires an additional k-independent
term, given by

Ĥ
φ

τ (k) �⇒ Ĥ(L)(k, t | τ, φ) = Ĥ
φ

τ (k) + Ĥ
(L)
A (t | τ, φ) , (24)

where

Ĥ
(L)
A (t | τ, φ) = −τc0 cos(ωt )

⎡
⎣ 0 cos φ 0

cos φ 0 sin φ

0 sin φ 0

⎤
⎦ .

(25)

Here, the coupling constant c0 = eE0vF /ω is the same as
that in the case of elliptically or circularly polarized light.
However, each element of the matrix in Eq. (25) has the
identical periodic time dependence in comparison with a
circularly polarized radiation field.

The case of linearly polarized dressing field is distin-
guished because the time-dependent Schrődinger equation at
K (or K ′) point for k = 0 could be solved analytically. This
implies that our result regarding the absence of an energy
band gap is precise and, more importantly, wave functions
with explicit time dependence could be obtained in contrast
to the previous case for elliptically polarized light.

The detailed derivation of the quasienergy dispersions and
the wave function for the linearly polarized dressing field
is provided in Appendix B. Specifically, the τ -independent
dressed-state quasiparticle energy dispersions are found as

ε
(L)
d,γ=0(k| φ) = 0 and

ε
(L)
d,γ=±1(k| φ) = ±h̄vF k

√
A(θk | φ) (26)

with an angular function

A(θk | φ) = cos2 θk + {[J0(2λ0) cos(2φ)]2

+ [J0(λ0) sin(2φ)]2} sin2 θk (27)

to highlight field-induced anisotropy. The dispersion relations
for graphene, obtained in Ref. [34], are easily recovered by
setting φ to zero. In the opposite limit for a dice lattice with
φ = π/4, only the second term J0(λ0) sin(2φ) in Eq. (27) is
kept, so that the effect of electron-field interaction becomes
the weakest with respect to all φ values.

Since the off-resonant radiation with λ0 = c0/h̄ω 	 1 is
considered, the zeroth-order Bessel function of the first kind
could be expanded up to the order of O(λ2

0), and therefore the
dispersions of conduction and valence bands in Eq. (26) are
further approximated as

ε
(L)
d,γ=±1(k| φ) � ±h̄vF k

{
1 − λ2

0

8
[5 + 3 cos(4φ)] sin2 θk

}
.

(28)

Even for an infinitesimal coupling constant λ0, the anisotropy,
and therefore the difference in Fermi velocities along the kx

and ky directions, becomes the largest for graphene (φ = 0)
and the smallest for a dice lattice (φ = π/4).

Most importantly, we find the flat band ε
(L)
d,γ=0(k| φ) = 0

is not affected under linearly polarized irradiation for all
wave vectors k. The valence and conduction bands, on the
other hand, display anisotropy with respect to k. As a result,
the standard right-circular Dirac cone is transformed into
an elliptic cone with its major axis parallel to the direction
of incident light-field polarization. We also notice that the
complete electron-hole symmetry of the upper and lower
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cones is preserved and there exists no energy gap between
the valence and conduction bands. These features are quite
similar to corresponding results of graphene [34]. However,
an important feature comes from the φ dependence in k
dispersion of ε

(L)
d,γ=±1(k| φ). As demonstrated in Fig. 5, the

significance of induced anisotropy depends on the chosen
parameter φ.

After a lengthy calculation as presented in Appendix B,
the two wave functions, corresponding to the valence and
conduction band energies with γ = ±1, are as follows:

�
γ=±1
d (k, t | τ ) = e∓ivF k f1(θk )t f1(θk ) + cos θk

4 f1(θk )

⎧⎨
⎩e±izλ(t )

⎡
⎣ τ

±√
2

τ

⎤
⎦− 2iJ0(λ0) sin θk

f1(θk ) + cos θk

⎡
⎣ 1

0
−1

⎤
⎦

−
[ J0(λ0) sin θk

f1(θk ) + cos θk

]2
⎡
⎣ τ

∓√
2

τ

⎤
⎦ e∓izλ(t )

⎫⎬
⎭ , (29)

where

f1(θk ) = f (θk| φ = π/4) =
√

cos2 θk + sin2 θk J 2
0 (λ0) (30)

and zλ(t ) = λ0 sin(ωt ). The wave function in Eq. (29) at t = 0 can be further simplified as

�
γ=±1
d (λ0, k) = 1

2

⎡
⎣τe−i�1(θk| τ )

γ
√

2
τei�1(θk| τ )

⎤
⎦ ,

(31)

�1(θk| τ ) = 2 arctan

{
τ

J0(λ0) sin θk

f1(θk ) + cos θk

}
� τ

{
θk − λ2

0

8
sin2(2θk ) + · · ·

}
.

The two components of the wave function in Eq. (31) are identical to each other, except for a different phase, similar to that for
noninteracting dice lattice in Eq. (2) with φ = π/4. Here, the renormalized phase �1(θk| τ ) contains the leading-order correction
proportional to the intensity of imposed radiation.

The remaining wave function for the flat band with γ = 0 is given by

�
γ=0
d (k, t | τ ) = 1√

2 f1(θk )

⎧⎨
⎩− iτ

2
sin θk J0(λ0)

∑
α=±1

eiαzλ(t )

⎡
⎣ 1√

2 ατ

1

⎤
⎦+ cos θk

⎡
⎣ 1

0
−1

⎤
⎦
⎫⎬
⎭ . (32)

Here, the wave function in Eq. (32) also consists of two nonzero components of equal amplitude but with a different phase
�2(θk| τ ) in comparison with Eq. (3). Similarly, the wave function in Eq. (32) at t = 0 can be simply written as

�
γ=0
d (k| τ ) = 1√

2

⎡
⎣e−i�2(θk| τ )

0
−ei�2(θk| τ )

⎤
⎦ ,

(33)

�2(θk| τ ) = arctan {τJ0(λ0) tan θk} � τ

{
θk − λ2

0

2
sin(2θk ) + · · ·

}
.

It is interesting to compare our current results for a dice lattice with the corresponding wave function for graphene in Ref.
[34]. The Dirac electron in graphene, interacting with a linearly polarized and off-resonant dressing field, acquires the following
energy dispersions:

ε
γ=±1
d (k) = γ h̄vF k f0(θk ) ,

(34)

f0(θk ) =
√

cos2 θk + J 2
0 (2λ0) sin2 θk,

where the anisotropy factor f0(θk ) for graphene is equivalent to our derived expression in Eq. (B22) with φ = 0. This is an
opposite limit for the angular dependence in Eq. (B22) compared to the dice lattice with φ = π/4 and given by Eq. (B24). In
addition, the two corresponding wave functions for graphene at t = 0 take the form

�
γ=±1
d (k) = 1√

2

[
1

γ ei�0(θk )

]
,

(35)

�0(θk ) = 2 arctan

{ J0(λ0) sin θk

cos θk + f0(θk )

}
� θk − λ2

0

2
sin(2θk ) + · · · .

205135-8



PECULIAR ELECTRONIC STATES, SYMMETRIES, AND … PHYSICAL REVIEW B 99, 205135 (2019)

As expected for a distorted anisotropic Dirac cone, its wave function in Eq. (35) possesses an equal amplitude for two
components, while their renormalized phase factor �0(θk ) depends on the interaction coefficient λ0.

For the most general case of an α-T3 lattice, its wave function is obtained as

�
γ=±1
d (k| τ, φ) = 1√

N1(k| τ, φ)
e∓ivF k f (θk| φ)t

×
⎧⎨
⎩ r11(k| φ)√

2

⎡
⎣τ cos φ

±1
τ sin φ

⎤
⎦ e±izλ(t ) + r12(k| τ, φ)

⎡
⎣ sin φ

0
− cos φ

⎤
⎦+ r13(k| τ, φ)√

2

⎡
⎣τ cos φ

∓1
τ sin φ

⎤
⎦ e∓izλ(t )

⎫⎬
⎭ , (36)

where the coefficients r11(k| φ), r12(k| τ, φ), r13(k| τ, φ), and the normalization function N1(k| τ, φ) are defined in Appendix B.
For the flat band with γ = 0, the wave function takes the form

�
γ=0
d (k| τ, φ) = 1√

2N0(k| φ)

⎧⎨
⎩ r01(k| φ) τ√

2

∑
α=±1

eiαzλ(t )

⎡
⎣cos φ

ατ

sin φ

⎤
⎦+ r02(k| φ)

⎡
⎣ sin φ

0
− cos φ

⎤
⎦
⎫⎬
⎭ , (37)

where

r01(k| φ) = −i sin(2φ) sin θk J0(λ0) ,
(38)

r02(k| φ) =
√

2 [cos θk + iτ cos(2φ) sin θk J0(2λ0)] .

The components of the wave function in Eq. (37) are not equal to each other since this condition does not hold true even in the
absence of irradiation, while all the previously obtained wave functions have components which differ only by a phase factor.
This becomes explicit once the components of this wave function are reformulated as

�0
d (λ0, k) = 1√

N 0
(φ)(λ0, θk )

⎧⎨
⎩

sin φ
[

cos θk − iτ sin θk X
(φ)
θ (λ0)

]
0

− cos φ
{
cos θk + iτ sin θk

[
2J0(λ0) − X (φ)

θ (λ0)
]}
⎫⎬
⎭ ,

X (φ)
θ (λ0) = 2 cos2 φ J0(λ0) − cos(2φ)J0(2λ0) � 1 − λ2

0

4
[1 − 3 cos(2φ)],

2J0(λ0) − X (φ)
θ (λ0) � 1 − λ2

0

4
[1 + 3 cos(2φ)] , (39)

N 0
(φ)(λ0, θk ) = cos2 θk + sin2 θk

( [
sin φ X (φ)

θ (λ0)
]2 + { cos φ

[
2J0(λ0) − X (φ)

θ (λ0)
]}2 )

� 1 − λ2
0

4
sin2 θk[5 + 3 cos(4φ)] + · · · .

Here, for the most straightforward case of a flat band, we can explicitly demonstrate how the wave function is changed in the
presence of linearly polarized irradiation, yielding

�
γ=0
d (λ0, k) � 1√

N 0
(φ)(λ0, θk )

⎛
⎝
⎡
⎣ sin φ e−iτθk

0
− cos φ eiτθk

⎤
⎦+ iτ

λ2
0

4
sin θk

⎧⎨
⎩

sin φ [1 − 3 cos(2φ)]
0

cos φ [1 + 3 cos(2φ)]

⎫⎬
⎭+ ...

⎞
⎠ ,

(40)

N 0
(φ)(λ0, θk ) � 1 − λ2

0

4
sin2 θk{5 + 3 cos(4φ)} + ... .

Obviously, the components of this wave function are not
equal to each other, in contrast to all previously considered
cases involving a linearly polarized field. The way they are
modified in the presence of electron-photon interaction is
not correlated with their initial values. The normalization
factors for all obtained wave functions both in Eqs. (29) and
(32) and in Eqs. (36) and (37) do not depend on time. It is
quite simple to show that in the case of zero electron-light
interaction λ0 → 0, the wave function in Eq. (36) is equivalent
to that of nonirradiated α-T3, given by Eq. (2). However, one
should also keep in mind that the results for the wave-function

components are determined only to a finite complex phase
factor.

III. FIELD-INDUCED MODIFICATION OF THE BERRY
PHASES, CONNECTIONS, AND CURVATURES

As an application of our derived photon-dressed electronic
states in Sec. II, we explore how the Berry phase of an α-T3

or a dice lattice is affected in the presence of an off-resonance
dressing field with different polarizations. Specifically, we
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are interested in studying its dependence on geometry α and
coupling λ0 parameters.

We are also going to calculate the Berry connections and
curvatures in vareious α-T3 materials and demonstrate that for
the case of linearly polarized field, the Chern number always
remains zero, and a topological phase transition between a
semimetal and Haldane insulator does not take place.

The Berry phase is defined as a geometrical phase dif-
ference, which a purely quantum system receives over a
complete cycle of adiabatic, or isoenergetic evolution [54–56].
All physically meaningful parameters, except for a quantum
phase, are expected to return to their initial values over
such a loop-like transformation. The Berry phase is logically
connected to a jump of the Aharonov and Bohm phase for a
charged particle moving along an arbitrary closed path, which
partially includes either electrostatic or magnetic field. Such a
topological phase can strongly affect transport properties and
lead to a finite conductivity at the band crossing even if the
density of propagating waves at this point vanishes [57].

As a first step to this study, we are going to carry out
a detailed investigation of the time-independent eigenstates,
corresponding to the distorted Dirac cone due to strong inter-
action of electrons with an optical field. This could lead to
either opening a band gap under an elliptically or circularly
polarized field or creating an anisotropy in the dispersion
relations due to the presence of linearly polarized light. While
in the former case the energy dispersions in Eq. (18) are
obtained by using a time-independent effective perturbation
Hamiltonian in Eq. (10), the wave functions for the latter
case involving linearly polarized light acquire a complete time
dependence and therefore need to be clarified further. Such
a picture could be regarded as a simplified model with an
additional �̂z Hamiltonian term for graphene under circularly
polarized light [17], which provides some insights to our
considered phenomena including irradiated graphene [34]. We
will suppress the time dependence in Eqs. (36) and (37) by
using their expressions at t = 0 for all further computations.
This allows us to address a wider class of field-induced
electronic states, not necessarily equivalent to dressed states
under conditions discussed above.

In most cases, the time dependence in the obtained eigen-
states, such as Eqs. (36) and (37), takes an exponential form
exp[±iλ0 sin(ωt )] in some of their components. For our case
with an off-resonant field λ0 	 1, this dependence would
produce noticeable modification to these wave function com-
ponents. Surprisingly, the normalization factors N0,1(k) for
all types of α-T3 materials under linearly polarized irradia-
tion, including the dice lattice limit, do not depend on time.
Another direct time dependence is in the initial phase factor
exp[∓ivF kt f (θk )] of Eqs. (36) and (29), which does not affect
most of its physical properties but leads to a linear increase of
its Berry phase ∝vF kt f (θk ).

The described situation of the time dependence above
is strikingly similar to the electrostatic Aharonov-Bohm in-
terference effect [58]. The wave function of a conventional
Schrődinger particle of energy E has a phase factor exp[iφ]
with φ = −Et/h̄. If such a particle is confined in the re-
gion with a constant electrostatic potential V0 and then a
zero electrostatic field, this potential produces an additional
phase φ(t ) − φ(t = 0) = −eV0t/h̄ to its eigenstate, which can

influence actual properties of the particle and the outcome of
a double-slit interference experiment.

As is well known, we can write down a general expression
for Berry phase �B(γ , k| τ, φ) as [55,56]

�B(γ , k| τ, φ) = −i
∮
C

dk · [�γ

d (k| τ, φ)
]†

×∇k�
γ

d (k| τ, φ) , (41)

where C represents an arbitrary closed path within a lattice
plane. For the case of nonirradiated wave functions of an
α-T3 lattice presented in Eqs. (2) and (3), we immediately
find the results as �B(γ = ±1, k| τ, φ) = τπ cos(2φ) for
the conduction and valence bands and �B(γ = 0, k| τ, φ) =
2πτ cos(2φ) for the flat band at two valleys. These conclu-
sions do not depend on the choice of a closed curve C, which
in general cannot be true since the wave function components
are k dependent. We also remark that the Berry phase is gauge
invariant and its value is unique up to multiples of ±2π .

The details on how to evaluate the integral with respect
to k in Eq. (41) using polar coordinates are provided in
Appendix C for various types of incoming light polarization.
In the case of circularly polarized light, components of the
wave function are only k dependent except for e±iθk factors,
which are similar to those for the nonirradiated eigenstates in
Eqs. (2) and (3). Therefore, the path of such isoenergetic linear
integration is a circle of radius k0. As a result, the Berry phase
for a dice lattice irradiated by circularly polarized light takes
the analytical expression as

�
(c)
B (γ , k0| τ = 1) = C2

1 (γ , k0) − 1

N (γ , k0)

∫ 2π

0
dθk

� π
c0

h̄vF k(0)
λ0

(
γ + c0

h̄vF k0
λ0

)
. (42)

These Berry phases are not symmetric, but opposite for
electron and hole states except for the first-order term in
the λ0 expansion. However, this expression is symmetric for
valleys, i.e., �

(c)
B (γ , k0| τ = −1) = −�

(c)
B (γ , k0| τ = 1), as

seen in Fig. 6(a), which is in analogy with the dice lattice
in the absence of irradiation [56]. Even for a dice lattice
which has a zero Berry phase, a finite Berry phase can still be
established by an elliptically or a circularly polarized dressing
field which opens an energy gap for the dice lattice. Although
the dispersions in a dice lattice are symmetric, the wave
function components and therefore the Berry phases do not
share this property. The corresponding phase for the flat band
remains zero with respect to valley index and intensity of
incoming radiation.

Finally, we have numerically calculated the Berry phase for
the α-T3 lattice with an arbitrary φ in the presence of linearly
polarized radiation. Our numerical results are presented in
Fig. 6. Figures 6(c) and 6(e) represent the results for the flat
band, while the three right plots [Figs. 6(b), 6(d) and 6(f)] are
for the conduction band. In both cases, the phase is zero for a
dice lattice, disregarding the light intensity or the parameters
k0 of isoenergetic elliptic integral path so that all the curves in
Fig. 6(b) approach zero in the limit of α → 1, which confirms
our analytical result in Appendix C for a dice lattice under a
linearly polarized dressing field. The results for the flat band
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FIG. 6. Numerically calculated Berry phase �
(e)
B (γ , k| τ, φ)

from Eq. (41) for irradiated α-T3 lattices at τ = 1 valley. Panel
(a) corresponds to circularly polarized light (labeled by c), while
panels (b)–(f) correspond to linearly polarized light (labeled by L).
Panel (a) presents φ

(c)
B (γ , |k| = k0| φ) having β = 1 with φ = π/4

for γ = 1 (three positive curves), γ = 0 (middle red curve), and γ =
−1 (three negative curves), where k0/kF = 0.5, 0.6, 0.7 are selected
for green, black, and blue curves. Berry phases �

(L)
B (γ , k| φ) having

β = γ = 0 in plot (c) with k0/kF ≡ 0.5 and plot (e) with φ ≡ π/4
on the left display λ0 dependence for φ = 30o (green), 35o (blue),
40o (black), and 45o (red) in panel (c) and for k0/kF = 0.5 (green),
k0/kF = 0.6 (black), and k0/kF = 0.7 (blue) in panel (e). All the right
panels [(b), (d), (f)] are for β = 0 and γ = 1, where k0/kF = 0.5
is chosen in panel (b) to show λ0 dependence for φ = 25o (green),
35o (blue), 40o (black), and 45o (red); k0/kF = 0.5 is chosen in
panel (d) to show α dependence for λ0 = 0.1 (green), 0.2 (blue), 0.3
(black), and 0.4 (red); and φ = π/4 is chosen in panel (f) to show
λ0 dependence for k0/kF = 0.5 (green), 0.55 (blue), 0.6 (black), and
0.65 (red).

demonstrate a stronger dependence on the coupling constant,
as well as on the parameters k0. As we see from Fig. 6(d),
the λ0 dependence of the Berry phase becomes nonmonotonic
for various α values. Such unique dependence has not been
reported for the case of circularly polarized irradiation.

Recently, topological effects in connection with various
optical phenomena have become a crucial research subject
for photonic crystals, quasicrystals, and metamaterials. In

Ref. [59], the authors discussed creating interface supported
new states of light based on topologies in wave-vector space
and unidirectional waveguides that allow unimpeded propaga-
tion of light around large imperfections in a photonic crystal.
An investigation on longitudinally driven photonic lattices in
connection with Lieb and kagome lattices, based on a tight-
binding model, has been reported in Ref. [60]. A topological
phase transition in α-T3 materials under a circularly polarized
irradiation was also addressed in a recent paper [61]. Conse-
quently, in the present calculation, we will focus solely on a
linear polarization for incoming light. The Berry connection
vector field Aγ

τ,φ (k, λ0) and the Berry curvature �
γ

τ,φ (k, λ0)
are defined as

Aγ

τ,φ (k, λ0) ≡ 〈�γ

d (k, λ0| τ, φ)
∣∣ i∇k

∣∣�γ

d (k, λ0| τ, φ)
〉
,

�
γ

τ,φ (k, λ0) ≡ ∇k × Aγ

τ,φ (k, λ0) . (43)

In the absence of incident light, the Berry connections
for the cone bands with γ = ±1 are Aγ=±1

τ,φ (k, λ0) =
+(τ/2) cos(2φ) ∇kθk and for the flat band are Aγ=0

τ,φ (k, λ0) =
−2Aγ=±1

τ,φ (k, λ0). Here, the ×2 difference comes from the
normalization of different wave functions.

In Appendix C, we show that without external
irradiation [52]

�
γ=±1
τ,φ (k, λ0 = 0) = τπ cos(2φ) δ(k) ,

(44)
�

γ=0
τ,φ (k, λ0 = 0) = −2τπ cos(2φ) δ(k).

The two-dimensional δ function δ(k) of a vector k has a
dimension of 1/k2 and is expressed as δ(k) = δ(kx ) δ(ky) =
1/(2πk) δ(k) if there is no angular dependence. Therefore, the
Berry connection for a dice lattice will always remain zero
even in the presence of a linearly polarized dressing field.

Now let us address a general case for α-T3 lattices
with an arbitrary α value within the range of 0 < α < 1.
Here, however, the absolute values of nonzero components
of a wave function are no longer equal to each other, not
just different phase factors. In this general case, the wave
function acquires a form �

γ

d (λ0, k) = {c γ

1 , c γ

2 , c γ

3 }T with its
three components c γ

i ≡ c γ

i (τ, φ | θk, λ0) for i = 1, 2, 3.
Therefore, the Berry field for γ = 0 is calculated as

Aγ=0
τ,φ (k, λ0) = 1

k
F γ=0(τ, φ | θk, λ0) êθ ,

(45)

F γ=0(τ, φ | θk, λ0) =
3∑

i=1

(
c γ=0

i

)∗ ∂c γ=0
i

dθk
.

For this case, the derivation is greatly simplified because
each component and the normalization factor of the states
(including those for γ = ±1) only depend on the angle θk.
The next step is the derivative of Aγ=0

τ,φ (k, λ0) with respect
to k, which leads to an additional δ function, while the k-
dependent term is kept unchanged.

Finally, the Berry curvature is found to be

�
γ=0
τ,φ (k, λ0) = 1

k

∂

∂k

[
k
(
Aγ=0

−,φ

)
θ

]
êz

= δ(k)

k
F γ=0(τ, φ | θk, λ0) êz. (46)
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FIG. 7. Angular factor F γ=0(τ, φ | θk, λ0) from Eq. (45) for the
flat band with γ = 0 at the τ = 1 valley under a finite electron-
light interaction 0 < λ0 	 1. Panel (a) shows the dependence of
F γ=0 on the geometry phase φ at θk = π/8, where each curve
represents different λ0 values. Panel (b) demonstrates its dependence
on λ0 at θk = π/8 for various phases φ. Contour plots (c) and
(d) display F γ=0 as a function of both angle θk and phase φ, where
λ0 = 0.05 and λ0 = 0.25 are assumed, respectively, in panels (c)
and (d).

Similar results can be obtained for γ = ±1 wave
functions. Since there is an angular dependence and
F γ (τ, φ | θk, λ0) becomes anisotropic in Eq. (45), the identity
δ(k)/k = 2πδ(k) cannot be applied to F γ (τ, φ | θk, λ0)
anymore.

We see from Figs. 7 and 8 that the obtained angular
factor is only slightly modified by the presence of a dress-
ing field because we only consider the weak-coupling case
with λ0 	 1. This agrees with the assumption that the field

FIG. 8. Calculated F γ=1(τ, φ | θk, λ0) for τ = 1 under a finite
electron-light interaction, where all the parameters, panels, and
curves are presented in the same way as in Fig. 7.

frequency lies within the off-resonance region. In addition,
the anisotropic dependence of F on θk, as well as in other
observable quantities, appears only under an irradiation since
its isotropic dependence in the λ0 → 0 limit can be verified
directly from Eq. (44). From panels (a) and (b) in both Figs. 7
and 8, we can further verify F γ = 0 for dice lattice (φ =
π/4) even with an electron-light interaction. The results for
γ = −1 are not shown here since they are nearly the same
as those for γ = 1 in Fig. 8. The φ dependence becomes
visible only for φ close to 0 or π/4 and small θk with an
enhanced electron-light coupling in Figs. 7(d) and 8(d). For
λ0 → 0, on the other hand, the results for γ = ±1 become
half of that for γ = 0 with an opposite sign, as predicted by
Eq. (44).

For all three bands and allowable intensities of an imposed
irradiation, the most important observed feature is that the
Berry curvature always retains the valley symmetry; i.e.,
�

γ

τ,φ (k, λ0) is proportional to τ , just as we have found in
Eq. (44) for a nonirradiated α-T3. In contrast to the previously
studied case, the current work clearly indicates that a linearly
polarized dressing field cannot change the Chern number
of α-T3 materials due to its conserved valley symmetry.
This conclusion can be compared with bilayer graphene as
discussed in Ref. [62]. However, our results for both Berry
connection and curvature are very useful for exploring the
electronic properties of crystalline solids [55]. We also need
to point out that in the case of linearly polarized irradiation
there is no breaking of time-reversal symmetry.

Now we are ready to analyze the way in which the
topological properties of α-T3 materials are modified by a
dressing field. For all types of irradiation which open a finite
band gap, a semimetal is transformed into a Chern insulator,
accompanied by a phase transition. This includes the case for
a circularly polarized irradiation with β = 1, as described in
the above mentioned arXiv preprint by Dey and Ghosh [61],
and the case for a general elliptic polarization with 0 < β < 1,
where 0 < β < 1 is the ratio of field strengths along the
two axes of a polarization ellipse, introduced in Eq. (4) and
discussed below. Since two obtained band gaps, given by
Eqs. (11) and (12), are proportional to βc0, the Chern number
would always be varied, as long as at least one or two gaps
occur in the energy dispersions of a material considered.

On the contrary, in the opposite limit of β → 0 for a
linearly polarized dressing field, the Chern number can not
be changed and remains to be zero due to the valley symmetry
remained in the calculated Berry curvature. Using this unique
feature, one is able to manage a tunable topological phase
transition in an actual optoelectronic device.

IV. CONCLUDING REMARKS

In this paper, we have executed a thorough investiga-
tion into electron-photon dressed states in α-T3 lattices
for all possible polarizations (elliptical, circular, and lin-
ear) of the impinging radiation. We have derived closed-
form expressions and analytic approximations of the quasi-
particle energy dispersions for all types of such optical
states.

We have demonstrated that the geometry phase φ or the
hopping-scale parameter α plays a crucial role and affects the
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low-energy band structure for various types of polarizations of
incident light. The obtained dressed states demonstrate both
similarity and strong distinction compared to those earlier
results obtained for graphene or buckled honeycomb lattices.
As an example, elliptically polarized irradiation is connected
to opening a band gap in the energy dispersions of α-T3

lattices, as well as symmetry breaking between the valence
and conduction bands. For the case with a linearly polarized
light field, the parameter α has also been shown to modify sig-
nificantly the radiation-induced anisotropy and the angular de-
pendence of the dressed quasiparticle dispersions in k space.
Generally speaking, we find that the band-structure anisotropy
due to electron-light coupling becomes the strongest for
graphene with α → 0 and the weakest for a dice lattice with
α = 1 for both circular and linear polarizations of incoming
light.

We have also found that for an elliptically polarized field
applied to α-T3 lattices with α �= 1, its low-energy band
structure, including opened band gaps, explicitly depends on
the valley indexes τ = ±1. This gives rise to valleytron-
ics applications, which now could be developed based on
irradiated α-T3 lattices and enables electrically controlled
valley filtering as a milestone for such technologies and
applications.

In addition to calculated energy dispersion relations, we
have analytically obtained the corresponding wave function
for electrons dressed by an optical field with different po-
larizations. For elliptically polarized light, the components
of eigenstates obtained are shown to be inequivalent beyond
a simple phase factor as seen from Eqs. (2) and (3) in the
absence of irradiation. Instead, these components depend on
both the wave vector k and the band index γ . As a result, the
modifications to the eigenstates of the valence, conduction,
and flat bands are completely different. Our current study
presents the first explicit expression for the dressed-state wave
function of a dice lattice with an opened energy gap under
external irradiation.

Unlike the previous discussion for circularly polarized
irradiation, our obtained eigenvalue equation, including a
linearly polarized dressing field, permits an exact solution for
energy dispersions with respect to k. This leads us to the
following conclusions: (i) There is no energy gap between
the conduction and valence bands; (ii) the flat band stays
forever at zero energy; and (iii) a complete symmetry between
conduction and valence bands is retained. However, the pres-
ence of linearly polarized dressing induces an α-dependent
anisotropy of the Dirac cone in k space, similar to graphene.
Therefore, we are able to tune the anisotropy and angular
dependence of the energy band structure by adjusting the
hopping-scale parameter α. Although some discussions on the
breaking of band symmetry in the irradiated α-T3 model were
reported earlier in Ref. [2], we reveal a number of other crucial
symmetries in the dressed states, and more importantly, these
symmetries could be either broken or retained depending on
the type and intensity of the selected dressing field and on the
value of hopping-scale parameter α.

Throughout the paper, we have continually compared our
results with the limiting case of a dice lattice for which α =
1 or φ = π/4. Because dice lattices were discovered much
earlier than α-T3 and could be synthesized in a relative easy

way, there has already been a substantial amount of research
effort devoted specifically to the dice, such as Ref. [1]. In
contrast with general α-T3 materials, the dice lattice preserves
the valence and conduction band symmetry under irradiation
of any polarization. Only because of this unusual property
could the electronic states be presented in such a concise way.
Our results suggest that in the presence of a linearly polar-
ized irradiation, each component of the wave function only
receives an additional phase depending on the electron-light
coupling. Therefore, the actual complex phase is no longer
equivalent to the wave vector angle θk, as shown in Eq. (33).
Consequently, all observables, such as, electron momentum,
current, etc., will be modified in a specific and predictable
way.

The wave functions are shown to be drastically different
for the dice lattice (α = 1) and all other possible α-T3 lattices
(α �= 1). In the former case, the wave function components
of such a dressed state are equivalent and differ only by a
phase factor, which are similar to anisotropic Dirac fermions
in few-layer black phosphorus [35] and expected to reveal
a non-head-on asymmetric Klein paradox. In contrast, the
wave function components for arbitrary 0 < α < 1 differ from
each other beyond a simple phase factor, which will bring in
considerable modifications to tunneling and transport prop-
erties in general α-T3 lattices. In particular, to highlight such
imbalance in components, we also present explicit initial wave
functions at t = 0 to elucidate a wider class of phenomena
pertaining to light-induced distortions in Dirac cone disper-
sions for general α-T3 lattices.

We investigates the Berry phases of dressed electron eigen-
states in connection with their unusual composition and sym-
metric properties. The Berry phase is shown to be a specific
quantum characteristic of an electronic state, which is greatly
sensitive to a particle’s environment and adiabatic change of
external fields or their potentials.

Berry phases are directly related to the wave function’s
k dependence, its components, and the phase difference be-
tween them. For instance, the phases corresponding to the
valence and conduction bands for a gap-opening elliptically
or circularly polarized irradiation for the simplest dice lattice
are not just different by an opposite but are quite differ-
ent from their energy dispersions. We have uncovered the
complex connection between dressed states of conduction
and valence bands and demonstrated a zero phase for the
flat-band electronic state. For a dice lattice with φ = π/4,
the Berry phases are all zero for three bands even in the
presence of linearly polarized light. For all other values of
φ �= π/4, on the other hand, we have found moderate depen-
dence of Berry phase on electron-light coupling λ0, hopping-
scale parameter α, and the selection of closed integration
path as expected from the Aharonov-Bohm effect. We have
noted that modified Berry phases by specific electron-light
coupled states can affect some important physical proper-
ties of a system, e.g., results of a double-slit interference
experiment.

We have also calculated the Berry connections and curva-
tures for the case of linearly polarized irradiation and demon-
strated that for linear polarization, which does not lead to the
creation of a finite band gap, the Chern numbers remain to be
zero and topological phase transition will not occur.

205135-13



IUROV, GUMBS, AND HUANG PHYSICAL REVIEW B 99, 205135 (2019)

In closing, by studying the band structure of such dressed
electron states, we have developed a useful methodology for
laser-induced engineering of energy bands and dressed elec-
tronic states, as well as tuning most significant characteristics
of α-T3 innovative materials. Our results in this paper are
expected to have a profound influence on the fabrication of
modern optoelectronic and photonic devices.

ACKNOWLEDGMENTS

D.H. would like to acknowledge the support from the Air
Force Office of Scientific Research (AFOSR). D.H. is also
supported by the DoD Laboratory-University Collaborative
Initiative (LUCI) program. G.G. would like to acknowledge
the support from the Air Force Research Laboratory (AFRL)
through grant FA9453-18-1-0100, award FA2386-18-1-0120.

APPENDIX A: ELECTRON-FIELD DRESSED STATES FOR ELLIPTICALLY AND CIRCULARLY POLARIZATIONS
APPLIED TO A DICE LATTICE (φ = π/4)

For a dice lattice, the time-independent perturbation operator introduced in Eq. (9) is

P̂ τ = − τc0

2
√

2

∑
α=±

(1 − ατβ ) �̂(1)
α , (A1)

where we have defined

�̂
(1)
+ =

⎡
⎣0

0 Î2×2

0 0 0

⎤
⎦ =

⎡
⎣0 1 0

0 0 1
0 0 0

⎤
⎦ and �̂

(1)
− =

⎡
⎣0 0 0

Î2×2
0
0

⎤
⎦ =

⎡
⎣0 0 0

1 0 0
0 1 0

⎤
⎦ . (A2)

The operators �̂
(1)
± can be built from the spin-1 matrices

�̂(1)
x = 1√

2

⎡
⎣0 1 0

1 0 1
0 1 0

⎤
⎦ and �̂(1)

y = 1√
2

⎡
⎣0 −i 0

i 0 −i
0 i 0

⎤
⎦ , (A3)

and �̂
(1)
± = �̂(1)

x ± i�̂(1)
y , similar to the case of 2 × 2 Pauli matrices for spin 1/2 used for graphene. Moreover, the energy gap

exists if a �̂(1)
z matrix is present in the Hamiltonian. For our case, this matrix is in the form

�̂(1)
z = 1√

2

⎡
⎣1 0 0

0 0 0
0 0 −1

⎤
⎦ . (A4)

Using the above results in Eqs. (A1)–(A4), from Eq. (8) we get the effective perturbation Hamiltonian presented in Eq. (10):

Ĥ(e)
eff (k| τ ) = h̄vF√

2

∑
α=±

(τkx − iαky)�(1)
α − τβ

2
λ0 �̂(1)

z + τ h̄vF

4
√

2λ2
0

∑
α=±

(β2τkx − iαky) �(1)
α . (A5)

Furthermore, for the Hamiltonian in Eq. (A5), we arrive at the following eigenvalue equation for energy-band dispersions
ε

(e)
d (k| τ ):

[
ε

(e)
d (k| τ )

]3 −
(

βc0λ0

2

)2

ε
(e)
d (k| τ ) − (h̄vF )2

⎧⎨
⎩
[

1 +
(

βλ0

2

)2
]2

k2
x +

[
1 +

(
λ0

2

)2
]2

k2
y

⎫⎬
⎭ ε

(e)
d (k| τ ) = 0 . (A6)

Here, we see the dispersions ε
(e)
d (k| τ ) acquire a complete electron-hole symmetry and a renormalized isotropic Fermi velocity v̄F

given by

v̄F = vF

[
1 + λ2

0

2

(
1 + λ2

0

8

)]
= v f

[
1 +

(
λ0

2

)2
]2

, (A7)

and we will omit the λ0 dependence hereafter in other expressions for simplicity.

APPENDIX B: LINEARLY POLARIZED IRRADIATION ON A α-T3 LATTICE

First, the total Hamiltonian of a quasiparticle interacting with linearly polarized field is

Ĥ(k, t | τ, φ) = Ĥ
φ

τ (k) + Ĥ
(L)
A (t | τ, φ) , (B1)
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which contains an additional time-dependent interaction term

Ĥ
(L)
A (t | τ, φ) = −τc0 cos(ωt )

⎡
⎣ 0 cos φ 0

cos φ 0 sin φ

0 sin φ 0

⎤
⎦ , (B2)

where the coupling amplitude c0 = eE0vF /ω is identical to that in the case of elliptically or circularly polarized light. Therefore,

for k = 0 and then Ĥ
φ

τ (k) = 0, the Schrödinger equation becomes

ih̄
dψ0(t | τ, φ)

dt
= Ĥ

(L)
A (t | τ, φ) ψ0(t | τ, φ) . (B3)

The solutions of Eq. (B3) for the valence and conduction band edges with γ = ±1 at k = 0 are

ψ
γ=±1
0 (t | τ, φ) = 1√

2

⎡
⎣τ cos φ

±1
τ sin φ

⎤
⎦ e±iλ0 sin(ωt ) , (B4)

and for the flat band with γ = 0 are

ψ
γ=0
0 (t | τ, φ) =

⎡
⎣ sin φ

0
− cos φ

⎤
⎦ . (B5)

The wave functions in Eqs. (B4) and (B5) are obviously orthonormal to each other and these expressions respectively resemble
the k-dependent results in Eqs. (2) and (3) in the absence of light interaction.

The next step is to extend our solution for k = 0 to a finite wave vector k. For this purpose, we would solve the following
time-dependent Schrödinger equation

ih̄
∂

∂t
�(k, t | τ, φ) = Ĥ(k, t | τ, φ) �(k, t | τ, φ) (B6)

for the full Hamiltonian in Eq. (B1). We look for its solution in the following expansion form

�(k, t | τ, φ) =
∑

γ

F (γ )(k, t | τ, φ) ψ
γ

0 (t | τ, φ) , (B7)

in which γ = 0, ±1 and the unknown time- and k-dependent expansion coefficients F (γ )(k, t ) need to be determined. By using
Eq. (B3) for k = 0 and the orthogonality of ψ

γ

0 (t | τ, φ), Eq. (B6) can be rewritten perturbatively as

ih̄
∂

∂t
F (γ )(k, t | τ, φ) =

∑
ρ

F (ρ)(k, t | τ, φ)
〈
ψ

γ

0 (t | τ, φ)
∣∣ Ĥφ

τ (k)
∣∣ψρ

0 (t | τ, φ)
〉
. (B8)

This leads to three coupled linear partial-differential equations:

i

vF

∂

∂t
F (∓1) = ∓kx F (∓1) ∓ i√

2
e±izλ(t ) sin(2φ) ky F (0) ∓ ie±2izλ(t ) τ cos(2φ) ky F (±1) ,

(B9)
∂

∂t
F (0) = vF√

2
sin(2φ) ky

∑
α=±1

α e−iαzλ(t ) F (−α) ,

where zλ(t ) = λ0 sin(ωt ), and we omit the k and t dependence in F (γ ) for simplicity. Using the Floquet theorem, we look for
the dressed state in the form of [2,17,34]

F (γ )(k, t | τ, φ) = exp

{
− i

h̄
εd (k| τ, φ) t

} ∞∑
n=−∞

f (γ )
n einωt , (B10)

where εd (k| τ, φ) represents the dressed-state energy dispersion to be decided. The second factor in Eq. (B10) is a periodic
function of time (with the period T0 = 2π/ω), which can be expanded in a Fourier series. A nested exponential function is
traditionally reduced by the Jacobi-Anger series expansion, i.e.,

exp{±ζ sin(ωt )} =
∞∑

m=−∞
Jm(±ζ ) eimωt , (B11)
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where Jm(ζ ) is the Bessel function of the first kind. We will also apply the orthogonality condition for the Fourier expansion
function, namely, ∫ T0

0
dt einωte−imωt = δn,m

for any fixed integer −∞ < m < ∞. As a result, we arrive at the following set of coupled linear algebraic equations, i.e.,{
∓kx − εd (k| τ, φ)

h̄vF
+ lω

}
f (∓1)
l ∓ iky√

2

∞∑
m=−∞

{
sin(2φ) f (0)

l−m Jm(±λ0) +
√

2τ cos(2φ) f (±1)
l−m Jm(±2λ0)

} = 0 ,

(B12){
−εd (k| τ, φ)

h̄vF
+ lω

}
f (0)
l + iky√

2
sin(2φ)

∞∑
m=−∞

∑
α=±1

αJm(−α λ0) f (−α)
l−m = 0 .

Furthermore, we notice that two terms in the front brackets of Eq. (B12) all reduce to lω for l �= 0 since h̄ω � εd (k| τ, φ)
and h̄vF kx,y in the case of off-resonant interaction. Therefore, Eq. (B12) is simplified into

lω f (∓1)
l = ± iky√

2

∞∑
m=−∞

{
sin(2φ) f (0)

l−m Jm(±λ0) +
√

2τ cos(2φ) f (±1)
l−m Jm(±2λ0)

}
,

(B13)

lω f (0)
l = − iky√

2
sin(2φ)

∞∑
m=−∞

∑
α=±1

αJm(−αλ0) f (−α)
l−m .

Equation (B13) cannot be satisfied unless all the expansion coefficients f (0,±1)
l = 0 for l �= 0. For this reason, we will just follow

the standard procedure [17,34] by eliminating all the terms f (0,±1)
l for l �= 0. Once only the l = 0 terms are retained in Eq. (B13)

do we simply get

{
↔
K(k| τ, φ) − εd (k| τ, φ)

h̄vF
I
↔
}

⊗

⎡
⎢⎣

f (−1)
0

f (0)
0

f (1)
0

⎤
⎥⎦ = 0 , (B14)

where I
↔

is the unit matrix, and

↔
K(k| τ, φ) =

⎡
⎢⎣−kx/2 −(iky/

√
2) sin(2φ)J0(λ0) −iτky cos(2φ)J0(2λ0)

0 0 −(iky/
√

2) sin(2φ)J0(λ0)
0 0 kx/2

⎤
⎥⎦ + H.c. (B15)

Here, H.c. means adding a Hermitian conjugate matrix, and we have also used the fact that J0(ξ ) = J0(−ξ ) � 1 − ξ 2/4 for
ξ = λ0 and 2λ0.

Finally, the eigenvalue equation in Eq. (B14) can be easily solved to give

ε
γ=0
d (k| φ) = 0 ,

(B16)
ε

γ=±1
d (k| φ) = ±h̄vF k f (θk| φ) ,

which becomes independent of τ , where f (θk| φ) = √
A(θk| φ), and the angular function is

A(θk| φ) = cos2 θk + {[J0(2λ0) cos(2φ)]2 + [J0(λ0) sin(2φ)]2} sin2 θk . (B17)

Here, A(θk| φ) displays an anisotropy in the energy dispersions due to electron-photon interaction, which reduces to J 2
0 (2λ0)

for graphene [34] with φ = 0. For a dice lattice with φ = π/4, on the other hand, only the term J 2
0 (λ0) remains, which is found

weaker than the electron-photon interaction in graphene.
For off-resonant radiation with low intensity, i.e., λ0 = c0/h̄ω 	 1, the conduction and valence bands energy dispersions are

further approximated as

ε
γ=±1
d (k| φ) � γ h̄vF

√
k2 − λ2

0

4
[5 + 3 cos(4φ)] k2

y . (B18)

The anisotropy and difference between the Fermi velocities in the kx and ky directions for both valence and conduction bands
reach the maximum for graphene with φ = 0 and the minimum for a dice lattice with φ = π/4.
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The corresponding wave function for the dressed-state quasiparticle, obtained from Eq. (B7), is

�
γ=±1
d (k| τ, φ) = 1√

N1(k| τ, φ)
e∓ivF k f (θk|φ)t

⎧⎨
⎩ r11(k| φ)√

2

⎡
⎣τ cos φ

±1
τ sin φ

⎤
⎦e±izλ(t ) + r12(k| τ, φ)

⎡
⎣ sin φ

0
− cos φ

⎤
⎦

+ r13(k| τ, φ)√
2

⎡
⎣τ cos φ

∓1
τ sin φ

⎤
⎦e∓izλ(t )

⎫⎬
⎭ , (B19)

where

r11(k| φ) = 2 f (θk| φ)[ f (θk| φ) + cos θk] − J 2
0 (λ0) sin2 θk sin2(2φ) ,

r12(k| τ, φ) = −i
√

2 sin θk sin(2φ)J0(λ0)[ f (θk| φ) + cos θk + iτ sin θk cos(2φ)J (2λ0)] , (B20)

r13(k| τ, φ) = − sin θk
[
sin θk sin2(2φ)J 2

0 (λ0) + 2iτ f (θk| φ) cos(2φ)J0(2λ0)
]
,

and the normalization factor is just N1(k| τ, φ) = |�γ=±1
d (k| τ, φ)|2.

For the flat band with γ = 0, on the other hand, the wave function takes the form

�
γ=0
d (k| τ, φ) = 1√

2N0(k| φ)

⎧⎨
⎩ r01(k| φ) τ√

2

∑
α=±1

eiαzλ(t )

⎡
⎣cos φ

ατ

sin φ

⎤
⎦+ r02(k| τ, φ)

⎡
⎣ sin φ

0
− cos φ

⎤
⎦
⎫⎬
⎭ , (B21)

where

r01(k| φ) = −i sin(2φ) sin θk J0(λ0) ,
(B22)

r02(k| τ, φ) =
√

2[cos θk + iτ cos(2φ) sin θk J0(2λ0)] .

For the case of a dice lattice with φ = π/4, we get from Eq. (B19) that

�
γ=±1
d (k, t | τ ) = e∓ivF k f1(θk )t f1(θk ) + cos θk

4 f1(θk )

⎧⎨
⎩e±izλ(t )

⎡
⎣ τ

±√
2

τ

⎤
⎦

− 2iJ0(λ0) sin θk

f1(θk ) + cos θk

⎡
⎣ 1

0
−1

⎤
⎦−

( J0(λ0) sin θk

f1(θk ) + cos θk

)2
⎡
⎣ τ

∓√
2

τ

⎤
⎦e∓izλ(t )

⎫⎬
⎭ , (B23)

where

f1(θk ) = f (θk| φ = π/4) =
√

cos2 θk + sin2 θk J 2
0 (λ0) (B24)

and zλ(t ) = λ0 sin(ωt ). The wave function in Eq. (B23) at t = 0 could be presented in a simplified way, yielding

�
γ=±1
d (k| τ ) = 1

2

⎡
⎣τe−i�1(θk| τ )

γ
√

2

τei�1(θk| τ )

⎤
⎦ ,

(B25)

�1(θk| τ ) = 2 arctan

{
τJ0(λ0) sin θk

f1(θk ) + cos θk

}
� τ

{
θk − λ2

0

8
sin2(2θk ) + · · ·

}
.

where the phase �1(θk| τ ) for dice lattices differs from that in graphene by the correction from the weak-coupling constant
λ0 	 1.

The remaining wave function for the flat band with γ = 0 takes the form

�
γ=0
d (k, t | τ ) = 1√

2 f1(θk )

⎧⎨
⎩− iτ

2
sin θk J0(λ0)

∑
α=±1

eiαzλ(t )

⎡
⎣ 1√

2ατ

1

⎤
⎦+ cos θk

⎡
⎣ 1

0
−1

⎤
⎦
⎫⎬
⎭ . (B26)

The structure of the wave function in Eq. (B26) is such that at t = 0 it consists of two components of equal amplitudes and phase
difference �0(θk| τ ) and could be rewritten as

�
γ=0
d (k| τ ) = 1√

2

⎡
⎣e−i�0(θk| τ )

0
−ei�0(θk| τ )

⎤
⎦ ,

(B27)

�0(θk| τ ) = arctan {τJ0(λ0) tan θk} � τ

{
θk − λ2

0

2
sin(2θk ) + · · ·

}
.
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APPENDIX C: DRESSING FIELD-INDUCED MODIFICATIONS TO BERRY PHASES

In this part, we provide details of the Berry phase evaluation for the dressed-state wave functions in Eqs. (19) and (21) with
a circularly polarized field applied to a dice lattice, as well as for the eigenstates in Eqs. (29)–(32) and in Eqs. (36) and (37),
corresponding to various types of α-T3 lattices interacting with a linearly polarized field. We also explain the derivation of the
Berry connection and curvature.

By using polar coordinates, the general expression for gradient ∇k and the vector length element dk can be expressed as [63]

∇k = ∂

∂k
êk + 1

k

∂

∂θk
êθ ,

(C1)
dk = dk êk + k dθk êθ .

As a first step, we must choose the proper closed integration path for Eq. (41). In order to satisfy the requirement of an adiabatic
(or isoenergetic) evolution of a quantum system, during which a Berry phase is accumulated, we have to choose a path with a
constant energy of our quasiparticle, i.e., with a constraint of ε

γ=±1
d (k| τ, φ) = ε0 = const.

For the first case of a dice lattice interacting with circularly polarized light, the energy dispersions in Eq. (18) and the
corresponding eigenstates in Eqs. (19) and (21) are isotropic in k space, so that the required path can be chosen as a circle of
radius k0. While the wave function components and their scalar product in this case still depends on k and θk, the integration
variable in Eq. (41) is simply written as dk = k0 dθk êθ . We begin with the eigenstates in Eq. (19) associated with valence and
conduction bands. For any circular path of radius k0, the Berry phase defined in Eq. (41) is calculated as

�
(c)
B (γ , k0| τ = 1) = C2

1 (γ , k0) − 1

N (γ , k0)

∫ 2π

0
dθk � πγ

c0

h̄vF k0
λ0 . (C2)

In addition, we have �
(c)
B (γ , k0| τ = −1) = −�

(c)
B (γ , k0| τ = 1) for the K ′ valley, similar to the case of a nonirradiated α-T3

lattice. In the absence of the circularly polarized irradiation, however, the Berry phase for a dice lattice is zero due to the fact [56]
that �

(0)
B (γ , k0| τ ) = τπ cos(π/2) = 0. Furthermore, the Berry phase of the flat band remains zero in the presence of circularly

polarized light, which could be easily verified by evaluating the integral in Eq. (41) with respect to the wave function in Eq. (21).
In contrast, for α-T3 lattices the constant-energy cut of dispersions in Eq. (26) with angular dependence given by Eq. (27) has

an elliptic shape, as displayed in Fig. 5(a). Such an ellipse is described by[
k1(θk ) cos(θk )

a

]2

+
[

k1(θk ) sin(θk )

b(φ)

]2

= 1 , (C3)

where

a = ε0

h̄vF
, b(φ) = ε0

h̄vF
{[J0(2λ0) cos(2φ)]2 + [J0(λ0) sin(2φ)]2}−1 � a

{
1 + λ2

0

8
[5 + 3 cos(4φ)]

}
> a . (C4)

Moreover, we have defined

k1(θk ) = b(φ) a√
a2 cos2 θk + b2(φ) sin2 θk

= b(φ)√
1 − e2(φ) cos2 θk

, (C5)

where a and b(φ) are major and minor semiaxes of an ellipse in k space and e(φ) =
√

1 − b2(φ)/a2 is its eccentricity. We see that
each specific elliptical path, as well as its eccentricity, also depends on the intensity of incoming radiation or coupling constant
λ0. Our notation θk = arctan(ky/kx ) should not lead to confusion since the angle θk is independent of the radial component k in
polar coordinates. For the current case, we find

dk1(θk ) = −1

2
b(φ) e2(φ)

sin(2θk )

[1 − e2(φ) cos θk]2/3
dθk , (C6)

dk = b(φ)√
1 − e2(φ) cos θk

{
êθ − e2(φ) sin(2θk )

2 [1 − e2(φ) cos θk]
êk

}
dθk . (C7)

Particularly, in the case of linearly polarized light, we notice that the wave function components in Eqs. (31) and (33) depend
only on θk but not on the radial component k for all possible values of φ. Therefore, we find from Eq. (31) that

∇k�
γ=±1
d (k| τ ) = 1

k1(θk )

∂

∂θk
�

γ=±1
d (k| τ ) = iτ

2k1(θk )

∂�0,1(θk| τ )

∂θk

⎡
⎣−e−i�0,1(θk| τ )

0
ei�0,1(θk| τ )

⎤
⎦, (C8)

so that [�γ=±1
d (k| τ )]

†∇k�
γ=±1
d (k| τ ) ≡ 0. The only difference between the flat and the valence or conduction bands is the

explicit expressions for �0(θk| τ ) and �1(θk| τ ), which will not change the fact of a zero Berry phase from Eq. (41).
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In the remaining part of Appendix C, we would like to show details of the calculation on the Berry connection vector field
Aγ

τ,φ (k, λ0) and the Berry curvature �
γ

τ,φ (k, λ0), which are defined by

Aγ

τ,φ (k, λ0) ≡ 〈�γ

d (k, λ0| τ, φ)
∣∣ i∇k

∣∣�γ

d (k, λ0| τ, φ)
〉
,

(C9)
�

γ

τ,φ (k, λ0) ≡ ∇k × Aγ

τ,φ (k, λ0).

In the absence of incident light, the Berry connections for the cone bands with γ = ±1 are Aγ=±1
τ,φ (k, λ0) =

+(τ/2) cos(2φ) ∇kθk and Aγ=0
τ,φ (k, λ0) = −2Aγ=±1

τ,φ (k, λ0) for the flat band. The ×2 difference comes from the normalization
of different wave functions.

In polar coordinates, according to Eq. (C1), ∇kθk = (1/k) êθ is directed along the êθ unit vector. We immediately find that
for all bands (γ = 0, ±1) the Berry field is always zero for a dice lattice with φ = π/4.

It is straightforward to verify that for a dice lattice the Berry connection will remain zero even in the presence of a linearly

polarized dressing field. As described above, for a dice lattice with α = 1, we get [�γ=±1
d (k| τ )]

†∇k�
γ=±1
d (k| τ ) ≡ 0. Here,

the only difference between the flat and valence or conduction bands is the explicit expressions of phases �0(θk| τ ) for γ = 0
and �1(θk| τ ) for γ = ±1. We would also like to emphasize that the Berry connection is closely connected to the Berry phase
defined in Eq. (41), except that the closed-linear integration is not performed.

Furthermore, the Berry curvature is calculated as

êz · [∇k × Aγ

τ,φ (k, λ0)
] = 1

k

(
∂
[
k
(
Aγ

−,φ

)
θ

]
∂k

− ∂ (Aγ

−,φ )k

∂θk

)
= τ

2k
cos(2φ)

d

dk
�(k) , (C10)

where �(k) is a step function which is introduced because k/k is always 1 if k is finite but undetermined for k = 0. Here, we
also make use of the following identity in the polar coordinates, i.e., δ(k) = δ(k)/(2πk), where δ(k) = d�(k)/dk is the Dirac δ

function. Finally, from Eq. (C10) we obtain

�
γ=±1
τ,φ (k, λ0 = 0) = τπ cos(2φ) δ(k) ,

(C11)
�

γ=0
τ,φ (k, λ0 = 0) = −2τπ cos(2φ) δ(k) .

These results imply a complete valley symmetry since each of them is proportional to the valley index τ .
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